Application of Micro- and Nano-Spectroscopic Techniques for Systematic Studies of Surface Features of the Barley Leaf Cuticle

. 2025 Jul 29 ; 10 (29) : 31428-31439. [epub] 20250716

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40757344

In this study, micro- and nanospectroscopic techniques were used to examine the aerial epidermis of a barley crop leaf cuticle to determine if there is a correlation between aerial morphological features and their chemistry. We believe this understanding may inform the design of nanoparticles (NPs) with improved and controlled NP-plant interactions and potential applications as foliar nanofertilizers. We compared three different Raman excitation wavelengthsNIR, Vis, and UVand evaluated the possibilities of nanospectroscopic techniques like tip-enhanced Raman spectroscopy (TERS) and nano-FTIR spectroscopy. All measurements were performed on a fresh leaf surface. The impact of excitation wavelength and other measurement parameters (laser power, exposure time) to obtain an optimal signal-to-noise ratio without photodamaging the leaf was systematically evaluated. The main compounds detected in the cuticle matrix were carotenoids, flavonoids, polysaccharides, phenolic compounds, and cuticular waxes. UV (325 nm) was found to be the most suitable excitation wavelength for obtaining the most intense signals from the cuticle while avoiding plant pigment signals.

Zobrazit více v PubMed

Ao M., Zhu Y., He S., Li D., Li P., Li J., Cao Y.. Preparation and Characterization of 1-Naphthylacetic Acid–Silica Conjugated Nanospheres for Enhancement of Controlled-Release Performance. Nanotechnology. 2013;24(3):035601. doi: 10.1088/0957-4484/24/3/035601. PubMed DOI

Kah M., Kookana R. S., Gogos A., Bucheli T. D.. A Critical Evaluation of Nanopesticides and Nanofertilizers against Their Conventional Analogues. Nat. Nanotechnol. 2018;13(8):677–684. doi: 10.1038/s41565-018-0131-1. PubMed DOI

Fatima F., Hashim A., Anees S.. Efficacy of Nanoparticles as Nanofertilizer Production: A Review. Environ. Sci. Pollut. Res. 2021;28(2):1292–1303. doi: 10.1007/s11356-020-11218-9. PubMed DOI

Spielman-Sun E., Avellan A., Bland G. D., Tappero R. V., Acerbo A. S., Unrine J. M., Giraldo J. P., Lowry G. V.. Nanoparticle Surface Charge Influences Translocation and Leaf Distribution in Vascular Plants with Contrasting Anatomy. Environ. Sci.: nano. 2019;6(8):2508–2519. doi: 10.1039/C9EN00626E. DOI

Avellan A., Yun J., Zhang Y., Spielman-Sun E., Unrine J. M., Thieme J., Li J., Lombi E., Bland G., Lowry G. V.. Nanoparticle Size and Coating Chemistry Control Foliar Uptake Pathways, Translocation, and Leaf-to-Rhizosphere Transport in Wheat. ACS Nano. 2019;13(5):5291–5305. doi: 10.1021/acsnano.8b09781. PubMed DOI

Spielman-Sun E., Avellan A., Bland G. D., Clement E. T., Tappero R. V., Acerbo A. S., Lowry G. V.. Protein Coating Composition Targets Nanoparticles to Leaf Stomata and Trichomes. Nanoscale. 2020;12(6):3630–3636. doi: 10.1039/C9NR08100C. PubMed DOI

Burve, R. ; Szameitat, A. ; Grivel, J. C. . Plant Extract Reduced and Stabilized Gold Nanoparticles as Model Particles for Foliar Application of Fertilizers. TANGER Ltd, 2022, 155–160. 10.37904/nanocon.2022.4600 DOI

Andrade G. C., Santana B. V. N., Rinaldi M. C. S., Ferreira S. O., Silva R. C. D., Silva L. C.. Leaf Surface Traits Related to Differential Particle Adsorption – A Case Study of Two Tropical Legumes. Sci. Total Environ. 2022;823:153681. doi: 10.1016/j.scitotenv.2022.153681. PubMed DOI

Fernández V., Guzmán-Delgado P., Graça J., Santos S., Gil L.. Cuticle Structure in Relation to Chemical Composition: Re-Assessing the Prevailing Model. Front. Plant Sci. 2016;7:7. doi: 10.3389/fpls.2016.00427. PubMed DOI PMC

Fernández V., Bahamonde H. A., Javier peguero-Pina J., Gil-Pelegrín E., Sancho-Knapik D., Gil L., Goldbach H. E., Eichert T.. Physico-Chemical Properties of Plant Cuticles and Their Functional and Ecological Significance. J. Exp. Bot. 2017;68(19):5293–5306. doi: 10.1093/jxb/erx302. PubMed DOI

Ossola R., Farmer D.. The Chemical Landscape of Leaf Surfaces and Its Interaction with the Atmosphere. Chem. Rev. 2024;124(9):5764–5794. doi: 10.1021/acs.chemrev.3c00763. PubMed DOI PMC

Heredia-Guerrero J. A., BenÃtez J. J., DomÃnguez E., Bayer I. S., Cingolani R., Athanassiou A., Heredia A.. Infrared and Raman Spectroscopic Features of Plant Cuticles: A Review. Front. Plant Sci. 2014;5:305. doi: 10.3389/fpls.2014.00305. PubMed DOI PMC

Schulz H., Baranska M.. Identification and Quantification of Valuable Plant Substances by IR and Raman Spectroscopy. Vib. Spectrosc. 2007;43:13–25. doi: 10.1016/j.vibspec.2006.06.001. DOI

Gierlinger N., Schwanninger M.. The Potential of Raman Microscopy and Raman Imaging in Plant Research. Spectroscopy. 2007;21(2):69–89. doi: 10.1155/2007/498206. DOI

Butler H. J., Ashton L., Bird B., Cinque G., Curtis K., Dorney J., Esmonde-White K., Fullwood N. J., Gardner B., Martin-Hirsch P. L., Walsh M. J., McAinsh M. R., Stone N., Martin F. L.. Using Raman Spectroscopy to Characterize Biological Materials. Nat. Protoc. 2016;11(4):664–687. doi: 10.1038/nprot.2016.036. PubMed DOI

Atalla R. H., Whitmore R. E., Heimbach C. J.. Raman Spectral Evidence for Molecular Orientation in Native Cellulosic Fibers. Macromolecules. 1980;13(6):1717–1719. doi: 10.1021/ma60078a066. DOI

Edwards H. G. M., Farwell D. W., Webster D.. FT Raman Microscopy of Untreated Natural Plant Fibres. Spectrochim. Acta, Part A. 1997;53(13):2383–2392. doi: 10.1016/S1386-1425(97)00178-9. PubMed DOI

Piot O., Autran J.-C., Manfait M.. Spatial Distribution of Protein and Phenolic Constituents in Wheat Grain as Probed by Confocal Raman Microspectroscopy. J. Cereal Sci. 2000;32(1):57–71. doi: 10.1006/jcrs.2000.0314. DOI

Baranska M., Schulz H., Reitzenstein S., Uhlemann U., Strehle M. A., Krüger H., Quilitzsch R., Foley W., Popp J.. Vibrational Spectroscopic Studies to Acquire a Quality Control Method of Eucalyptus Essential Oils. Biopolymers. 2005;78(5):237–248. doi: 10.1002/bip.20284. PubMed DOI

Schulz H., Özkan G., Baranska M., Krüger H., Özcan M.. Characterisation of Essential Oil Plants from Turkey by IR and Raman Spectroscopy. Vib. Spectrosc. 2005;39(2):249–256. doi: 10.1016/j.vibspec.2005.04.009. DOI

Andersen P. V., Afseth N. K., Aaby K., Gaarder M. Ø., Remberg S. F., Wold J. P.. Prediction of Chemical and Sensory Properties in Strawberries Using Raman Spectroscopy. Postharvest Biol. Technol. 2023;201:112370. doi: 10.1016/j.postharvbio.2023.112370. DOI

Schoefs B.. Chlorophyll and Carotenoid Analysis in Food Products. Properties of the Pigments and Methods of Analysis. Trends Food Sci. Technol. 2002;13(11):361–371. doi: 10.1016/S0924-2244(02)00182-6. DOI

Pascal A., Peterman E., Gradinaru C., van Amerongen H., van Grondelle R., Robert B.. Structure and Interactions of the Chlorophyll a Molecules in the Higher Plant Lhcb4 Antenna Protein. J. Phys. Chem. B. 2000;104(39):9317–9321. doi: 10.1021/jp001504m. DOI

Kralova K., Kral M., Vrtelka O., Setnicka V.. Comparative Study of Raman Spectroscopy Techniques in Blood Plasma-Based Clinical Diagnostics: A Demonstration on Alzheimer’s Disease. Spectrochim. Acta, Part A. 2024;304:123392. doi: 10.1016/j.saa.2023.123392. PubMed DOI

Lu L., Shi L., Secor J., Alfano R.. Resonance Raman Scattering of β-Carotene Solution Excited by Visible Laser Beams into Second Singlet State. J. Photochem. Photobiol., B. 2018;179:18–22. doi: 10.1016/j.jphotobiol.2017.12.022. PubMed DOI

Schulz H., Baranska M., Baranski R.. Potential of NIR-FT-Raman Spectroscopy in Natural Carotenoid Analysis. Biopolymers. 2005;77(4):212–221. doi: 10.1002/bip.20215. PubMed DOI

Withnall R., Chowdhry B. Z., Silver J., Edwards H. G. M., de Oliveira L. F. C.. Raman Spectra of Carotenoids in Natural Products. Spectrochim. Acta, Part A. 2003;59(10):2207–2212. doi: 10.1016/S1386-1425(03)00064-7. PubMed DOI

Baranska M., Schulz H., Rösch P., Strehle M. A., Popp J.. Identification of Secondary Metabolites in Medicinal and Spice Plants by NIR-FT-Raman Microspectroscopic Mapping. Analyst. 2004;129(10):926–930. doi: 10.1039/B408933M. PubMed DOI

Baranski R., Baranska M., Schulz H.. Changes in Carotenoid Content and Distribution in Living Plant Tissue Can Be Observed and Mapped in Situ Using NIR-FT-Raman Spectroscopy. Planta. 2005;222(3):448–457. doi: 10.1007/s00425-005-1566-9. PubMed DOI

Farber C., Li J., Hager E., Chemelewski R., Mullet J., Rogachev A. Y., Kurouski D.. Complementarity of Raman and Infrared Spectroscopy for Structural Characterization of Plant Epicuticular Waxes. ACS Omega. 2019;4(2):3700–3707. doi: 10.1021/acsomega.8b03675. DOI

Ferraro, J. R. Introductory Raman Spectroscopy; Elsevier, 2003. 10.1016/B978-0-12-254105-6.X5000-8. DOI

Zhang Z., Guo H., Deng Y., Xing B., He L.. Mapping Gold Nanoparticles on and in Edible Leaves: In Situ Using Surface Enhanced Raman Spectroscopy. RSC Adv. 2016;6(65):60152–60159. doi: 10.1039/C6RA11748A. DOI

Airy G.. On the Diffraction of an Object-Glass with Circular Aperture. Trans. Camb. Philos. Soc. 1834;5:283–291.

Abbe E.. Beiträge Zur Theorie Des Mikroskops Und Der Mikroskopischen Wahrnehmung. Arch. Mikrosk. Anat. 1873;9(1):413–468. doi: 10.1007/BF02956173. DOI

Rayleigh F. R. S. XXXI.. Investigations in Optics, with Special Reference to the Spectroscope. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 1879;8(49):261–274. doi: 10.1080/14786447908639684. DOI

Wang X., Huang S. C., Hu S., Yan S., Ren B.. Fundamental Understanding and Applications of Plasmon-Enhanced Raman Spectroscopy. Nat. Rev. Phys. 2020;1:253–271. doi: 10.1038/s42254-020-0171-y. DOI

Král M., Dendisová M., Matějka P.. Development and Characterization of a Novel Reference Sample for Tip-Enhanced Raman Spectroscopy. Monatsh. Chem. 2021;152(9):1119–1125. doi: 10.1007/s00706-021-02808-5. DOI

Zhang Y., Zhao C., Picchetti P., Zheng K., Zhang X., Wu Y., Shen Y., De Cola L., Shi J., Guo Z., Zou X.. Quantitative SERS Sensor for Mycotoxins with Extraction and Identification Function. Food Chem. 2024;456:140040. doi: 10.1016/j.foodchem.2024.140040. PubMed DOI

Fang S., Fan L., Niu Y., Jiao G., Jia H., Wang F., Yang H., Kang Y.. SERS Imaging Investigation of the Removal Efficiency of Pesticide on Vegetable Leaves by Using Different Surfactants. Food Chem. 2024;445:138722. doi: 10.1016/j.foodchem.2024.138722. PubMed DOI

Kumar N., Weckhuysen B. M., Wain A. J., Pollard A. J.. Nanoscale Chemical Imaging Using Tip-Enhanced Raman Spectroscopy. Nat. Protoc. 2019;14(4):1169–1193. doi: 10.1038/s41596-019-0132-z. PubMed DOI

Kral M., Dendisova M., Svoboda J., Cernescu A., Svecova M., Johnson C. M., Pop-Georgievski O., Matejka P.. Nano-FTIR Spectroscopy of Surface Confluent Polydopamine Films – What Is the Role of Deposition Time and Substrate Material? Colloids Surf., B. 2024;235:113769. doi: 10.1016/j.colsurfb.2024.113769. PubMed DOI

Dendisová M., Jeništová A., Parchaňská-Kokaislová A., Matějka P., Prokopec V., Švecová M.. The Use of Infrared Spectroscopic Techniques to Characterize Nanomaterials and Nanostructures: A Review. Anal. Chim. Acta. 2018;1031:1–14. doi: 10.1016/j.aca.2018.05.046. PubMed DOI

dos Santos V. D., C A., Hondl N., Ramos-Garcia V., Kuligowski J., Lendl B., Ramer G.. AFM-IR for Nanoscale Chemical Characterization in Life Sciences: Recent Developments and Future Directions. ACS Meas. Sci. Au. 2023;3(5):301–314. doi: 10.1021/acsmeasuresciau.3c00010. PubMed DOI PMC

Kotov N., Larsson P. A., Jain K., Abitbol T., Cernescu A., Wågberg L., Johnson C. M.. Elucidating the Fine-Scale Structural Morphology of Nanocellulose by Nano Infrared Spectroscopy. Carbohydr. Polym. 2023;302:120320. doi: 10.1016/j.carbpol.2022.120320. PubMed DOI

Zavafer A., Ball M. C.. Good Vibrations: Raman Spectroscopy Enables Insights into Plant Biochemical Composition. Funct. Plant Biol. 2023;50(1):1–16. doi: 10.1071/FP21335. PubMed DOI

Bock P., Felhofer M., Mayer K., Gierlinger N.. A Guide to Elucidate the Hidden Multicomponent Layered Structure of Plant Cuticles by Raman Imaging. Front. Plant Sci. 2021;12:12. doi: 10.3389/fpls.2021.793330. PubMed DOI PMC

Zeng J., Ping W., Sanaeifar A., Xu X., Luo W., Sha J., Huang Z., Huang Y., Liu X., Zhan B., Zhang H.. et al. Quantitative Visualization of Photosynthetic Pigments in Tea Leaves Based on Raman Spectroscopy and Calibration Model Transfer. Plant Methods. 2021;17(1):1–13. doi: 10.1186/s13007-020-00704-3. PubMed DOI PMC

Hara R., Ishigaki M., Ozaki Y., Ahamed T., Noguchi R., Miyamoto A., Genkawa T.. Effect of Raman Exposure Time on the Quantitative and Discriminant Analyses of Carotenoid Concentrations in Intact Tomatoes. Food Chem. 2021;360:360. doi: 10.1016/j.foodchem.2021.129896. PubMed DOI

Guillon F., Gierlinger N., Devaux M.-F., Gorzsás A.. Chapter Six - In situ imaging of lignin and related compounds by Raman, Fourier-transform infrared (FTIR) and fluorescence microscopy. Adv. Bot. Res. 2022;104:215–270. doi: 10.1016/bs.abr.2022.03.009. DOI

Simões R., Rodrigues A., Ferreira-Dias S., Miranda I., Pereira H.. Chemical Composition of Cuticular Waxes and Pigments and Morphology of Leaves of Quercus Suber Trees of Different Provenance. Plants. 2020;9(9):1165. doi: 10.3390/plants9091165. PubMed DOI PMC

Yeats T. H., Rose J. K. C.. The Formation and Function of Plant Cuticles. Plant Physiol. 2013;163(1):5–20. doi: 10.1104/pp.113.222737. PubMed DOI PMC

Mateu, B. P. ; Bock, P. ; Gierlinger, N. R. . Raman Imaging of Plant Cell Walls, 2020, Humana:New York: 251–295. 10.1007/978-1-0716-0621-6_15 PubMed DOI

Czamara K., Majzner K., Pacia M. Z., Kochan K., Kaczor A., Baranska M.. Raman Spectroscopy of Lipids: A Review. J. Raman Spectrosc. 2015;46(1):4–20. doi: 10.1002/jrs.4607. DOI

Krysa M., Szymańska-Chargot M., Zdunek A.. FT-IR and FT-Raman Fingerprints of Flavonoids – A Review. Food Chem. 2022;393:133430. doi: 10.1016/j.foodchem.2022.133430. PubMed DOI

Picaud T., Le Moigne C., Gomez de Gracia A., Desbois A.. Soret-Excited Raman Spectroscopy of the Spinach Cytochrome b 6 f Complex. Structures of the b - and c -Type Hemes, Chlorophyll a, and β-Carotene. Biochemistry. 2001;40(24):7309–7317. doi: 10.1021/bi0106641. PubMed DOI

Song J., Yang C., Hu H., Dai X., Wang C., Zhang H.. Penetration Depth at Various Raman Excitation Wavelengths and Stress Model for Raman Spectrum in Biaxially-Strained Si. Sci. China Phys. Mech. Astron. 2013;56(11):2065–2070. doi: 10.1007/s11433-013-5205-3. DOI

Hänsch, T. W. ; Kamiya, G. T. ; Krausz, T. F. ; Monemar, G. B. ; Venghaus, L. H. ; Weber, B. H. ; Weinfurter, B. H. . Springer Series in Optical Sciences 158 http://www.springer.com/series/624.

Zhang M., Wang R., Zhu Z., Wang J., Tian Q.. Experimental Research on the Spectral Response of Tips for Tip-Enhanced Raman Spectroscopy. J. Optics. 2013;15(5):055006. doi: 10.1088/2040-8978/15/5/055006. DOI

Kumar N., Mignuzzi S., Su W., Roy D.. Tip-Enhanced Raman Spectroscopy: Principles and Applications. EPJ. Tech. Instrum. 2015;2(1):9. doi: 10.1140/epjti/s40485-015-0019-5. DOI

Udensi J., Loughman J., Loskutova E., Byrne H. J.. Raman Spectroscopy of Carotenoid Compounds for Clinical Applications-A Review. Molecules. 2022;27(24):9017. doi: 10.3390/molecules27249017. PubMed DOI PMC

Llansola-Portoles M. J., Pascal A. A., Robert B.. Electronic and Vibrational Properties of Carotenoids: From in Vitro to in Vivo . J. R. Soc., Interface. 2017;14(135):20170504. doi: 10.1098/rsif.2017.0504. PubMed DOI PMC

Hara R., Ishigaki M., Kitahama Y., Ozaki Y., Genkawa T.. Excitation Wavelength Selection for Quantitative Analysis of Carotenoids in Tomatoes Using Raman Spectroscopy. Food Chem. 2018;258:308–313. doi: 10.1016/j.foodchem.2018.03.089. PubMed DOI

Prinsloo L. C., du Plooy W., van der Merwe C.. Raman Spectroscopic Study of the Epicuticular Wax Layer of Mature Mango (Mangifera Indica) Fruit. J. Raman Spectrosc. 2004;35(7):561–567. doi: 10.1002/jrs.1185. DOI

Greene P. R., Bain C. D.. Total Internal Reflection Raman Spectroscopy of Barley Leaf Epicuticular Waxes in Vivo. Colloids Surf., B. 2005;45(3–4):174–180. doi: 10.1016/j.colsurfb.2005.08.010. PubMed DOI

Zhang S., Jie R. A., Teo M. J. T., Xinhui V. T., Koh S. S., Tan J. J., Urano D., Dinish U. S., Olivo M.. A Pilot Study on Non-Invasive in Situ Detection of Phytochemicals and Plant Endogenous Status Using Fiber Optic Infrared Spectroscopy. Sci. Rep. 2023;13(1):22261. doi: 10.1038/s41598-023-48426-5. PubMed DOI PMC

Muhammad, S. ; Wuyts, K. ; Nuyts, G. ; De Wael, K. ; Samson, R. . Characterization of Epicuticular Wax Structures on Leaves of Urban Plant Species and Its Association with Leaf Wettability. Vol. 47. Urban For Urban Green. 2020, pp 126557, 10.1016/j.ufug.2019.126557. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...