Colored Light Exposure Ensues Chronotype-Based Responses: Evidence From QEEG Analysis

. 2025 Jul 25 ; 74 (3) : 519-527.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40709491

Light spectra, an imperative zeitgeber, may differ in its chronobiological effects among chronotype ensuing differences in circadian pacesetting. With the increasing usage of colored lights in the environment, the effects of light wavelength on the electrical activity of the brain among chronotypes need to be investigated. Healthy participants (N=24) were recruited to morning, intermediate, and evening chronotype groups using the composite scale for morningness scores. They were exposed to randomized brief sessions of red, green, blue, and white light preceded by 15 min of darkness. EEG was recorded in all sessions. The power spectrum was estimated for alpha, beta, theta, and delta waves from different regions of the scalp and compared among the groups. The morning and evening chronotype had statistically significantly higher mean delta power than intermediate chronotype in colored light. Evening chronotype showed a statistically significantly higher mean beta power than the intermediate chronotype (p=0.013) in green light. Intermediate chronotype had statistically significantly higher mean alpha power than morning (p=0.029) and evening chronotype (p=0.009) in red light. The results show a significant effect of the spectral property of light on brain waves in chronotypes. The green light is more effective in alerting evening chronotypes. The finding of the present study may be applicable in research pertinent to brain imaging in chronotypes especially with red, green, and blue light exposure and chromotherapy-based interventions in affective and psychiatric conditions. Key words Circadian rhythm " Color of light " Light and chronotype " Wavelength of light " EEG in chronotypes.

Zobrazit více v PubMed

Roenneberg T, Kuehnle T, Juda M, Kantermann T, Allebrandt K, Gordijn M, Merrow M. Epidemiology of the human circadian clock. Sleep Med Rev. 2007;11:429–438. doi: 10.1016/j.smrv.2007.07.005. PubMed DOI

Honma K, Honma S, Wada T. Phase-dependent shift of free-running human circadian rhythms in response to a single bright light pulse. Experientia. 1987;43:1205–1207. doi: 10.1007/BF01945525. PubMed DOI

Refinetti R. Chronotype Variability and Patterns of Light Exposure of a Large Cohort of United States Residents. Yale J Biol Med. 2019;92:179–186. PubMed PMC

Czeisler CA, Kronauer RE, Allan JS, Duffy JF, Jewett ME, Brown EN, Ronda JM. Bright light induction of strong (type 0) resetting of the human circadian pacemaker. Science. 1989;244:1328–1333. doi: 10.1126/science.2734611. PubMed DOI

Wright KP, Jr, McHill AW, Birks BR, Griffin BR, Rusterholz T, Chinoy ED. Entrainment of the human circadian clock to the natural light-dark cycle. Current Biology. 2013;23:1554–1558. doi: 10.1016/j.cub.2013.06.039. PubMed DOI PMC

Sumová A, Sládek M. Circadian Disruption as a Risk Factor for Development of Cardiovascular and Metabolic Disorders - From Animal Models to Human Population. Physiol Res. 2024;73(Suppl 1):S321–S334. doi: 10.33549/physiolres.935304. PubMed DOI PMC

Illnerová H. From the Pineal Gland to the Central Clock in the Brain: Beginning of Studies of the Mammalian Biological Rhythms in the Institute of Physiology of the Czech Academy of Sciences. Physiol Res. 2024;73(Suppl 1):S1–S21. doi: 10.33549/physiolres.935377. PubMed DOI PMC

Nováková M, Sládek M, Sumová A. Human chronotype is determined in bodily cells under real-life conditions. Chronobiol Int. 2013;30:607–617. doi: 10.3109/07420528.2012.754455. PubMed DOI

Wright HR, Lack LC. Effect of light wavelength on suppression and phase delay of the melatonin rhythm. Chronobiol Int. 2001;18:801–808. doi: 10.1081/CBI-100107515. PubMed DOI

Gooley JJ, Rajaratnam SMW, Brainard GC, Kronauer RE, Czeisler CA, Lockley SW. Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light. Sci Transl Med. 2010;2:31ra33. doi: 10.1126/scitranslmed.3000741. PubMed DOI PMC

Foster R. Fundamentals of circadian entrainment by light. Light Res Technol. 2021;53:377–393. doi: 10.1177/14771535211014792. DOI

Viola AU, James LM, Schlangen LJM, Dijk D-J. Blue-enriched white light in the workplace improves self-reported alertness, performance and sleep quality. Scand J Work Environ Health. 2008;34:297–306. doi: 10.5271/sjweh.1268. PubMed DOI

Figueiro MG, Steverson B, Heerwagen J, Kampschroer K, Hunter CM, Gonzales K, Plitnick B, Rea MS. The impact of daytime light exposures on sleep and mood in office workers. Sleep Health. 2017;3:204–215. doi: 10.1016/j.sleh.2017.03.005. PubMed DOI

Wams EJ, Woelders T, Marring I, van Rosmalen L, Beersma DG, Gordijn MC, Hut RA. Linking light exposure and subsequent sleep: A field polysomnography study in humans. Sleep. 2017;40:zsx165. doi: 10.1093/sleep/zsx165. PubMed DOI PMC

Abhang PA, Gawali BW, Mehrotra SC. Introduction to EEG- and Speech-Based Emotion Recognition. Academic Press; 2016. Technological basics of EEG recording and operation of apparatus. Introduction to EEG-and speech-based emotion recognition; pp. 19–50. DOI

Cajochen C, Wyatt JK, Czeisler CA, Dijk DJ. Separation of circadian and wake duration-dependent modulation of EEG activation during wakefulness. Neuroscience. 2002;114:1047–1060. doi: 10.1016/S0306-4522(02)00209-9. PubMed DOI

Mongrain V, Noujaim J, Blais H, Dumont Daytime vigilance in chronotypes: Diurnal variations and effects of behavioral sleep fragmentation. Behav Brain Res. 2008;190:105–111. doi: 10.1016/j.bbr.2008.02.007. PubMed DOI

Münch M, Kobialka S, Steiner R, Oelhafen P, Wirz-Justice A, Cajochen C. Wavelength-dependent effects of evening light exposure on sleep architecture and sleep EEG power density in men. Am J Physiol Regul Integr Comp Physiol. 2006;290:R1421–R1428. doi: 10.1152/ajpregu.00478.2005. PubMed DOI

Radeljak S, Zarković-Palijan T, Kovacević D, Kovac M. Chromotherapy in the regulation of neurohormonal balance in human brain--complementary application in modern psychiatric treatment. Coll Antropol. 2008;32(Suppl 2):185–188. PubMed

Sahin L, Figueiro MG. Alerting effects of short-wavelength (blue) and long-wavelength (red) lights in the afternoon. Physiol Behav. 2013;116–117:1–7. doi: 10.1016/j.physbeh.2013.03.014. PubMed DOI

Iskra-Golec IM, Golonka K, Wyczesany M, Smith L, Siemiginowska P, Watroba J. Daytime effect of monochromatic blue light on EEG activity depends on duration and timing of exposure in young men. Adv Cogn Psychol. 2017;13:241–247. doi: 10.5709/acp-0224-0. PubMed DOI PMC

Siemiginowska P, Iskra-Golec I. Blue light effect on EEG activity – The role of exposure timing and chronotype. Light Res Technol. 2020;52:472–484. doi: 10.1177/1477153519876969. DOI

Chellappa SL, Viola AU, Schmidt C, Bachmann V, Gabel V, Maire M, Reichert CF, et al. Light modulation of human sleep depends on a polymorphism in the clock gene Period3. Behav Brain Res. 2014;271:23–29. doi: 10.1016/j.bbr.2014.05.050. PubMed DOI

Trejo LJ, Kubitz K, Rosipal R, Kochavi RL, Montgomery LD. EEG based estimation and classification of mental fatigue. Psychology. 2015;6:572–589. doi: 10.4236/psych.2015.65055. DOI

Cajochen C, Dijk D-J. Electroencephalographic activity during wakefulness, rapid eye movement and non-rapid eye movement sleep in humans: Comparison of their circadian and homeostatic modulation. Sleep Biol Rhythms. 2003;1:85–95. doi: 10.1046/j.1446-9235.2003.00041.x. DOI

Takeuchi H, Taki Y, Sekiguchi A, Nouchi R, Kotozaki Y, Nakagawa S, Miyauchi CM, et al. Regional gray matter density is associated with morningness-eveningness: Evidence from voxel-based morphometry. Neuroimage. 2015;117:294–304. doi: 10.1016/j.neuroimage.2015.05.037. PubMed DOI

Horne CM, Norbury R. Exploring the effect of chronotype on hippocampal volume and shape: A combined approach. Chronobiol Int. 2018;35:1027–1033. doi: 10.1080/07420528.2018.1455056. PubMed DOI

Evans SL, Leocadio-Miguel MA, Taporoski TP, Gomez LM, Horimoto A, Alkan E, Beijamini F, et al. Evening preference correlates with regional brain volumes in the anterior occipital lobe. Chronobiol Int. 2021;38:1135–1142. doi: 10.1080/07420528.2021.1912077. PubMed DOI PMC

Rosenberg J, Maximov II, Reske M, Grinberg F, Shah NJ. “Early to bed, early to rise”: diffusion tensor imaging identifies chronotype-specificity. Neuroimage. 2014;84:428–434. doi: 10.1016/j.neuroimage.2013.07.086. PubMed DOI

Facer-Childs ER, Campos BM, Middleton B, Skene DJ, Bagshaw AP. Circadian phenotype impacts the brain’s resting-state functional connectivity, attentional performance, and sleepiness. Sleep. 2019;42:zsz033. doi: 10.1093/sleep/zsz033. PubMed DOI PMC

Gentry NW, Ashbrook LH, Fu YH, Ptacek LJ. Human circadian variations. J Clin Invest. 2021;131:e148282. doi: 10.1172/JCI148282. PubMed DOI PMC

Lack L, Bailey M, Lovato N, Wright H. Chronotype differences in circadian rhythms of temperature, melatonin, and sleepiness as measured in a modified constant routine protocol. Nat Sci Sleep. 2009;1:1–8. doi: 10.2147/NSS.S6234. PubMed DOI PMC

Taillard J, Sagaspe P, Philip P, Bioulac S. Sleep timing, chronotype and social jetlag: impact on cognitive abilities and psychiatric disorders. Biochem Pharmacol. 2021;191:114438. doi: 10.1016/j.bcp.2021.114438. PubMed DOI

Duffy JF, Rimmer DW, Czeisler CA. Association of intrinsic circadian period with morningness-eveningness, usual wake time, and circadian phase. Behav Neurosci. 2001;115:895–899. doi: 10.1037//0735-7044.115.4.895. PubMed DOI

Guido ME, Marchese NA, Rios MN, Morera LP, Diaz NM, Garbarino-Pico E, Contin MA. Non-visual opsins and novel photo-detectors in the vertebrate inner retina mediate light responses within the blue spectrum region. Cell Mol Neurobiol. 2022;42:59–83. doi: 10.1007/s10571-020-00997-x. PubMed DOI PMC

Minors DS, Waterhouse JM, Wirz-Justice A. A human phase-response curve to light. Neurosci Lett. 1991;133:36–40. doi: 10.1016/0304-3940(91)90051-T. PubMed DOI

Knyazev GG. Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neurosci Biobehav Rev. 2007;31:377–395. doi: 10.1016/j.neubiorev.2006.10.004. PubMed DOI

Knyazev GG, Slobodskoj-Plusnin JY, Bocharov AV. Event-related delta and theta synchronization during explicit and implicit emotion processing. Neuroscience. 2009;164:1588–1600. doi: 10.1016/j.neuroscience.2009.09.057. PubMed DOI

Basar E, Basar-Eroglu C, Karakas S, Schürmann M. Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol. 2001;39:241–248. doi: 10.1016/S0167-8760(00)00145-8. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...