Abnormalities of thalamus and thalamocortical pathways in patients with refractory epilepsy caused by focal cortical dysplasia - MRI study

. 2025 Oct ; 10 (5) : 1505-1518. [epub] 20250728

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40720244

Grantová podpora
LX22NPO5107 Ministerstvo Školství, Mládeže a Tělovýchovy
NU21-08-00228 Agentura Pro Zdravotnický Výzkum České Republiky

OBJECTIVE: Drug-resistant epilepsy, a severe and diagnostically challenging neurological condition often linked to focal cortical dysplasia (FCD), represents a significant social and healthcare burden. While the thalamus is notably altered in this disorder, it remains unclear whether these changes result from epilepsy manifestation or participate in its pathophysiology. This study aimed to characterize volumetric and microstructural changes in the thalamus and thalamocortical pathways in epilepsy patients with FCD. METHODS: We prospectively enrolled 24 patients with drug-resistant epilepsy caused by FCD and 16 age-matched healthy controls. Diffusion MRI data and quantitative T1 were acquired, and advanced diffusion techniques - Diffusion Kurtosis Imaging (DKI), Neurite Orientation Dispersion and Density Imaging (NODDI), and Fixel-Based Analysis (FBA) - were employed. RESULTS: Volumetric analysis revealed a significant reduction in thalamic volume ipsilateral to the epileptic lesion. Microstructural analysis identified bilateral alterations in thalamocortical tracts, including changes in both DKI and NODDI diffusion metrics, indicating tissue disorganization and axonal integrity loss. However, no significant microstructural differences were observed between ipsilateral and contralateral thalami, suggesting that thalamic changes may be a consequence of epilepsy rather than its cause. SIGNIFICANCE: This study investigates widespread structural and microstructural disruptions in the thalamus and thalamocortical networks in drug-resistant epilepsy due to FCD, providing valuable insights into its complex pathophysiology and laying the groundwork for future research utilizing advanced diffusion imaging and analysis techniques. PLAIN LANGUAGE SUMMARY: This study used advanced MRI techniques to examine the thalamus - a deep brain structure that relays signals and helps coordinate brain activity - in people with focal epilepsy caused by abnormal development of the cerebral cortex, the part of the brain responsible for thinking, movement, and sensory processing, and where seizures often begin. Researchers found subtle structural changes in the thalamus and its connections to the cortex, even beyond the area directly affected by the lesion. These results provide new insight into how epilepsy can disrupt brain networks and offer a foundation for future studies using modern neuroimaging techniques.

Zobrazit více v PubMed

Fiest KM, Sauro KM, Wiebe S, Patten SB, Kwon CS, Dykeman J, et al. Prevalence and incidence of epilepsy. Neurology. 2017;88:296–303. PubMed PMC

Chang W‐C, Kudlacek J, Hlinka J, Chvojka J, Hadrava M, Kumpost V, et al. Loss of neuronal network resilience precedes seizures and determines the ictogenic nature of interictal synaptic perturbations. Nat Neurosci. 2018;21:1742–1752. PubMed PMC

Hu Y, Shan Y, Du Q, Ding Y, Shen C, Wang S, et al. Gender and socioeconomic disparities in global burden of epilepsy: an analysis of time trends from 1990 to 2017. Front Neurol. 2021;12:643450. 10.3389/fneur.2021.643450 PubMed DOI PMC

Noda AH, Hermsen A, Berkenfeld R, Dennig D, Endrass G, Kaltofen J, et al. Evaluation of costs of epilepsy using an electronic practice management software in Germany. Seizure. 2015;26:49–55. PubMed

West S, Nolan SJ, Cotton J, Gandhi S, Weston J, Sudan A, et al. Surgery for epilepsy. Cochrane Database Syst Rev. 2015;7:CD010541. 10.1002/14651858.CD010541.pub2 PubMed DOI

Li Y, Tan Z, Wang J, Wang Y, Gan Y, Wen F, et al. Alterations in spontaneous brain activity and functional network reorganization following surgery in children with medically refractory epilepsy: a resting‐state functional magnetic resonance imaging study. Front Neurol. 2017;8:374. 10.3389/fneur.2017.00374 PubMed DOI PMC

Nishikura N, Takano T, Ryujin F, Yoshioka S, Maruo Y, Takeuchi Y, et al. Remitted epilepsy with dysembryoplastic neuroepithelial tumor involving the thalamus. Pediatr Int. 2016;58:496–500. PubMed

Wu C, D'Haese P‐F, Pallavaram S, Dawant BM, Konrad P, Sharan AD. Variations in Thalamic Anatomy Affect Targeting in Deep Brain Stimulation for Epilepsy. Stereotact Funct Neurosurg. 2016;94:387–396. PubMed PMC

Dreifuss S, Vingerhoets FJG, Lazeyras F, Gonzales Andino S, Spinelli L, Delavelle J, et al. Volumetric measurements of subcortical nuclei in patients with temporal lobe epilepsy. Neurology. 2001;57:1636–1641. PubMed

Pulsipher DT, Seidenberg M, Morton JJ, Geary E, Parrish J, Hermann B. MRI volume loss of subcortical structures in unilateral temporal lobe epilepsy. Epilepsy Behav. 2007;11:442–449. PubMed PMC

Kim JH, Kim JB, Suh S, Suh SI, Kim DW. Subcortical grey matter changes in juvenile myoclonic epilepsy. Neuroimage Clin. 2018;17:397–404. PubMed PMC

Haast RAM, Testud B, Makhalova J, Dary H, Cabane A, le Troter A, et al. Multi‐scale structural alterations of the thalamus and basal ganglia in focal epilepsy using 7T MRI. Hum Brain Mapp. 2023;44:4754–4771. PubMed PMC

Keller SS, O'Muircheartaigh J, Traynor C, Towgood K, Barker GJ, Richardson MP. Thalamotemporal impairment in temporal lobe epilepsy: A combined MRI analysis of structure, integrity, and connectivity. Epilepsia. 2014;55:306–315. PubMed PMC

Leek NJ, Neason M, Kreilkamp BAK, de Bezenac C, Ziso B, Elkommos S, et al. Thalamohippocampal atrophy in focal epilepsy of unknown cause at the time of diagnosis. Eur J Neurol. 2021;28:367–376. PubMed

Whelan CD, Altmann A, Botía JA, Jahanshad N, Hibar DP, Absil J, et al. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain. 2018;141:391–408. PubMed PMC

de Bézenac CE, Leek N, Adan G, Mohanraj R, Biswas S, Marson AG, et al. Subcortical alterations in newly diagnosed epilepsy and associated changes in brain connectivity and cognition. 2024. 10.1101/2024.05.14.24307274 PubMed DOI PMC

Vaher U, Ilves N, Ilves N, Laugesaar R, Männamaa M, Loorits D, et al. The thalamus and basal ganglia are smaller in children with epilepsy after perinatal stroke. Front Neurol. 2023;14:1252472. 10.3389/fneur.2023.1252472 PubMed DOI PMC

Decarli C, Hatta J, Fazilat S, Fazilat S, Gaillard WD, Theodore WH. Extratemporal atrophy in patients with complex partial seizures of left temporal origin. Ann Neurol. 1998;43:41–45. PubMed

Guye M. The role of corticothalamic coupling in human temporal lobe epilepsy. Brain. 2006;129:1917–1928. PubMed

Pizzo F, Roehri N, Giusiano B, Lagarde S, Carron R, Scavarda D, et al. The ictal signature of thalamus and basal ganglia in focal epilepsy. Neurology. 2021;96:e280–e293. 10.1212/WNL.0000000000011003 PubMed DOI

Rosenberg DS, Mauguière F, Demarquay G, Ryvlin P, Isnard J, Fischer C, et al. Involvement of medial pulvinar thalamic nucleus in human temporal lobe seizures. Epilepsia. 2006;47:98–107. PubMed

Qin Y, Jiang S, Zhang Q, Dong L, Jia X, He H, et al. BOLD‐fMRI activity informed by network variation of scalp EEG in juvenile myoclonic epilepsy. Neuroimage Clin. 2019;22:101759. PubMed PMC

Bernhardt BC, Bernasconi N, Kim H, Bernasconi A. Mapping thalamocortical network pathology in temporal lobe epilepsy. Neurology. 2012;78:129–136. PubMed

Riley JD, Franklin DL, Choi V, Kim RC, Binder DK, Cramer SC, et al. Altered white matter integrity in temporal lobe epilepsy: Association with cognitive and clinical profiles. Epilepsia. 2010;51:536–545. PubMed PMC

Widjaja E, Skocic J, Go C, Snead OC, Mabbott D, Smith ML. Abnormal white matter correlates with neuropsychological impairment in children with localization‐related epilepsy. Epilepsia. 2013;54:1065–1073. PubMed PMC

Kimura N, Takahashi Y, Shigematsu H, Imai K, Ikeda H, Ootani H, et al. Risk factors of cognitive impairment in pediatric epilepsy patients with focal cortical dysplasia. Brain Dev. 2019;41:77–84. PubMed

Kwon HE, Eom S, Kang H‐C, Lee JS, Kim SH, Kim DS, et al. Surgical treatment of pediatric focal cortical dysplasia. Neurology. 2016;87:945–951. PubMed

Law N, Smith ML, Widjaja E. Thalamocortical Connections and Executive Function in Pediatric Temporal and Frontal Lobe Epilepsy. AJNR Am J Neuroradiol. 2018;39:1523–1529. 10.3174/ajnr.A5691 PubMed DOI PMC

Kassabian B, Levy AM, Gardella E, Aledo‐Serrano A, Ananth AL, Brea‐Fernández AJ, et al. Developmental epileptic encephalopathy in PubMed

Veersema TJ, van Schooneveld MMJ, Ferrier CH, van Eijsden P, Gosselaar PH, van Rijen PC, et al. Cognitive functioning after epilepsy surgery in children with mild malformation of cortical development and focal cortical dysplasia. Epilepsy Behav. 2019;94:209–215. PubMed

Splitkova B, Mackova K, Koblizek M, Holubova Z, Kyncl M, Bukacova K, et al. A new perspective on drug‐resistant epilepsy in children with focal cortical dysplasia type 1: From challenge to favorable outcome. Epilepsia. 2024;66:632–647. 10.1111/epi.18237 PubMed DOI PMC

Bernasconi A, Cendes F, Theodore WH, Gill RS, Koepp MJ, Hogan RE, et al. Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: A consensus report from the International League Against Epilepsy Neuroimaging Task Force. Epilepsia. 2019;60:1054–1068. PubMed

Kynčl M, Holubová Z, Tintěra J, Profantová N, Šanda J, Kala D, et al. Recommendations for structural brain MRI in the diagnosis of epilepsy|Doporučení pro strukturální zobrazení MR mozku v diagnostice epilepsie. Cesk Slov Neurol Neurochir. 2023;86:18–24.

Henschel L, Conjeti S, Estrada S, Diers K, Fischl B, Reuter M. FastSurfer – A fast and accurate deep learning based neuroimaging pipeline. Neuroimage. 2020;219:117012. PubMed PMC

Zöllei L, Iglesias JE, Ou Y, Grant PE, Fischl B. Infant FreeSurfer: An automated segmentation and surface extraction pipeline for T1‐weighted neuroimaging data of infants 0–2 years. Neuroimage. 2020;218:116946. PubMed PMC

Tournier JD, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M, et al. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage. 2019;202:116137. PubMed

Cordero‐Grande L, Christiaens D, Hutter J, Price AN, Hajnal JV. Complex diffusion‐weighted image estimation via matrix recovery under general noise models. Neuroimage. 2019;200:391–404. PubMed PMC

Andersson JLR, Skare S, Ashburner J. How to correct susceptibility distortions in spin‐echo echo‐planar images: application to diffusion tensor imaging. Neuroimage. 2003;20:870–888. PubMed

Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off‐resonance effects and subject movement in diffusion MR imaging. Neuroimage. 2016;125:1063–1078. PubMed PMC

Dhollander T, Tabbara R, Rosnarho‐Tornstrand J, Tournier J‐D, Raffelt D, Connelly A, et al. Multi‐tissue log‐domain intensity and inhomogeneity normalisation for quantitative apparent fibre density. Proc ISMRM. 2021;29:2472.

Tabesh A, Jensen JH, Ardekani BA, Helpern JA. Estimation of tensors and tensor‐derived measures in diffusional kurtosis imaging. Magn Reson Med. 2011;65:823–836. PubMed PMC

Jensen JH, Helpern JA. MRI quantification of non‐Gaussian water diffusion by kurtosis analysis. NMR Biomed. 2010;23:698–710. PubMed PMC

Lesbats C, Kelly CL, Czanner G, Poptani H. Diffusion kurtosis imaging for characterizing tumor heterogeneity in an intracranial rat glioblastoma model. NMR Biomed. 2020;33:e4386. 10.1002/nbm.4386 PubMed DOI

Zhang H, Schneider T, Wheeler‐Kingshott CA, Alexander DC. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61:1000–1016. PubMed

Andica C, Kamagata K, Hayashi T, Hagiwara A, Uchida W, Saito Y, et al. Scan–rescan and inter‐vendor reproducibility of neurite orientation dispersion and density imaging metrics. Neuroradiology. 2020;62:483–494. PubMed PMC

Mitchell T, Archer DB, Chu WT, Coombes SA, Lai S, Wilkes BJ, et al. Neurite orientation dispersion and density imaging (NODDI) and free‐water imaging in Parkinsonism. Hum Brain Mapp. 2019;40:5094–5107. PubMed PMC

Raffelt DA, Tournier J‐D, Smith RE, Vaughan DN, Jackson G, Ridgway GR, et al. Investigating white matter fibre density and morphology using fixel‐based analysis. Neuroimage. 2017;144:58–73. PubMed PMC

Zarkali A, McColgan P, Leyland L‐A, Lees AJ, Rees G, Weil RS. Fiber‐specific white matter reductions in Parkinson hallucinations and visual dysfunction. Neurology. 2020;94:e1525–e1538. 10.1212/WNL.0000000000009014 PubMed DOI PMC

Wasserthal J, Neher P, Maier‐Hein KH. TractSeg ‐ Fast and accurate white matter tract segmentation. Neuroimage. 2018;183:239–253. PubMed

Schilling KG, Tax CMW, Rheault F, Landman BA, Anderson AW, Descoteaux M, et al. Prevalence of white matter pathways coming into a single diffusion MRI voxel orientation: the bottleneck issue in tractography. 2021. 10.1101/2021.06.22.449454 PubMed DOI PMC

Yeatman JD, Dougherty RF, Myall NJ, Wandell BA, Feldman HM. Tract Profiles of White Matter Properties: Automating Fiber‐Tract Quantification. PLoS One. 2012;7:e49790. PubMed PMC

Wechsler D. Wechsler Adult Intelligence Scale – Third Edition (WAIS‐III) [Czech adaptation].

Wechsler D. Wechsler Intelligence Scale for Children – Third Edition (WISC‐III) [Czech adaptation].

Bayley N. Bayley Scales of Infant Development – Second Edition (BSID‐II) [Czech adaptation].

Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C. Microstructural maturation of the human brain from childhood to adulthood. Neuroimage. 2008;40:1044–1055. PubMed

Löbel U, Sedlacik J, Güllmar D, Kaiser WA, Reichenbach JR, Mentzel HJ. Diffusion tensor imaging: the normal evolution of ADC, RA, FA, and eigenvalues studied in multiple anatomical regions of the brain. Neuroradiology. 2009;51:253–263. PubMed

Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: A primer with examples. Hum Brain Mapp. 2002;15:1–25. PubMed PMC

Deoni SCL, Dean DC, Remer J, Deoni SC, Dirks H, O'Muircheartaigh J. Cortical maturation and myelination in healthy toddlers and young children. Neuroimage. 2015;115:147–161. PubMed PMC

Gräfe D, Frahm J, Merkenschlager A, Voit D, Hirsch FW. Quantitative T1 mapping of the normal brain from early infancy to adulthood. Pediatr Radiol. 2021;51:450–456. PubMed PMC

Gracien R‐M, Jurcoane A, Wagner M, Reitz SC, Mayer C, Volz S, et al. The Relationship between Gray Matter Quantitative MRI and Disability in Secondary Progressive Multiple Sclerosis. PLoS One. 2016;11:e0161036. PubMed PMC

Thaler C, Hartramph I, Stellmann J‐P, Heesen C, Bester M, Fiehler J, et al. T1 Relaxation Times in the Cortex and Thalamus Are Associated With Working Memory and Information Processing Speed in Patients With Multiple Sclerosis. Front Neurol. 2021;12:789812. 10.3389/fneur.2021.789812 PubMed DOI PMC

Pokošová P, Kala D, Šanda J, Ježdík P, Prysiazhniuk Y, Faridová A, et al. Magnetic resonance imaging techniques for indirect assessment of myelin content in the brain using standard T1w and T2w MRI sequences and postprocessing analysis. Physiol Res. 2023;72:S573–S585. PubMed PMC

Wang K, Cao X, Wu D, Liao C, Zhang J, Ji C, et al. Magnetic resonance fingerprinting of temporal lobe white matter in mesial temporal lobe epilepsy. Ann Clin Transl Neurol. 2019;6:1639–1646. PubMed PMC

Tang Y, Su T, Choi JY, Hu S, Wang X, Sakaie K, et al. Characterizing thalamic and basal ganglia nuclei in medically intractable focal epilepsy by MR fingerprinting. Epilepsia. 2022;63:1998–2010. PubMed

Dayan M, Munoz M, Jentschke S, Chadwick MJ, Cooper JM, Riney K, et al. Optic radiation structure and anatomy in the normally developing brain determined using diffusion MRI and tractography. Brain Struct Funct. 2015;220:291–306. PubMed PMC

Ji F, Pasternak O, Liu S, Loke YM, Choo BL, Hilal S, et al. Distinct white matter microstructural abnormalities and extracellular water increases relate to cognitive impairment in Alzheimer's disease with and without cerebrovascular disease. Alzheimer's Res Ther. 2017;9:63. PubMed PMC

Simmonds DJ, Hallquist MN, Asato M, Luna B. Developmental stages and sex differences of white matter and behavioral development through adolescence: A longitudinal diffusion tensor imaging (DTI) study. Neuroimage. 2014;92:356–368. PubMed PMC

Johnson D, Ricciardi A, Brownlee W, Kanber B, Prados F, Collorone S, et al. Comparison of neurite orientation dispersion and density imaging and two‐compartment spherical mean technique parameter maps in multiple sclerosis. Front Neurol. 2021;12:662855. 10.3389/fneur.2021.662855 PubMed DOI PMC

Loi RQ, Leyden KM, Balachandra A, Uttarwar V, Hagler DJ Jr, Paul BM, et al. Restriction spectrum imaging reveals decreased neurite density in patients with temporal lobe epilepsy. Epilepsia. 2016;57:1897–1906. PubMed PMC

Raghavan S, Przybelski SA, Reid RI, Lesnick TG, Ramanan VK, Botha H, et al. White matter damage due to vascular, tau, and TDP‐43 pathologies and its relevance to cognition. Acta Neuropathol Commun. 2022;10:16. PubMed PMC

Wang D, Shang K, Sun Z, Li YH. Experimental imaging study of encephalomalacia fluid‐attenuated inversion recovery (FLAIR) hyperintense lesions in posttraumatic epilepsy. Neural Plast. 2021;2021:2678379. PubMed PMC

Chen X, Huang D, Chen Z, Ye W, Lv ZX, Zheng JO. Temporal lobe epilepsy: Decreased thalamic resting‐state functional connectivity and their relationships with alertness performance. Epilepsy Behav. 2015;44:47–54. PubMed

Ibrahim GM, Morgan BR, Lee W, Smith ML, Donner EJ, Wang F, et al. Impaired development of intrinsic connectivity networks in children with medically intractable localization‐related epilepsy. Hum Brain Mapp. 2014;35:5686–5700. PubMed PMC

Ibrahim GM, Sharma P, Hyslop A, Guillen MR, Morgan BR, Wong S, et al. Presurgical thalamocortical connectivity is associated with response to vagus nerve stimulation in children with intractable epilepsy. Neuroimage Clin. 2017;16:634–642. PubMed PMC

Tan G, Li X, Niu R, Wang H, Chen D, Gong Q, et al. Functional connectivity of the thalamocortical circuit in patients with seizure relapse after antiseizure medication withdrawal. Epilepsia. 2021;62:2463–2473. PubMed

Gentile A, Pfister PM, Serra MM, Yañez P. Displasia cortical focal: hallazgos en imágenes de tensor de difusión. Rev Argent Radiol. 2016;80:276–281.

Gross DW, Bastos A, Beaulieu C. Diffusion tensor imaging abnormalities in focal cortical dysplasia. Can J Neurol Sci. 2005;32:477–482. PubMed

Lee M, Kim E‐J, Woo D‐C, Shim WH, Yum MS. In vivo MRI Successfully Reveals the Malformation of Cortical Development in Infant Rats. Front Neurosci. 2020;14:510. 10.3389/fnins.2020.00510 PubMed DOI PMC

Fonseca V d C, Yasuda CL, Tedeschi GG, Yasuda CL, Tedeschi GG, Betting LE, et al. White Matter Abnormalities in Patients with Focal Cortical Dysplasia Revealed by Diffusion Tensor Imaging Analysis in a Voxelwise Approach. Front Neurol. 2012;3:121. 10.3389/fneur.2012.00121 PubMed DOI PMC

Mito R, Vaughan DN, Semmelroch M, Connelly A, Jackson GD. Bilateral Structural Network Abnormalities in Epilepsy Associated With Bottom‐of‐Sulcus Dysplasia. Neurology. 2022;98:e152–e163. 10.1212/WNL.0000000000013006 PubMed DOI PMC

Urquia‐Osorio H, Pimentel‐Silva LR, Rezende TJR, Almendares‐Bonilla E, Yasuda CL, Concha L, et al. Superficial and deep white matter diffusion abnormalities in focal epilepsies. Epilepsia. 2022;63:2312–2324. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...