Size matters: a new genus of tarantula with the longest male palps, and an integrative revision of Monocentropus Pocock, 1897 (Araneae, Theraphosidae, Eumenophorinae)

. 2025 ; 1247 () : 89-126. [epub] 20250722

Status PubMed-not-MEDLINE Jazyk angličtina Země Bulharsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40746630

A taxonomic revision of the eumenophorine tarantula genus Monocentropus Pocock, 1897, which currently comprises three species, M.balfouri Pocock, 1897 (♂♀; Socotra, Yemen), M.lambertoni Fage, 1922 (♂♀; Madagascar), and M.longimanus Pocock, 1903 (♂♀; Yemen), is presented. By integrating both morphological data and a molecular phylogeny based on mitochondrial (cox1) and nuclear (28S, 18S) markers, the genus is herein redefined to include only the type species, M.balfouri. A new genus, Satyrex Zamani & von Wirth, gen. nov., is established to comprise S.longimanus comb. nov., along with four new species from the Arabian Peninsula and the Horn of Africa described herein: S.arabicus Zamani & von Wirth, sp. nov. (♂; Saudi Arabia), S.ferox Zamani, von Wirth & Stockmann, sp. nov. (♂♀; Yemen, Oman), S.somalicus Zamani & von Wirth, sp. nov. (♂; Somaliland), and S.speciosus Zamani, von Wirth & Just, sp. nov. (♂♀; Somaliland). The new genus is partially characterised by possessing the longest male palps known in tarantulas, possibly functioning in cannibalism avoidance during mating. Both the molecular phylogeny and morphological characters suggest that M.lambertoni is probably not congeneric with M.balfouri, and also indicate that multiple species may be currently subsumed under the former name. Therefore, M.lambertoni is regarded as incerta sedis pending further studies to clarify its taxonomic placement, as it is also considered to represent a species complex. Finally, the distribution of all studied taxa is discussed within a biogeographic framework.

Zobrazit více v PubMed

Barrantes G, Ramírez MJ. (2013) Courtship, egg sac construction, and maternal care in DOI

Bertani R. (2000) Male palpal bulbs and homologous features in Theraphosinae (Araneae, Theraphosidae). The Journal of Arachnology 28(1): 29–42. 10.1636/0161-8202(2000)028[0029:MPBAHF]2.0.CO;2 DOI

Burbrink FT, Ruane S, Kuhn A, Rabibisoa N, Randriamahatantsoa B, Raselimanana AP, Andrianarimalala MSM, Cadle JE, Lemmon AR, Lemmon EM, Nussbaum RA, Jones LN, Pearson R, Raxworthy CJ. (2019) The origins and diversification of the exceptionally rich gemsnakes (Colubroidea: Lamprophiidae: Pseudoxyrhophiinae) in Madagascar. Systematic Biology 68(6): 918–936. 10.1093/sysbio/syz026 PubMed DOI

Camacho C, Coulouris G, Avagyan V, Ma N, Papdopoulos J, Bealer K, Madden TL. (2009) BLAST+: Architecture and applications. BMC Bioinformatics 10(1): 421. 10.1186/1471-2105-10-421 PubMed DOI PMC

Fage L. (1922) Matériaux pour servir à la faune des arachnides de Madagascar (Première note). Bulletin du Muséum National d’Histoire Naturelle 28: 365–370.

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3(5): 294–299. PubMed

Fulton TL, Shapiro B. (2019) Setting up an ancient DNA laboratory. Methods in Molecular Biology (Clifton, N.J. ) 1963: 1–13. 10.1007/978-1-4939-9176-1_1 PubMed DOI

Gansauge MT, Gerber T, Glocke I, Korlević P, Lippik L, Nagel S, Riehl LM, Schmidt A, Meyer M. (2017) Single-stranded DNA library preparation from highly degraded DNA using PubMed DOI PMC

Garcia-Porta J, Morales HE, Gómez-Díaz E, Sindaco R, Carranza S. (2016) Patterns of diversification in islands: A comparative study across three gecko genera in the Socotra Archipelago. Molecular Phylogenetics and Evolution 98: 288–299. 10.1016/j.ympev.2016.02.007 PubMed DOI

Gerhardt U. (1928) Biologische studien an griechischen, corsischen und deutschen spinnen. Zeitschrift für Morphologie und Ökologie der Tiere 10(4): 576–675. 10.1007/BF00419324 DOI

Gerhardt U. (1944) Die Formwandlungen eines Organtypus, dargestellt an dem Taster der männlichen Spinnen. Die Gestalt, Halle (Saale) 17: 9–24.

Hedin M, Bond JE. (2006) Molecular phylogenetics of the spider infraorder Mygalomorphae using nuclear rRNA genes (18S and 28S): Conflict and agreement with the current system of classification. Molecular Phylogenetics and Evolution 41(2): 454–471. 10.1016/j.ympev.2006.05.017 PubMed DOI

Hedin M, Maddison WP. (2001) A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution 18(3): 386–403. 10.1006/mpev.2000.0883 PubMed DOI

iNaturalist (2025) iNaturalist: A community for naturalists. https://www.inaturalist.org/ [Accessed 6.2025]

Kalyaanamoorthy S, Minh BQ, Wong TK, Von Haeseler A, Jermiin LS. (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14(6): 587–589. 10.1038/nmeth.4285 PubMed DOI PMC

Katoh K, Rozewicki J, Yamada KD. (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160–1166. 10.1093/bib/bbx108 PubMed DOI PMC

Korba J, Opatova V, Calatayud-Mascarell A, Enguídanos A, Bellvert A, Adrián S, Sánchez-Vialas A, Arnedo MA. (2022) Systematics and phylogeography of western Mediterranean tarantulas (Araneae: Theraphosidae). Zoological Journal of the Linnean Society 196(2): 845–884. 10.1093/zoolinnean/zlac042 DOI

Leavitt DH, Starrett J, Westphal MF, Hedin M. (2015) Multilocus sequence data reveal dozens of putative cryptic species in a radiation of endemic Californian mygalomorph spiders (Araneae, Mygalomorphae, Nemesiidae). Molecular Phylogenetics and Evolution 91: 56–67. 10.1016/j.ympev.2015.05.016 PubMed DOI

Lüddecke T, Krehenwinkel K, Canning G, Glaw F, Longhorn S, Tänzler R, Wendt I, Vences M. (2018) Discovering the silk road: Nuclear and mitochondrial sequence data resolve the phylogenetic relationships among theraphosid spider subfamilies. Molecular Phylogenetics and Evolution 119: 63–70. 10.1016/j.ympev.2017.10.015 PubMed DOI

Macey JR, Kuehl JV, Larson A, Robinson MD, Ugurtas IH, Ananjeva NB, Rahman H, Javed HI, Osman RM, Doumma A, Papenfuss TJ. (2008) Socotra Island the forgotten fragment of Gondwana: Unmasking chameleon lizard history with complete mitochondrial genomic data. Molecular Phylogenetics and Evolution 49(3): 1015–1018. 10.1016/j.ympev.2008.08.024 PubMed DOI

Magalhaes ILF, Ramírez MJ. (2019) The crevice weaver spider genus DOI

Martin M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal 17(1): 10–12. 10.14806/ej.17.1.200 DOI

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. (2020) IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37(5): 1530–1534. 10.1093/molbev/msaa015 PubMed DOI PMC

Nagy ZT, Joger U, Wink M, Glaw F, Vences M. (2003) Multiple colonization of Madagascar and Socotra by colubrid snakes: Evidence from nuclear and mitochondrial gene phylogenies. Proceedings of the Royal Society B, Biological Sciences 270(1533): 2613–2621. 10.1098/rspb.2003.2547 PubMed DOI PMC

Opatova V, Hamilton CA, Hedin M, De Oca LM, Král J, Bond JE. (2020) Phylogenetic systematics and evolution of the spider infraorder Mygalomorphae using genomic scale data. Systematic Biology 69(4): 671–707. 10.1093/sysbio/syz064 PubMed DOI

Paijmans JL, Baleka S, Henneberger K, Taron UH, Trinks A, Westbury MV, Barlow A. (2017) Sequencing single-stranded libraries on the Illumina NextSeq 500 platform. ArXiv. https://arxiv.org/abs/1711.11004

Pérez-Miles F. (2020) Introduction to the Theraphosidae. In: Pérez-Miles F. (Ed.) New World Tarantulas.Zoological Monographs 6: 1–23. 10.1007/978-3-030-48644-0_1 DOI

Pocock RI. (1897) On the spiders of the suborder Mygalomorphae from the Ethiopian Region, contained in the collection of the British Museum. Proceedings of the Zoological Society of London 65(3): 724–774[pls 46–48]. 10.1111/j.1096-3642.1897.tb03116.x DOI

Pocock RI. (1903) Some Arachnida collected by Mr G. W. Bury in Yemen. Annals and Magazine of Natural History (7) 11(62): 214–220. 10.1080/00222930308678752 DOI

Rambaut A, Suchard MA, Xie W, Drummond AJ. (2014) Tracer v.1.6. http://tree.bio.ed.ac.uk/software/tracer/ [Accessed on 1.Dec.2017]

Rohland N, Siedel H, Hofreiter M. (2004) Nondestructive DNA extraction method for mitochondrial DNA analyses of museum specimens. BioTechniques 36(5): 814–821. 10.2144/04365ST05 PubMed DOI

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. (2012) MrBayes 3.2: Efficient Bayesian Phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. 10.1093/sysbio/sys029 PubMed DOI PMC

Schmidt G. (1993) Vogelspinnen: Vorkommen, Lebensweise, Haltung und Zucht, mit Bestimmungsschlüsseln für alle Gattungen, Vierte Auflage. Landbuch, Hannover, 151 pp.

Schmidt G. (2001) Eumenophorinae sp. von der Insel Sokotra – Mitarbeit erbeten. Arachnologisches Magazin 9(5/6): 13–14.

Schmidt G. (2003) Die Vogelspinnen: Eine weltweite Übersicht. Neue Brehm-Bücherei, Hohenwarsleben, 383 pp.

Shorthouse DP. (2010) SimpleMappr, an online tool to produce publication-quality point maps. http://www.simplemappr.net [Accessed on 4.June.2025]

Simó-Riudalbas M, Tamar K, Šmíd J, Mitsi P, Sindaco R, Chirio L, Carranza S. (2019) Biogeography of PubMed DOI

Sindaco R, Metallinou M, Pupin F, Fasola M, Carranza S. (2012) Forgotten in the ocean: Systematics, biogeography and evolution of the DOI

Šmíd J, Carranza S, Kratochvíl L, Gvoždík V, Nasher AK, Moravec J. (2013) Out of Arabia: A complex biogeographic history of multiple vicariance and dispersal events in the gecko genus PubMed DOI PMC

Smith AM. (1986) The tarantula: classification and identification guide. Fitzgerald Publishing, London, 179 pp.

Smith AM. (1987) The tarantula: classification and identification guide. 2

Smith AM. (1990) Baboon spiders: Tarantulas of Africa and the Middle East. Fitzgerald Publishing, London, 142 pp.

Straube N, Lyra ML, Paijmans JL, Preick M, Basler N, Penner J, Rödel M-O, Westbury MV, Haddad CF, Barlow A, Hofreiter M. (2021) Successful application of ancient DNA extraction and library construction protocols to museum wet collection specimens. Molecular Ecology Resources 21(7): 2299–2315. 10.1111/1755-0998.13433 PubMed DOI

Tamar K, Simó-Riudalbas M, Garcia-Porta J, Santos X, Llorente G, Vasconcelos R, Carranza S. (2019) An integrative study of island diversification: Insights from the endemic PubMed DOI

Tamura K, Stecher G, Kumar S. (2021) MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38(7): 3022–3027. 10.1093/molbev/msab120 PubMed DOI PMC

Tolley KA, Townsend TM, Vences M. (2013) Large-scale phylogeny of chameleons suggests African origins and Eocene diversification. Proceedings of the Royal Society B, Biological Sciences 280(1759): 20130184. 10.1098/rspb.2013.0184 PubMed DOI PMC

Vences M, Miralles A, Brouillet S, Ducasse J, Fedosov A, Kharchev V, Kostadinov I, Kumari S, Patmanidis S, Scherz MD, Puillandre N, Renner SS. (2021) iTaxoTools 0.1: Kickstarting a specimen-based software toolkit for taxonomists. Megataxa 6(2): 77–92. 10.11646/megataxa.6.2.1 DOI

von Wirth V, Hildebrandt K. (2023) Preparation techniques of (bird) spider spermathecae. British Tarantula Society Journal 38(2): 3–22.

Whiting MF, Carpenter JC, Wheeler QD, Wheeler WC. (1997) The Strepsiptera problem: Phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46(1): 1–68. 10.1093/sysbio/46.1.1 PubMed DOI

WSC (2025) World Spider Catalog. Version 26. Natural History Museum Bern. http://wsc.nmbe.ch [Accessed on 20.June.2025]

Yuan YM, Wohlhauser S, Möller M, Klackenberg J, Callmander M, Küpfer P. (2005) Phylogeny and biogeography of PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...