Exploring Immune Responses to SARS-CoV-2: Insights from Sinopharm (BBIBP-CorV)-Vaccinated Individuals in a Group of Venezuelan Admixed Volunteers

. 2025 Jun 25 ; 13 (7) : . [epub] 20250625

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40722625

Grantová podpora
ACTA N° 023-2022 National Fund for Science, Technology, and Innovation (FONACIT) Venezuela
EXCELES Project No. LX22NPO5103 Ministry of Education, Youth and Sports of the Czech Republic. Institute of Bacteriology and virology

Background: Vaccines are crucial for preventing infectious diseases, as both humoral and cellular immune responses play a vital role in combating viral infections. The cellular immune response is crucial against SARS-CoV-2, particularly with the emergence of new variants that evade antibody neutralization. This study focuses on the immune memory response in individuals who have been vaccinated with the Sinopharm BBIBP-CorV vaccine. Methods: A cross-sectional study evaluated lymphocyte subpopulations using flow cytometry in 52 vaccinated adults (30 females, 22 males) who had been exposed to SARS-CoV-2 or diagnosed with COVID-19. Conducted from February to June 2023 during the Omicron variant's circulation, this study assessed antigens-CD154 in CD4+ T cells, CD107 and CD314 in CD8+ T cells, CD314 in NK cells, and CD86 in CD19 B cells-after stimulation with viral peptides and an inactivated virus. Granzyme B and IFN-γ were quantified using ELISA. Results: The memory response, regardless of gender, age, or Body Mass Index (BMI), was mild but significant upon exposure to a viral antigen or inactivated virus. An increase in the secretion of IFN-γ and granzyme B was also observed. Conclusions: It is suggested that the vaccine was able to generate a mild long-term memory against the SARS-CoV-2 virus in vaccinated adult individuals, independent of gender and BMI.

Zobrazit více v PubMed

Strauss J.H., Strauss E.G. Viruses and Human Disease. Elsevier; Amsterdam, The Netherlands: 2012. Overview of Viruses and Virus Infection; pp. 1–33. DOI

Awwal N., Dweik F., Mahdi S., El-Dweik M., Anderson S.H. A Review of SARS-CoV-2 Disease (COVID-19): Pandemic in Our Time. Pathogens. 2022;11:368. doi: 10.3390/pathogens11030368. PubMed DOI PMC

Sette A., Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021;184:861–880. doi: 10.1016/j.cell.2021.01.007. PubMed DOI PMC

De Sanctis J.B., García A.H., Moreno D., Hajduch M. Coronavirus infection: An immunologists’ perspective. Scand. J. Immunol. 2021;93:e13043. doi: 10.1111/sji.13043. PubMed DOI PMC

Silva M.J.A., Ribeiro L.R., Lima K.V.B., Lima L.N.G.C. Adaptive immunity to SARS-CoV-2 infection: A systematic review. Front. Immunol. 2022;13:1001198. doi: 10.3389/fimmu.2022.1001198. PubMed DOI PMC

Maison D.P., Deng Y., Gerschenson M. SARS-CoV-2 and the host-immune response. Front. Immunol. 2023;14:1195871. doi: 10.3389/fimmu.2023.1195871. PubMed DOI PMC

Savan R., Gale M., Jr. Innate immunity and interferon in SARS-CoV-2 infection outcome. Immunity. 2023;56:1443–1450. doi: 10.1016/j.immuni.2023.06.018. PubMed DOI PMC

Najimi N., Kadi C., Elmtili N., Seghrouchni F., Bakri Y. Unravelling humoral immunity in SARS-CoV-2: Insights from infection and vaccination. Hum. Antibodies. 2024;32:85–106. doi: 10.3233/HAB-230017. PubMed DOI

Karl V., Hofmann M., Thimme R. Role of antiviral CD8+ T cell immunity to SARS-CoV-2 infection and vaccination. J. Virol. 2025;99:e0135024. doi: 10.1128/jvi.01350-24. PubMed DOI PMC

Notarbartolo S. T-Cell Immune Responses to SARS-CoV-2 Infection and Vaccination. Vaccines. 2024;12:1126. doi: 10.3390/vaccines12101126. PubMed DOI PMC

Jordan S.C. Innate and adaptive immune responses to SARS-CoV-2 in humans: Relevance to acquired immunity and vaccine responses. Clin. Exp. Immunol. 2021;204:310–320. doi: 10.1111/cei.13582. PubMed DOI PMC

Bahl A., Pandey S., Rakshit R., Kant S., Tripathi D. Infection-induced trained immunity: A twist in paradigm of innate host defense and generation of immunological memory. Infect. Immun. 2025;93:e0047224. doi: 10.1128/iai.00472-24. PubMed DOI PMC

Kurtulus S., Hildeman D. Assessment of CD4+ and CD8+ T cell responses using MHC class I and II tetramers. Methods Mol. Biol. 2013;979:71–79. doi: 10.1007/978-1-62703-290-2_8. PubMed DOI PMC

Poluektov Y., George M., Daftarian P., Delcommenne M.C. Assessment of SARS-CoV-2-specific CD4+ and CD8+ T cell responses using MHC class I and II tetramers. Vaccine. 2021;39:2110–2116. doi: 10.1016/j.vaccine.2021.03.008. PubMed DOI PMC

Koh C.H., Lee S., Kwak M., Kim B.S., Chung Y. CD8 T-cell subsets: Heterogeneity, functions, and therapeutic potential. Exp. Mol. Med. 2023;55:2287–2299. doi: 10.1038/s12276-023-01105-x. PubMed DOI PMC

Wu J., Shi Y., Pan X., Wu S., Hou R., Zhang Y., Zhong T., Tang H., Du W., Wang L., et al. SARS-CoV-2 ORF9b inhibits RIG-I-MAVS antiviral signaling by interrupting K63-linked ubiquitination of NEMO. Cell Rep. 2021;34:108761. doi: 10.1016/j.celrep.2021.108761. PubMed DOI PMC

Dan J.M., Mateus J., Kato Y., Hastie K.M., Yu E.D., Faliti C.E., Grifoni A., Ramirez S.I., Haupt S., Frazier A., et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021;371:eabf4063. doi: 10.1126/science.abf4063. PubMed DOI PMC

Meraviglia S., Di Carlo P., Pampinella D., Guadagnino G., Presti E.L., Orlando V., Marchetti G., Dieli F., Sergi C. T-Cell Subsets (TCM, TEM, TEMRA) and Poly-Functional Immune Response in Patients with Human Immunodeficiency Virus (HIV) Infection and Different T-CD4 Cell Response. Ann. Clin. Lab. Sci. 2019;49:519–528. PubMed

Paniskaki K., Konik M.J., Anft M., Heidecke H., Meister T.L., Pfaender S., Krawczyk A., Zettler M., Jäger J., Gaeckler A., et al. Low avidity circulating SARS-CoV-2 reactive CD8+ T cells with proinflammatory TEMRA phenotype are associated with post-acute sequelae of COVID-19. Front. Microbiol. 2023;14:1196721. doi: 10.3389/fmicb.2023.1196721. PubMed DOI PMC

Paprckova D., Salyova E., Michalik J., Stepanek O. Bystander activation in memory and antigen-inexperienced memory-like CD8 T cells. Curr. Opin. Immunol. 2023;82:102299. doi: 10.1016/j.coi.2023.102299. PubMed DOI

Mariuzza R.A., Singh P., Karade S.S., Shahid S., Sharma V.K. Recognition of Self and Viral Ligands by NK Cell Receptors. Immunol. Rev. 2025;329:e13435. doi: 10.1111/imr.13435. PubMed DOI PMC

Hernández C., Garcés M.F., Hernández E. COVID-19 pandemic in Venezuela: The first quarantine. Acta Científ. Sociedad. Ven. Bioanal. Espe. 2020;23:101–117. doi: 10.71034/SVBE.2020.23.1.05. DOI

Venezuela: Coronavirus Pandemic Country Profile. [(accessed on 1 March 2025)]. Available online: https://ourworldindata.org/coronavirus/country/venezuela.

Sinopharm/BIBP COVID-19 Vaccine. [(accessed on 1 March 2025)]. Available online: https://covid-19pharmacovigilance.paho.org/sinopharmbibp.

COVID-19 Vaccines. [(accessed on 12 May 2025)]. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines.

Jara A., Undurraga E.A., González C., Paredes F., Fontecilla T., Jara G., Pizarro A., Acevedo J., Leo K., Leon F., et al. Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. N. Engl. J. Med. 2021;385:875–884. doi: 10.1056/NEJMoa2107715. PubMed DOI PMC

Ismail AlHosani F., Eduardo Stanciole A., Aden B., Timoshkin A., Najim O., Abbas Zaher W., AlDhaheri F.A., Al Mazrouie S., Rizvi T.A., Mustafa F. Impact of the Sinopharm’s BBIBP-CorV vaccine in preventing hospital admissions and death in infected vaccinees: Results from a retrospective study in the emirate of Abu Dhabi, United Arab Emirates (UAE) Vaccine. 2022;40:2003–2010. doi: 10.1016/j.vaccine.2022.02.039. PubMed DOI PMC

Belayachi J., Mhayi A., Majidi H., El Fahime E., Abouqal R. Effectiveness of Sinopharm’s BBIBP-CorV Booster Vaccination against COVID-19-Related Severe and Critical Cases and Deaths in Morocco during the Omicron Wave. Vaccines. 2024;12:244. doi: 10.3390/vaccines12030244. PubMed DOI PMC

Bao Y., He L., Miao B., Zhong Z., Lu G., Bai Y., Liang Q., Ling Y., Ji P., Su B., et al. BBIBP-CorV vaccination accelerates anti-viral antibody responses in heterologous Omicron infection: A retrospective observation study in Shanghai. Vaccine. 2023;41:3258–3265. doi: 10.1016/j.vaccine.2023.03.070. PubMed DOI

Mayora S., Martínez W., Guerrero M., Belisario I., De Sanctis J.B., García A. Pilot study: Analysis and detection of specific IgM and IgG antibodies against the receptor binding domain of the spike protein of SARS-CoV-2. Gac. Méd. Caracas. 2022;130:85–94. doi: 10.47307/GMC.2022.130.1.10. DOI

Vályi-Nagy I., Matula Z., Gönczi M., Tasnády S., Bekő G., Réti M., Ajzner É., Uher F. Comparison of antibody and T cell responses elicited by BBIBP-CorV (Sinopharm) and BNT162b2 (Pfizer-BioNTech) vaccines against SARS-CoV-2 in healthy adult humans. GeroScience. 2021;43:2321–2331. doi: 10.1007/s11357-021-00471-6. PubMed DOI PMC

Ning J., Wang Q., Chen Y., He T., Zhang F., Chen X., Shi L., Zhai A., Li B., Wu C. Immunodominant SARS-CoV-2-specific CD4+ and CD8+ T-cell responses elicited by inactivated vaccines in healthy adults. J. Med. Virol. 2023;95:e28743. doi: 10.1002/jmv.28743. PubMed DOI

Khoshnood S., Arshadi M., Akrami S., Koupaei M., Ghahramanpour H., Shariati A., Sadeghifard N., Heidary M. An overview on inactivated and live-attenuated SARS-CoV-2 vaccines. J. Clin. Lab. Anal. 2022;36:e24418. doi: 10.1002/jcla.24418. PubMed DOI PMC

Musa S., Merdrignac L., Skocibusic S., Nedic R., Cilovic-Lagarija S., Kissling E. BBIBP-CorV vaccine effectiveness against COVID-19 in patients aged 60 years and older during the Delta-dominant period in the Federation of Bosnia and Herzegovina, a test-negative case-control study. Vaccine. 2024;42:3467–3473. doi: 10.1016/j.vaccine.2024.04.047. PubMed DOI

Albreiki M., Mousa M., Azman S.K., Vurivi H., Alhalwachi Z., Alshehhi F., AlShamsi S., Al Marzouqi N., Alawadi T., Alrand H., et al. Risk of hospitalization and vaccine effectiveness among COVID-19 patients in the UAE during the Delta and Omicron outbreaks. Front. Immunol. 2023;14:1049393. doi: 10.3389/fimmu.2023.1049393. PubMed DOI PMC

De Sanctis J.B., Balda Noria G., García A.H. Exploring How Adipose Tissue, Obesity, and Gender Influence the Immune Response to Vaccines: A Comprehensive Narrative Review. Int. J. Mol. Sci. 2025;26:862. doi: 10.3390/ijms26020862. PubMed DOI PMC

Ma J., Cheng Z.J., Xue M., Huang H., Li S., Fang Y., Zeng Y., Lin R., Liang Z., Liang H., et al. Investigation of Antibody Levels During Three Doses of Sinopharm/BBIBP Vaccine Inoculation. Front. Immunol. 2022;13:913732. doi: 10.3389/fimmu.2022.913732. PubMed DOI PMC

Tong R., Luo L., Zhao Y., Sun M., Li R., Zhong J., Chen Y., Hu L., Li Z., Shi J., et al. Characterizing the cellular and molecular variabilities of peripheral immune cells in healthy recipients of BBIBP-CorV inactivated SARS-CoV-2 vaccine by single-cell RNA sequencing. Emerg. Microbes Infect. 2023;12:e2187245. doi: 10.1080/22221751.2023.2187245. PubMed DOI PMC

Piano Mortari E., Ferrucci F., Zografaki I., Carsetti R., Pacelli L. T and B cell responses in different immunization scenarios for COVID-19: A narrative review. Front. Immunol. 2025;16:1535014. doi: 10.3389/fimmu.2025.1535014. PubMed DOI PMC

De Sanctis J.B., Garmendia J.V., Hajdúch M. Overview of Memory NK Cells in Viral Infections: Possible Role in SARS-CoV-2 Infection. Immunology. 2022;2:52–67. doi: 10.3390/immuno2010005. DOI

Herrera L., Martin-Inaraja M., Santos S., Inglés-Ferrándiz M., Azkarate A., Perez-Vaquero M.A., Vesga M.A., Vicario J.L., Soria B., Solano C., et al. Identifying SARS-CoV-2 ‘memory’ NK cells from COVID-19 convalescent donors for adoptive cell therapy. Immunology. 2022;165:234–249. doi: 10.1111/imm.13432. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...