Exploring Immune Responses to SARS-CoV-2: Insights from Sinopharm (BBIBP-CorV)-Vaccinated Individuals in a Group of Venezuelan Admixed Volunteers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
ACTA N° 023-2022
National Fund for Science, Technology, and Innovation (FONACIT) Venezuela
EXCELES Project No. LX22NPO5103
Ministry of Education, Youth and Sports of the Czech Republic. Institute of Bacteriology and virology
PubMed
40722625
PubMed Central
PMC12293013
DOI
10.3390/biomedicines13071550
PII: biomedicines13071550
Knihovny.cz E-zdroje
- Klíčová slova
- IFN-γ, SARS-CoV-2, Sinopharm/BBIBP, cellular response, granzyme B, inactivated virus,
- Publikační typ
- časopisecké články MeSH
Background: Vaccines are crucial for preventing infectious diseases, as both humoral and cellular immune responses play a vital role in combating viral infections. The cellular immune response is crucial against SARS-CoV-2, particularly with the emergence of new variants that evade antibody neutralization. This study focuses on the immune memory response in individuals who have been vaccinated with the Sinopharm BBIBP-CorV vaccine. Methods: A cross-sectional study evaluated lymphocyte subpopulations using flow cytometry in 52 vaccinated adults (30 females, 22 males) who had been exposed to SARS-CoV-2 or diagnosed with COVID-19. Conducted from February to June 2023 during the Omicron variant's circulation, this study assessed antigens-CD154 in CD4+ T cells, CD107 and CD314 in CD8+ T cells, CD314 in NK cells, and CD86 in CD19 B cells-after stimulation with viral peptides and an inactivated virus. Granzyme B and IFN-γ were quantified using ELISA. Results: The memory response, regardless of gender, age, or Body Mass Index (BMI), was mild but significant upon exposure to a viral antigen or inactivated virus. An increase in the secretion of IFN-γ and granzyme B was also observed. Conclusions: It is suggested that the vaccine was able to generate a mild long-term memory against the SARS-CoV-2 virus in vaccinated adult individuals, independent of gender and BMI.
Zobrazit více v PubMed
Strauss J.H., Strauss E.G. Viruses and Human Disease. Elsevier; Amsterdam, The Netherlands: 2012. Overview of Viruses and Virus Infection; pp. 1–33. DOI
Awwal N., Dweik F., Mahdi S., El-Dweik M., Anderson S.H. A Review of SARS-CoV-2 Disease (COVID-19): Pandemic in Our Time. Pathogens. 2022;11:368. doi: 10.3390/pathogens11030368. PubMed DOI PMC
Sette A., Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021;184:861–880. doi: 10.1016/j.cell.2021.01.007. PubMed DOI PMC
De Sanctis J.B., García A.H., Moreno D., Hajduch M. Coronavirus infection: An immunologists’ perspective. Scand. J. Immunol. 2021;93:e13043. doi: 10.1111/sji.13043. PubMed DOI PMC
Silva M.J.A., Ribeiro L.R., Lima K.V.B., Lima L.N.G.C. Adaptive immunity to SARS-CoV-2 infection: A systematic review. Front. Immunol. 2022;13:1001198. doi: 10.3389/fimmu.2022.1001198. PubMed DOI PMC
Maison D.P., Deng Y., Gerschenson M. SARS-CoV-2 and the host-immune response. Front. Immunol. 2023;14:1195871. doi: 10.3389/fimmu.2023.1195871. PubMed DOI PMC
Savan R., Gale M., Jr. Innate immunity and interferon in SARS-CoV-2 infection outcome. Immunity. 2023;56:1443–1450. doi: 10.1016/j.immuni.2023.06.018. PubMed DOI PMC
Najimi N., Kadi C., Elmtili N., Seghrouchni F., Bakri Y. Unravelling humoral immunity in SARS-CoV-2: Insights from infection and vaccination. Hum. Antibodies. 2024;32:85–106. doi: 10.3233/HAB-230017. PubMed DOI
Karl V., Hofmann M., Thimme R. Role of antiviral CD8+ T cell immunity to SARS-CoV-2 infection and vaccination. J. Virol. 2025;99:e0135024. doi: 10.1128/jvi.01350-24. PubMed DOI PMC
Notarbartolo S. T-Cell Immune Responses to SARS-CoV-2 Infection and Vaccination. Vaccines. 2024;12:1126. doi: 10.3390/vaccines12101126. PubMed DOI PMC
Jordan S.C. Innate and adaptive immune responses to SARS-CoV-2 in humans: Relevance to acquired immunity and vaccine responses. Clin. Exp. Immunol. 2021;204:310–320. doi: 10.1111/cei.13582. PubMed DOI PMC
Bahl A., Pandey S., Rakshit R., Kant S., Tripathi D. Infection-induced trained immunity: A twist in paradigm of innate host defense and generation of immunological memory. Infect. Immun. 2025;93:e0047224. doi: 10.1128/iai.00472-24. PubMed DOI PMC
Kurtulus S., Hildeman D. Assessment of CD4+ and CD8+ T cell responses using MHC class I and II tetramers. Methods Mol. Biol. 2013;979:71–79. doi: 10.1007/978-1-62703-290-2_8. PubMed DOI PMC
Poluektov Y., George M., Daftarian P., Delcommenne M.C. Assessment of SARS-CoV-2-specific CD4+ and CD8+ T cell responses using MHC class I and II tetramers. Vaccine. 2021;39:2110–2116. doi: 10.1016/j.vaccine.2021.03.008. PubMed DOI PMC
Koh C.H., Lee S., Kwak M., Kim B.S., Chung Y. CD8 T-cell subsets: Heterogeneity, functions, and therapeutic potential. Exp. Mol. Med. 2023;55:2287–2299. doi: 10.1038/s12276-023-01105-x. PubMed DOI PMC
Wu J., Shi Y., Pan X., Wu S., Hou R., Zhang Y., Zhong T., Tang H., Du W., Wang L., et al. SARS-CoV-2 ORF9b inhibits RIG-I-MAVS antiviral signaling by interrupting K63-linked ubiquitination of NEMO. Cell Rep. 2021;34:108761. doi: 10.1016/j.celrep.2021.108761. PubMed DOI PMC
Dan J.M., Mateus J., Kato Y., Hastie K.M., Yu E.D., Faliti C.E., Grifoni A., Ramirez S.I., Haupt S., Frazier A., et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021;371:eabf4063. doi: 10.1126/science.abf4063. PubMed DOI PMC
Meraviglia S., Di Carlo P., Pampinella D., Guadagnino G., Presti E.L., Orlando V., Marchetti G., Dieli F., Sergi C. T-Cell Subsets (TCM, TEM, TEMRA) and Poly-Functional Immune Response in Patients with Human Immunodeficiency Virus (HIV) Infection and Different T-CD4 Cell Response. Ann. Clin. Lab. Sci. 2019;49:519–528. PubMed
Paniskaki K., Konik M.J., Anft M., Heidecke H., Meister T.L., Pfaender S., Krawczyk A., Zettler M., Jäger J., Gaeckler A., et al. Low avidity circulating SARS-CoV-2 reactive CD8+ T cells with proinflammatory TEMRA phenotype are associated with post-acute sequelae of COVID-19. Front. Microbiol. 2023;14:1196721. doi: 10.3389/fmicb.2023.1196721. PubMed DOI PMC
Paprckova D., Salyova E., Michalik J., Stepanek O. Bystander activation in memory and antigen-inexperienced memory-like CD8 T cells. Curr. Opin. Immunol. 2023;82:102299. doi: 10.1016/j.coi.2023.102299. PubMed DOI
Mariuzza R.A., Singh P., Karade S.S., Shahid S., Sharma V.K. Recognition of Self and Viral Ligands by NK Cell Receptors. Immunol. Rev. 2025;329:e13435. doi: 10.1111/imr.13435. PubMed DOI PMC
Hernández C., Garcés M.F., Hernández E. COVID-19 pandemic in Venezuela: The first quarantine. Acta Científ. Sociedad. Ven. Bioanal. Espe. 2020;23:101–117. doi: 10.71034/SVBE.2020.23.1.05. DOI
Venezuela: Coronavirus Pandemic Country Profile. [(accessed on 1 March 2025)]. Available online: https://ourworldindata.org/coronavirus/country/venezuela.
Sinopharm/BIBP COVID-19 Vaccine. [(accessed on 1 March 2025)]. Available online: https://covid-19pharmacovigilance.paho.org/sinopharmbibp.
COVID-19 Vaccines. [(accessed on 12 May 2025)]. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines.
Jara A., Undurraga E.A., González C., Paredes F., Fontecilla T., Jara G., Pizarro A., Acevedo J., Leo K., Leon F., et al. Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. N. Engl. J. Med. 2021;385:875–884. doi: 10.1056/NEJMoa2107715. PubMed DOI PMC
Ismail AlHosani F., Eduardo Stanciole A., Aden B., Timoshkin A., Najim O., Abbas Zaher W., AlDhaheri F.A., Al Mazrouie S., Rizvi T.A., Mustafa F. Impact of the Sinopharm’s BBIBP-CorV vaccine in preventing hospital admissions and death in infected vaccinees: Results from a retrospective study in the emirate of Abu Dhabi, United Arab Emirates (UAE) Vaccine. 2022;40:2003–2010. doi: 10.1016/j.vaccine.2022.02.039. PubMed DOI PMC
Belayachi J., Mhayi A., Majidi H., El Fahime E., Abouqal R. Effectiveness of Sinopharm’s BBIBP-CorV Booster Vaccination against COVID-19-Related Severe and Critical Cases and Deaths in Morocco during the Omicron Wave. Vaccines. 2024;12:244. doi: 10.3390/vaccines12030244. PubMed DOI PMC
Bao Y., He L., Miao B., Zhong Z., Lu G., Bai Y., Liang Q., Ling Y., Ji P., Su B., et al. BBIBP-CorV vaccination accelerates anti-viral antibody responses in heterologous Omicron infection: A retrospective observation study in Shanghai. Vaccine. 2023;41:3258–3265. doi: 10.1016/j.vaccine.2023.03.070. PubMed DOI
Mayora S., Martínez W., Guerrero M., Belisario I., De Sanctis J.B., García A. Pilot study: Analysis and detection of specific IgM and IgG antibodies against the receptor binding domain of the spike protein of SARS-CoV-2. Gac. Méd. Caracas. 2022;130:85–94. doi: 10.47307/GMC.2022.130.1.10. DOI
Vályi-Nagy I., Matula Z., Gönczi M., Tasnády S., Bekő G., Réti M., Ajzner É., Uher F. Comparison of antibody and T cell responses elicited by BBIBP-CorV (Sinopharm) and BNT162b2 (Pfizer-BioNTech) vaccines against SARS-CoV-2 in healthy adult humans. GeroScience. 2021;43:2321–2331. doi: 10.1007/s11357-021-00471-6. PubMed DOI PMC
Ning J., Wang Q., Chen Y., He T., Zhang F., Chen X., Shi L., Zhai A., Li B., Wu C. Immunodominant SARS-CoV-2-specific CD4+ and CD8+ T-cell responses elicited by inactivated vaccines in healthy adults. J. Med. Virol. 2023;95:e28743. doi: 10.1002/jmv.28743. PubMed DOI
Khoshnood S., Arshadi M., Akrami S., Koupaei M., Ghahramanpour H., Shariati A., Sadeghifard N., Heidary M. An overview on inactivated and live-attenuated SARS-CoV-2 vaccines. J. Clin. Lab. Anal. 2022;36:e24418. doi: 10.1002/jcla.24418. PubMed DOI PMC
Musa S., Merdrignac L., Skocibusic S., Nedic R., Cilovic-Lagarija S., Kissling E. BBIBP-CorV vaccine effectiveness against COVID-19 in patients aged 60 years and older during the Delta-dominant period in the Federation of Bosnia and Herzegovina, a test-negative case-control study. Vaccine. 2024;42:3467–3473. doi: 10.1016/j.vaccine.2024.04.047. PubMed DOI
Albreiki M., Mousa M., Azman S.K., Vurivi H., Alhalwachi Z., Alshehhi F., AlShamsi S., Al Marzouqi N., Alawadi T., Alrand H., et al. Risk of hospitalization and vaccine effectiveness among COVID-19 patients in the UAE during the Delta and Omicron outbreaks. Front. Immunol. 2023;14:1049393. doi: 10.3389/fimmu.2023.1049393. PubMed DOI PMC
De Sanctis J.B., Balda Noria G., García A.H. Exploring How Adipose Tissue, Obesity, and Gender Influence the Immune Response to Vaccines: A Comprehensive Narrative Review. Int. J. Mol. Sci. 2025;26:862. doi: 10.3390/ijms26020862. PubMed DOI PMC
Ma J., Cheng Z.J., Xue M., Huang H., Li S., Fang Y., Zeng Y., Lin R., Liang Z., Liang H., et al. Investigation of Antibody Levels During Three Doses of Sinopharm/BBIBP Vaccine Inoculation. Front. Immunol. 2022;13:913732. doi: 10.3389/fimmu.2022.913732. PubMed DOI PMC
Tong R., Luo L., Zhao Y., Sun M., Li R., Zhong J., Chen Y., Hu L., Li Z., Shi J., et al. Characterizing the cellular and molecular variabilities of peripheral immune cells in healthy recipients of BBIBP-CorV inactivated SARS-CoV-2 vaccine by single-cell RNA sequencing. Emerg. Microbes Infect. 2023;12:e2187245. doi: 10.1080/22221751.2023.2187245. PubMed DOI PMC
Piano Mortari E., Ferrucci F., Zografaki I., Carsetti R., Pacelli L. T and B cell responses in different immunization scenarios for COVID-19: A narrative review. Front. Immunol. 2025;16:1535014. doi: 10.3389/fimmu.2025.1535014. PubMed DOI PMC
De Sanctis J.B., Garmendia J.V., Hajdúch M. Overview of Memory NK Cells in Viral Infections: Possible Role in SARS-CoV-2 Infection. Immunology. 2022;2:52–67. doi: 10.3390/immuno2010005. DOI
Herrera L., Martin-Inaraja M., Santos S., Inglés-Ferrándiz M., Azkarate A., Perez-Vaquero M.A., Vesga M.A., Vicario J.L., Soria B., Solano C., et al. Identifying SARS-CoV-2 ‘memory’ NK cells from COVID-19 convalescent donors for adoptive cell therapy. Immunology. 2022;165:234–249. doi: 10.1111/imm.13432. PubMed DOI PMC