Aortic butyrylcholinesterase is reduced in spontaneously hypertensive rats
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34505519
PubMed Central
PMC8820528
DOI
10.33549/physiolres.934669
PII: 934669
Knihovny.cz E-zdroje
- MeSH
- aorta enzymologie MeSH
- butyrylcholinesterasa metabolismus MeSH
- hypertenze enzymologie MeSH
- krysa rodu Rattus MeSH
- potkani inbrední SHR metabolismus MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- butyrylcholinesterasa MeSH
Despite the fact that vessels have sparse cholinergic innervation, acetylcholine (ACh), the primary neurotransmitter of parasympathetic nervous system, has been commonly used in physiological experiments to assess vascular function. ACh is hydrolyzed by two cholinesterases (ChE), namely acetylcholin-esterase and butyrylcholinesterase (BChE). However, little is known about these enzymes in blood vessels. The aim of the project was to characterize the expression and activity of ChE in rat aorta. As the effect of ACh on vascular tone depends on the presence of endothelium, Wistar rats were used as a model with intact endothelium and spontaneously hypertensive rats as a model of impaired endothelial function. Relative expressions of both ChE in different parts of the aorta were determined using RT-qPCR. Enzyme activities were assessed in tissue homogenates by Ellman's assay. Here we showed that both ChE are present in each part of rat aorta, while mRNA is more abundant for BChE than for AChE, irrespective of aortic compartment or genotype. Normotensive Wistar rats possess higher aortic mRNA expression and activity of BChE compared to SHR. We concluded that BChE is the dominant type of ChE in rat aorta and it might play an important role in the regulation of vascular tone.
Zobrazit více v PubMed
BECKMANN J, LIPS KS. The non-neuronal cholinergic system in health and disease. Pharmacology. 2013;92:286–302. doi: 10.1159/000355835. PubMed DOI
BONETTI PO, LERMAN LO, LERMAN A. Endothelial dysfunction. Arterioscler Thromb Vasc Biol. 2003;23:168–175. doi: 10.1161/01.ATV.0000051384.43104.FC. PubMed DOI
CHEN VP, GAO Y, GENG L, STOUT MB, JENSEN MD, BRIMIJOIN S. Butyrylcholinesterase deficiency promotes adipose tissue growth and hepatic lipid accumulation in male mice on high-fat diet. Endocrinology. 2016;157:3086–3095. doi: 10.1210/en.2016-1166. PubMed DOI PMC
DINGOVA D, LEROY J, CHECK A, GARAJ V, KREJCI E, HRABOVSKA A. Optimal detection of cholinesterase activity in biological samples: modifications to the standard Ellman’s assay. Anal Biochem. 2014;462:67–75. doi: 10.1016/j.ab.2014.05.031. PubMed DOI
DINGOVA D, FAZEKAS T, OKULIAROVA P, STRBOVA J, KUCERA M, HRABOVSKA A. Low plasma cholinesterase activities are associated with deficits in spatial orientation, reduced ability to perform basic activities of daily living, and low body mass index in patients with progressed Alzheimer’s Disease. J Alzheimers Dis. 2016;51:801–813. doi: 10.3233/JAD-151060. PubMed DOI
FÉLÉTOU M, VANHOUTTE PM. Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture) Am J Physiol Heart Circ. 2006;291:H985–H1002. doi: 10.1152/ajpheart.00292.2006. PubMed DOI
FURCHGOTT RF. Endothelium-dependent relaxation, endothelium-derived relaxing factor and photorelaxation of blood vessels. Semin Perinatol. 1991;15:11–15. PubMed
HADI HAR, CARR CS, AL SUWAIDI J. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag. 2005;1:183–198. PubMed PMC
HRABOVSKA A, DEBOUZY JC, FROMENT MT, DEVINSKY F, PAULIKOVA I, MASSON P. Rat butyrylcholinesterase-catalysed hydrolysis of N-alkyl homologues of benzoylcholine. FEBS J. 2006;273:1185–1197. doi: 10.1111/j.1742-4658.2006.05144.x. PubMed DOI
IWASAKI T, YONEDA M, NAKAJIMA A, TERAUCHI Y. Serum butyrylcholinesterase is strongly associated with adiposity, the serum lipid profile and insulin resistance. Intern Med. 2007;46:1633–1639. doi: 10.2169/internalmedicine.46.0049. PubMed DOI
KAWASHIMA K, FUJII T, MORIWAKI Y, MISAWA H, HORIGUCHI K. Non-neuronal cholinergic system in regulation of immune function with a focus on α7 nAChRs. Int Immunopharmacol. 2015;29:127–134. doi: 10.1016/j.intimp.2015.04.015. PubMed DOI
KILIANOVA Z, CIZNAROVA N, SZMICSEKOVA K, SLOBODOVA L, HRABOVSKA A. Expression of cholinesterases and their anchoring proteins in rat heart. Can J Physiol Pharmacol. 2020;98:473–476. doi: 10.1139/cjpp-2019-0565. PubMed DOI
LI B, STRIBLEY JA, TICU A. Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. J Neurochem. 2002;75:1320–1331. doi: 10.1046/j.1471-4159.2000.751320.x. PubMed DOI
LOCKRIDGE O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol Ther. 2015;148:34–46. doi: 10.1016/j.pharmthera.2014.11.011. PubMed DOI
NERVO A, CALAS A-G, NACHON F, KREJCI E. Respiratory failure triggered by cholinesterase inhibitors may involve activation of a reflex sensory pathway by acetylcholine spillover. Toxicology. 2019;424:152232. doi: 10.1016/j.tox.2019.06.003. PubMed DOI
NOREL X, WALCH L, CONSTANTINO M. M1 and M3 muscarinic receptors in human pulmonary arteries. Br J Pharmacol. 1996;119:149–157. doi: 10.1111/j.1476-5381.1996.tb15688.x. PubMed DOI PMC
RUIJTER JM, RAMAKERS C, HOOGAARS WMH, KARLEN Y, BAKKER O, Van den HOFF MJB, MOORMAN AFM. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009;37:E45. doi: 10.1093/nar/gkp045. PubMed DOI PMC
SANTARPIA L, GRANDONE I, CONTALDO F, PASANISI F. Butyrylcholinesterase as a prognostic marker: a review of the literature. J Cachexia Sarcopenia Muscle. 2013;4:31–39. doi: 10.1007/s13539-012-0083-5. PubMed DOI PMC
TARGOSOVA K, KUCERA M, KILIANOVA Z, SLOBODOVA L, SZMICSEKOVA K, HRABOVSKA A. Cardiac nicotinic receptors show β-subunit dependent compensatory changes. Am J Physiol Heart Circ Physiol. 2021;320:H1975–H1984. doi: 10.1152/ajpheart.00995.2020. PubMed DOI
TVEDEN-NYBORG P, BERGMANN TK, LYKKESFELDT J. Basic & Clinical Pharmacology & Toxicology Policy for Experimental and Clinical studies. Basic Clin Pharmacol Toxicol. 2018;123:233–235. doi: 10.1111/bcpt.13059. PubMed DOI
WESSLER I, KIRKPATRICK CJ. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol. 2008;154:1558–1571. doi: 10.1038/bjp.2008.185. PubMed DOI PMC