Altered Plasma Butyrylcholinesterase Activity in Streptozotocin-Induced Diabetic Hypertensive Rats Does Not Reflect Impaired Liver Function
Language English Country Czech Republic Media print
Document type Journal Article
PubMed
40698664
PubMed Central
PMC12462700
DOI
10.33549/physiolres.935558
PII: 935558
Knihovny.cz E-resources
- MeSH
- Biomarkers blood MeSH
- Butyrylcholinesterase * blood MeSH
- Diabetes Mellitus, Type 1 * blood enzymology MeSH
- Diabetes Mellitus, Experimental * blood enzymology complications MeSH
- Hypertension * blood enzymology MeSH
- Liver * enzymology physiopathology MeSH
- Rats MeSH
- Rats, Inbred SHR MeSH
- Rats, Wistar MeSH
- Streptozocin MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biomarkers MeSH
- Butyrylcholinesterase * MeSH
- Streptozocin MeSH
Butyrylcholinesterase (BChE) has recently been associated with metabolic imbalance. A correlation between plasma activity and lipid and glucose metabolism has been reported in animal models and human patients. Here, we investigated plasma BChE activity in a rat model of comorbid hypertension and type 1 diabetes mellitus (DM) induced by a single injection of streptozotocin (STZ, 55 mg/kg) in male spontaneously hypertensive rats (SHR) (SHR+DM). The SHR+DM animals exhibit the main characteristics of the human comorbid pathology, including hypertension and hyperglycemia. Although STZ lowered blood pressure in SHR, the animals remained hypertensive as compared to the Wistar controls. Plasma levels of triacylglycerols, cholesterol and HDL were increased, while markers of liver damage such as ALT, AST, were increased and albumin was decreased. Plasma BChE activities were similar in Wistar and SHR. In SHR+DM, plasma BChE activity was increased by 43 %. Interestingly, liver BChE activity and relative mRNA expression were decreased by 60 % in SHR and SHR+DM. While plasma BChE activity is often used as a clinical marker of liver injury, our results suggest that it may not be a reliable indicator. Key words Butyrylcholinesterase " Streptozotocin " Spontaneously hypertensive rats " Diabetes mellitus " Liver damage.
See more in PubMed
Jbilo O, Bartels CF, Chatonnet A, Toutant JP, Lockridge O. Tissue distribution of human acetylcholinesterase and butyrylcholinesterase messenger RNA. Toxicon. 1994;32:1445–1457. doi: 10.1016/0041-0101(94)90416-2. PubMed DOI
Lockridge O, Norgren RB, Johnson RC, Blake TA. Naturally Occurring Genetic Variants of Human Acetylcholinesterase and Butyrylcholinesterase and Their Potential Impact on the Risk of Toxicity from Cholinesterase Inhibitors. Chem Res Toxicol. 2016;29:1381–1392. doi: 10.1021/acs.chemrestox.6b00228. PubMed DOI PMC
Lockridge O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol Ther. 2015;148:34–46. doi: 10.1016/j.pharmthera.2014.11.011. PubMed DOI
Sridhar GR, Gumpeny L. Emerging significance of butyrylcholinesterase. World J Exp Med. 2024;14:87202. doi: 10.5493/wjem.v14.i1.87202. PubMed DOI PMC
Li B, Stribley JA, Ticu A, Xie W, Schopfer LM, Hammond P, Brimijoin S, Hinrichs SH, Lockridge O. Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. J Neurochem. 2000;75:1320–1331. doi: 10.1046/j.1471-4159.2000.751320.x. PubMed DOI
Manoharan I, Boopathy R, Darvesh S, Lockridge O. A medical health report on individuals with silent butyrylcholinesterase in the Vysya community of India. Clin Chim Acta Int J Clin Chem. 2007;378:128–135. doi: 10.1016/j.cca.2006.11.005. PubMed DOI
Li B, Duysen EG, Lockridge O. The butyrylcholinesterase knockout mouse is obese on a high-fat diet. Chem Biol Interact. 2008;175:88–91. doi: 10.1016/j.cbi.2008.03.009. PubMed DOI
Lockridge O. Genetic variants of human serum cholinesterase influence metabolism of the muscle relaxant succinylcholine. Pharmacol Ther. 1990;47:35–60. doi: 10.1016/0163-7258(90)90044-3. PubMed DOI
Mesulam M-M, Guillozet A, Shaw P, Levey A, Duysen EG, Lockridge O. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience. 2002;110:627–639. doi: 10.1016/S0306-4522(01)00613-3. PubMed DOI
Duysen EG, Li B, Darvesh S, Lockridge O. Sensitivity of butyrylcholinesterase knockout mice to (--)-huperzine A and donepezil suggests humans with butyrylcholinesterase deficiency may not tolerate these Alzheimer’s disease drugs and indicates butyrylcholinesterase function in neurotransmission. Toxicology. 2007;233:60–69. doi: 10.1016/j.tox.2006.11.069. PubMed DOI
Schopfer LM, Lockridge O, Brimijoin S. Pure human butyrylcholinesterase hydrolyzes octanoyl ghrelin to desacyl ghrelin. Gen Comp Endocrinol. 2015;224:61–68. doi: 10.1016/j.ygcen.2015.05.017. PubMed DOI
Brimijoin S, Chen VP, Pang Y-P, Geng L, Gao Y. Physiological roles for butyrylcholinesterase: A BChE-ghrelin axis. Chem Biol Interact. 2016;259:271–275. doi: 10.1016/j.cbi.2016.02.013. PubMed DOI PMC
Chen VP, Gao Y, Geng L, Brimijoin S. Butyrylcholinesterase regulates central ghrelin signaling and has an impact on food intake and glucose homeostasis. Int J Obes (Lond) 2017;41:1413–1419. doi: 10.1038/ijo.2017.123. PubMed DOI PMC
Randell EW, Mathews MS, Zhang H, Seraj JS, Sun G. Relationship between serum butyrylcholinesterase and the metabolic syndrome. Clin Biochem. 2005;38:799–805. doi: 10.1016/j.clinbiochem.2005.04.008. PubMed DOI
Iwasaki T, Yoneda M, Nakajima A, Terauchi Y. Serum butyrylcholinesterase is strongly associated with adiposity, the serum lipid profile and insulin resistance. Intern Med. 2007;46:1633–1639. doi: 10.2169/internalmedicine.46.0049. PubMed DOI
Molina-Pintor IB, Rojas-García AE, Bernal-Hernández YY, Medina-Díaz IM, González-Arias CA, Barrón-Vivanco BS. Relationship between butyrylcholinesterase activity and lipid parameters in workers occupationally exposed to pesticides. Environ Sci Pollut Res Int. 2020;27:39365–39374. doi: 10.1007/s11356-020-08197-2. PubMed DOI
Vallianou NG, Evangelopoulos AA, Bountziouka V, Bonou MS, Katsagoni C, Vogiatzakis ED, Avgerinos PC, et al. Association of butyrylcholinesterase with cardiometabolic risk factors among apparently healthy adults. J Cardiovasc Med (Hagerstown) 2014;15:377–383. doi: 10.2459/JCM.0b013e3283627700. PubMed DOI
Alcântara VM, Chautard-Freire-Maia EA, Scartezini M, Cerci MSJ, Braun-Prado K, Picheth G. Butyrylcholinesterase activity and risk factors for coronary artery disease. Scand J Clin Lab Invest. 2002;62:399–404. doi: 10.1080/00365510260296564. PubMed DOI
Tangvarasittichai S, Pongthaisong S, Meemark S, Tangvarasittichai O. Abdominal Obesity Associated with Elevated Serum Butyrylcholinesterase Activity, Insulin Resistance and Reduced High Density Lipoprotein-Cholesterol Levels. Indian J Clin Biochem IJCB. 2015;30:275–280. doi: 10.1007/s12291-014-0443-3. PubMed DOI PMC
Kutty KM, Payne RH. Serum pseudocholinesterase and very-low-density lipoprotein metabolism. J Clin Lab Anal. 1994;8:247–250. doi: 10.1002/jcla.1860080411. PubMed DOI
Annapurna V, Senciall I, Davis AJ, Kutty KM. Relationship between serum pseudocholinesterase and triglycerides in experimentally induced diabetes mellitus in rats. Diabetologia. 1991;34:320–324. doi: 10.1007/BF00405003. PubMed DOI
Kumar V, Agarwal S, Saboo B, Makkar B. RSSDI Guidelines for the management of hypertension in patients with diabetes mellitus. Int J Diabetes Dev Ctries. 2022;42:576–605. doi: 10.1007/s13410-022-01143-7. PubMed DOI PMC
Passarella P, Kiseleva TA, Valeeva FV, Gosmanov AR. Hypertension Management in Diabetes: 2018 Update. Diabetes Spectr Publ Am Diabetes Assoc. 2018;31:218–224. doi: 10.2337/ds17-0085. PubMed DOI PMC
Ito M, Kondo Y, Nakatani A, Naruse A. New model of progressive non-insulin-dependent diabetes mellitus in mice induced by streptozotocin. Biol Pharm Bull. 1999;22:988–989. doi: 10.1248/bpb.22.988. PubMed DOI
Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50:537–546. doi: 10.33549/physiolres.930111. PubMed DOI
Calder PC, Geddes R. Post mortem glycogenolysis is a combination of phosphorolysis and hydrolysis. Int J Biochem. 1990;22:847–856. doi: 10.1016/0020-711X(90)90288-E. PubMed DOI
Dingova D, Leroy J, Check A, Garaj V, Krejci E, Hrabovska A. Optimal detection of cholinesterase activity in biological samples: modifications to the standard Ellman’s assay. Anal Biochem. 2014;462:67–75. doi: 10.1016/j.ab.2014.05.031. PubMed DOI
Collado-Mesa F, Colhoun HM, Stevens LK, Boavida J, Ferriss JB, Karamanos B, Kempler P, et al. Prevalence and management of hypertension in type 1 diabetes mellitus in Europe: the EURODIAB IDDM Complications Study. Diabet Med J Br Diabet Assoc. 1999;16:41–48. doi: 10.1046/j.1464-5491.1999.00007.x. PubMed DOI
Tatsumi Y, Ohkubo T. Hypertension with diabetes mellitus: significance from an epidemiological perspective for Japanese. Hypertens Res. 2017;40:795–806. doi: 10.1038/hr.2017.67. PubMed DOI
Liu W, Higashikuni Y, Sata M. Optimizing antihypertensive therapy in patients with diabetes mellitus. Hypertens Res. 2023;46:797–800. doi: 10.1038/s41440-022-01150-5. PubMed DOI
Passarella P, Kiseleva TA, Valeeva FV, Gosmanov AR. Hypertension Management in Diabetes: 2018 Update. Diabetes Spectr Publ Am Diabetes Assoc. 2018;31:218–224. doi: 10.2337/ds17-0085. PubMed DOI PMC
Grossman A, Grossman E. Blood pressure control in type 2 diabetic patients. Cardiovasc Diabetol. 2017;16:3. doi: 10.1186/s12933-016-0485-3. PubMed DOI PMC
Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384:626–635. doi: 10.1016/S0140-6736(14)61177-6. PubMed DOI
Austin MA. Triacylglycerol and coronary heart disease. Proc Nutr Soc. 1997;56:667–670. doi: 10.1079/PNS19970066. PubMed DOI
Somani P, Singh HP, Saini RK, Rabinovitch A. Streptozotocin-induced diabetes in the spontaneously hypertensive rat. Metabolism. 1979;28:1075–1077. doi: 10.1016/0026-0495(79)90144-6. PubMed DOI
Susic D, Mandal AK, Jovovic DJ, Radujkovic G, Kentera D. Streptozotocin-induced diabetes mellitus lowers blood pressure in spontaneously hypertensive rat. Clin Exp Hypertens A. 1990;12:1021–1035. doi: 10.3109/10641969009073515. PubMed DOI
Calderon-Margalit R, Adler B, Abramson JH, Gofin J, Kark JD. Butyrylcholinesterase activity, cardiovascular risk factors, and mortality in middle-aged and elderly men and women in Jerusalem. Clin Chem. 2006;52:845–852. doi: 10.1373/clinchem.2005.059857. PubMed DOI
Hickman HD. Slowing blood flow to fight viral infection. Science. 2019;363:585–586. doi: 10.1126/science.aaw3618. PubMed DOI PMC
Olofsson PS, Steinberg BE, Sobbi R, Cox MA, Ahmed MN, Oswald M, Szekeres F, et al. Blood pressure regulation by CD4+ lymphocytes expressing choline acetyltransferase. Nat Biotechnol. 2016;34:1066–1071. doi: 10.1038/nbt.3663. PubMed DOI PMC
Cox MA, Duncan GS, Lin GHY, Steinberg BE, Yu LX, Brenner D, Buckler LN, et al. Choline acetyltransferase-expressing T cells are required to control chronic viral infection. Science. 2019;363:639–644. doi: 10.1126/science.aau9072. PubMed DOI PMC
Tarnawski L, Shavva VS, Kort EJ, Zhuge Z, Nilsson I, Gallina AL, Martínez-Enguita D, et al. Cholinergic regulation of vascular endothelial function by human ChAT+ T cells. Proc Natl Acad Sci U S A. 2023;120:e2212476120. doi: 10.1073/pnas.2212476120. PubMed DOI PMC
Cardoso AM, Abdalla FH, Bagatini MD, Martins CC, da Fiorin FS, Baldissarelli J, Costa P, et al. Swimming training prevents alterations in acetylcholinesterase and butyrylcholinesterase activities in hypertensive rats. Am J Hypertens. 2014;27:522–529. doi: 10.1093/ajh/hpt030. PubMed DOI
Szmicseková K, Bies Piváčková L, Kiliánová Z, Slobodová L’, Křenek P, Hrabovská A. Aortic butyrylcholinesterase is reduced in spontaneously hypertensive rats. Physiol Res. 2021;70:809–813. doi: 10.33549/physiolres.934669. PubMed DOI PMC
Trippodo NC, Frohlich ED. Similarities of genetic (spontaneous) hypertension. Man and rat. Circ Res. 1981;48:309–319. doi: 10.1161/01.RES.48.3.309. PubMed DOI
Küng CF, Moreau P, Takase H, Lüscher TF. L-NAME Hypertension Alters Endothelial and Smooth Muscle Function in Rat Aorta. Hypertension. 1995;26:744–751. doi: 10.1161/01.HYP.26.5.744. PubMed DOI
Vanhoutte PM. Endothelium-Dependent Contractions in Hypertension. Hypertension. 2011;57:526–531. doi: 10.1161/HYPERTENSIONAHA.110.165100. PubMed DOI
Wong MS-K, Vanhoutte PM. COX-mediated endothelium-dependent contractions: from the past to recent discoveries. Acta Pharmacol Sin. 2010;31:1095–1102. doi: 10.1038/aps.2010.127. PubMed DOI PMC
Chen VP, Gao Y, Geng L, Stout MB, Jensen MD, Brimijoin S. Butyrylcholinesterase Deficiency Promotes Adipose Tissue Growth and Hepatic Lipid Accumulation in Male Mice on High-Fat Diet. Endocrinology. 2016;157:3086–3095. doi: 10.1210/en.2016-1166. PubMed DOI PMC
Lucić Vrdoljak A, Bradamante V, Radić B, Peraica M, Fuchs R, Reiner Z. Butyrylcholinesterase activity and plasma lipids in dexamethasone treated rats. Acta Pharm. 2005;55:177–185. PubMed
Abbott CA, Mackness MI, Kumar S, Olukoga AO, Gordon C, Arrol S, Bhatnagar D, Boulton AJ, Durrington PN. Relationship between serum butyrylcholinesterase activity, hypertriglyceridaemia and insulin sensitivity in diabetes mellitus. Clin Sci (Lond) 1993;85:77–81. doi: 10.1042/cs0850077. PubMed DOI
Santarpia L, Alfonsi L, Castiglione F, Pagano MC, Cioffi I, Rispo A, Sodo M, Contaldo F, Pasanisi F. Nutritional Rehabilitation in Patients with Malnutrition Due to Crohn’s Disease. Nutrients. 2019;11:2947. doi: 10.3390/nu11122947. PubMed DOI PMC
Santarpia L, Grandone I, Contaldo F, Pasanisi F. Butyrylcholinesterase as a prognostic marker: a review of the literature. J Cachexia Sarcopenia Muscle. 2013;4:31–39. doi: 10.1007/s13539-012-0083-5. PubMed DOI PMC