Intrinsic ion dynamics underlies the temporal nature of resting-state functional connectivity
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, preprinty
Grantová podpora
K99 AG086609
NIA NIH HHS - United States
R01 MH125557
NIMH NIH HHS - United States
RF1 NS132913
NINDS NIH HHS - United States
PubMed
41279802
PubMed Central
PMC12637618
DOI
10.1101/2025.11.08.687387
PII: 2025.11.08.687387
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
The neural mechanisms underlying the emergence of functional connectivity in resting-state fMRI remain poorly understood. Recent studies suggest that resting-state activity consists of brief periods of strong co-fluctuations among brain regions, which reflect overall functional connectivity. Others report a continuum in co-fluctuations over time, with varying degree of correlation to functional connectivity. These findings raise the critical question: what neural processes underlie the temporal structure of resting-state activity? To address this, we used a biophysically realistic whole-brain computational model in which resting-state activity emerged from temporal variations in the ion concentrations of potassium ( K + ) and sodium ( Na + ), intracellular chloride ( Cl - ), and the activity of the Na + / K + ATPase. The model reproduced transient periods of high co-fluctuations, and the functional connectivity at different co-fluctuation levels correlated to varying degrees with the connectivity measured over the entire simulation, in line with experimental observations. The periods of high co-fluctuations were aligned with large changes in extracellular ion concentrations. Furthermore, critical parameters governing ion dynamics strongly affected both the timing of these transient events and the spatial structure of the resulting functional connectivity. The balance of excitatory and inhibitory activity further modulated their frequency and amplitude. Together, these results suggest that intrinsic fluctuations in ion dynamics could serve as a plausible neural mechanism for the temporal organization of co-fluctuations and resting-state functional connectivity.
Department of Integrative Physiology University of Colorado Boulder Boulder CO USA
Department of Psychiatry and Behavioral Sciences Stanford University Stanford CA USA
Georgia Institute of Technology Atlanta Georgia USA
Institute of Computer Science of the Czech Academy of Sciences Prague Czech Republic
National Institute of Mental Health Klecany Czech Republic
School of Medicine University of California San Diego La Jolla CA USA
Zobrazit více v PubMed
Friston K. J., Functional and effective connectivity: a review. Brain Connect 1, 13–36 (2011). PubMed
Canario E., Chen D., Biswal B., A review of resting-state fMRI and its use to examine psychiatric disorders. Psychoradiology 1, 42–53 (2021). PubMed PMC
Zimmermann J., Griffiths J. D., McIntosh A. R., Unique Mapping of Structural and Functional Connectivity on Cognition. J Neurosci 38, 9658–9667 (2018). PubMed PMC
Mill R. D., Ito T., Cole M. W., From connectome to cognition: The search for mechanism in human functional brain networks. Neuroimage 160, 124–139 (2017). PubMed PMC
Fox M. D., Mapping Symptoms to Brain Networks with the Human Connectome. N Eng I J Med 379, 2237–2245 (2018).
Buckner R. L., Krienen F. M., The evolution of distributed association networks in the human brain. Trends Cogn Sci 17, 648–665 (2013). PubMed
van den Heuvel M. P., Hulshoff Pol H. E., Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20, 519–534 (2010). PubMed
Hiltunen T. et al. , Infra-slow EEG fluctuations are correlated with resting-state network dynamics in fMRI. J Neurosci 34, 356–362 (2014). PubMed PMC
Logothetis N. K., Pauls J., Augath M., Trinath T., Oeltermann A., Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001). PubMed
Ma Y. et al. , Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons. Proc Natl Acad Sci U S A 113, E8463–E8471 (2016). PubMed PMC
Pan W. J., Thompson G. J., Magnuson M. E., Jaeger D., Keilholz S., Infraslow LFP correlates to resting-state fMRI BOLD signals. Neuroimage 74, 288–297 (2013). PubMed PMC
Scholvinck M. L., Maier A., Ye F. Q., Duyn J. H., Leopold D. A., Neural basis of global resting-state fMRI activity. Proc Natl Acad Sci U S A 107, 10238–10243 (2010). PubMed PMC
Lurie D. J. et al. , Questions and controversies in the study of time-varying functional connectivity in resting fMRI. Netw Neurosci 4, 30–69 (2020). PubMed PMC
Hutchison R. M. et al. , Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378 (2013). PubMed PMC
Allan T. W. et al. , Functional Connectivity in MRI Is Driven by Spontaneous BOLD Events. PLoS One 10, e0124577 (2015). PubMed PMC
Pope M., Fukushima M., Betzel R. F., Sporns O., Modular origins of high-amplitude cofluctuations in fine-scale functional connectivity dynamics. Proc Natl Acad Sci USA 118 (2021).
Tagliazucchi E., Balenzuela P., Fraiman D., Montoya P., Chialvo D. R., Spontaneous BOLD event triggered averages for estimating functional connectivity at resting state. Neurosci Lett 488, 158–163 (2011). PubMed PMC
Tagliazucchi E., Siniatchkin M., Laufs H., Chialvo D. R., The Voxel-Wise Functional Connectome Can Be Efficiently Derived from Co-activations in a Sparse Spatio-Temporal Point-Process. Front Neurosci 10, 381 (2016). PubMed PMC
Zamani Esfahlani F. et al. , High-amplitude cofluctuations in cortical activity drive functional connectivity. Proc Natl Acad Sci U S A 117, 28393–28401 (2020). PubMed PMC
Ladwig Z. et al. , BOLD cofluctuation ‘events’ are predicted from static functional connectivity. Neuroimage 260, 119476 (2022). PubMed PMC
Laumann T. O. et al. , On the Stability of BOLD fMRI Correlations. Cereb Cortex 27, 4719–4732 (2017). PubMed PMC
Novelli L., Razi A., A mathematical perspective on edge-centric brain functional connectivity. Nat Commun 13, 2693 (2022). PubMed PMC
Allen E. A., Damaraju E., Eichele T., Wu L., Calhoun V. D., EEG Signatures of Dynamic Functional Network Connectivity States. Brain Topogr 31, 101–116 (2018). PubMed PMC
Chang C., Liu Z., Chen M. C., Liu X., Duyn J. H., EEG correlates of time-varying BOLD functional connectivity. Neuroimage 72, 227–236 (2013). PubMed PMC
Matsui T., Murakami T., Ohki K., Neuronal Origin of the Temporal Dynamics of Spontaneous BOLD Activity Correlation. Cereb Cortex 29, 1496–1508 (2019). PubMed
Tagliazucchi E., Laufs H., Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep. Neuron 82, 695–708 (2014). PubMed
Liegeois R., Laumann T. O., Snyder A. Z., Zhou J., Yeo B. T. T., Interpreting temporal fluctuations in resting-state functional connectivity MRI. Neuroimage 163, 437–455 (2017). PubMed
Breakspear M., Dynamic models of large-scale brain activity. Nat Neurosci 20, 340–352 (2017). PubMed
Deco G., Jirsa V. K., Robinson P. A., Breakspear M., Friston K., The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput Biol 4, e1000092 (2008). PubMed PMC
D’Angelo E., Jirsa V., The quest for multiscale brain modeling. Trends Neurosci 45, 777–790 (2022). PubMed
Roberts J. A., Boonstra T. W., Breakspear M., The heavy tail of the human brain. Curr Opin Neurobiol 31, 164–172 (2015). PubMed
Krishnan G. P., Gonzalez O. C., Bazhenov M., Origin of slow spontaneous resting-state neuronal fluctuations in brain networks. Proc Natl Acad Sci U S A 115, 6858–6863 (2018). PubMed PMC
Bakker R., Wachtler T., Diesmann M., CoCoMac 2.0 and the future of tract-tracing databases. Front Neuroinform 6, 30 (2012). PubMed PMC
Skoch A. et al. , Human brain structural connectivity matrices-ready for modelling. Sci Data 9, 486 (2022). PubMed PMC
Biswal B., Yetkin F. Z., Haughton V. M., Hyde J. S., Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34, 537–541 (1995). PubMed
Cordes D. et al. , Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol 21, 1636–1644 (2000). PubMed PMC
Fox M. D., Raichle M. E., Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8, 700–711 (2007). PubMed
Nir Y. et al. , Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex. Nat Neurosci 11, 1100–1108 (2008). PubMed PMC
Hartman D., Hlinka J., Palus M., Mantini D., Corbetta M., The role of nonlinearity in computing graph-theoretical properties of resting-state functional magnetic resonance imaging brain networks. Chaos 21, 013119 (2011). PubMed PMC
Hlinka J., Palus M., Vejmelka M., Mantini D., Corbetta M., Functional connectivity in resting-state fMRI: is linear correlation sufficient? Neuroimage 54, 2218–2225 (2011). PubMed PMC
Laumann T. O. et al. , Functional System and Areal Organization of a Highly Sampled Individual Human Brain. Neuron 87, 657–670 (2015). PubMed PMC
Chang C., Glover G. H., Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 50, 81–98 (2010). PubMed PMC
Hlinka J., Hadrava M., On the danger of detecting network states in white noise. Front Comput Neurosci 9, 11 (2015). PubMed PMC
Leonardi N., Van De Ville D., On spurious and real fluctuations of dynamic functional connectivity during rest. Neuroimage 104, 430–436 (2015). PubMed
Lindquist M. A., Xu Y., Nebel M. B., Caffo B. S., Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach. Neuroimage 101, 531–546 (2014). PubMed PMC
Liu X., Duyn J. H., Time-varying functional network information extracted from brief instances of spontaneous brain activity. Proc Natl Acad Sci U S A 110, 4392–4397 (2013). PubMed PMC
Faskowitz J., Esfahlani F. Z., Jo Y., Sporns O., Betzel R. F., Edge-centric functional network representations of human cerebral cortex reveal overlapping system-level architecture. Nat Neurosci 23, 1644–1654 (2020). PubMed
Betzel R. F., Faskowitz J., Sporns O., Living on the edge: network neuroscience beyond nodes. Trends Cogn Sci 27, 1068–1084 (2023). PubMed PMC
Jones H. M., Yoo K., Chun M. M., Rosenberg M. D., Edge-Based General Linear Models Capture Moment-to-Moment Fluctuations in Attention. J Neurosci 44 (2024).
Merritt H., Mejia A., Betzel R., The dual interpretation of edge time series: Time-varying connectivity DOI
Tanner J. C. et al. , Synchronous high-amplitude co-fluctuations of functional brain networks during movie-watching. Imaging Neuroscience 1, 1–21 (2023).
Rabuffo G., Fousek J., Bernard C., Jirsa V., Neuronal Cascades Shape Whole-Brain Functional Dynamics at Rest. eNeuro 8 (2021).
Ponce-Alvarez A. et al. , Resting-state temporal synchronization networks emerge from connectivity topology and heterogeneity. PLoS Comput Biol 11, e1004100 (2015). PubMed PMC
Erecinska M., Silver I. A., Ions and energy in mammalian brain. Prog Neurobiol 43, 37–71 (1994). PubMed
Pivovarov A. S., Calahorro F., Walker R. J., Na(+)/K(+)-pump and neurotransmitter membrane receptors. Invert Neurosci 19, 1 (2018). PubMed PMC
Sanda P. et al. , Cholinergic modulation supports dynamic switching of resting state networks through selective DMN suppression. PLoS Comput Biol 20, e1012099 (2024). PubMed PMC
Bazhenov M., Timofeev I., Steriade M., Sejnowski T. J., Potassium model for slow (2–3 Hz) in vivo neocortical paroxysmal oscillations. J Neurophysiol 92, 1116–1132 (2004). PubMed PMC
Frohlich F., Bazhenov M., Coexistence of tonic firing and bursting in cortical neurons. Phys Rev E Stat Nonlin Soft Matter Phys 74, 031922 (2006). PubMed
González O. C. et al. , Modeling of Age-Dependent Epileptogenesis by Differential Homeostatic Synaptic Scaling. The Journal of Neuroscience 35, 13448–13462 (2015). PubMed PMC
Krishnan G. P., Bazhenov M., lonic dynamics mediate spontaneous termination of seizures and postictal depression state. J Neurosci 31, 8870–8882 (2011). PubMed PMC
Krishnan G. P., Filatov G., Shilnikov A., Bazhenov M., Electrogenic properties of the Na(+)/K(+) ATPase control transitions between normal and pathological brain states. J Neurophysiol 113, 3356–3374 (2015). PubMed PMC
Tzourio-Mazoyer N. et al. , Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002). PubMed