Application of Micro- and Nano-Spectroscopic Techniques for Systematic Studies of Surface Features of the Barley Leaf Cuticle
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40757344
PubMed Central
PMC12311652
DOI
10.1021/acsomega.5c00744
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In this study, micro- and nanospectroscopic techniques were used to examine the aerial epidermis of a barley crop leaf cuticle to determine if there is a correlation between aerial morphological features and their chemistry. We believe this understanding may inform the design of nanoparticles (NPs) with improved and controlled NP-plant interactions and potential applications as foliar nanofertilizers. We compared three different Raman excitation wavelengthsNIR, Vis, and UVand evaluated the possibilities of nanospectroscopic techniques like tip-enhanced Raman spectroscopy (TERS) and nano-FTIR spectroscopy. All measurements were performed on a fresh leaf surface. The impact of excitation wavelength and other measurement parameters (laser power, exposure time) to obtain an optimal signal-to-noise ratio without photodamaging the leaf was systematically evaluated. The main compounds detected in the cuticle matrix were carotenoids, flavonoids, polysaccharides, phenolic compounds, and cuticular waxes. UV (325 nm) was found to be the most suitable excitation wavelength for obtaining the most intense signals from the cuticle while avoiding plant pigment signals.
Zobrazit více v PubMed
Ao M., Zhu Y., He S., Li D., Li P., Li J., Cao Y.. Preparation and Characterization of 1-Naphthylacetic Acid–Silica Conjugated Nanospheres for Enhancement of Controlled-Release Performance. Nanotechnology. 2013;24(3):035601. doi: 10.1088/0957-4484/24/3/035601. PubMed DOI
Kah M., Kookana R. S., Gogos A., Bucheli T. D.. A Critical Evaluation of Nanopesticides and Nanofertilizers against Their Conventional Analogues. Nat. Nanotechnol. 2018;13(8):677–684. doi: 10.1038/s41565-018-0131-1. PubMed DOI
Fatima F., Hashim A., Anees S.. Efficacy of Nanoparticles as Nanofertilizer Production: A Review. Environ. Sci. Pollut. Res. 2021;28(2):1292–1303. doi: 10.1007/s11356-020-11218-9. PubMed DOI
Spielman-Sun E., Avellan A., Bland G. D., Tappero R. V., Acerbo A. S., Unrine J. M., Giraldo J. P., Lowry G. V.. Nanoparticle Surface Charge Influences Translocation and Leaf Distribution in Vascular Plants with Contrasting Anatomy. Environ. Sci.: nano. 2019;6(8):2508–2519. doi: 10.1039/C9EN00626E. DOI
Avellan A., Yun J., Zhang Y., Spielman-Sun E., Unrine J. M., Thieme J., Li J., Lombi E., Bland G., Lowry G. V.. Nanoparticle Size and Coating Chemistry Control Foliar Uptake Pathways, Translocation, and Leaf-to-Rhizosphere Transport in Wheat. ACS Nano. 2019;13(5):5291–5305. doi: 10.1021/acsnano.8b09781. PubMed DOI
Spielman-Sun E., Avellan A., Bland G. D., Clement E. T., Tappero R. V., Acerbo A. S., Lowry G. V.. Protein Coating Composition Targets Nanoparticles to Leaf Stomata and Trichomes. Nanoscale. 2020;12(6):3630–3636. doi: 10.1039/C9NR08100C. PubMed DOI
Burve, R. ; Szameitat, A. ; Grivel, J. C. . Plant Extract Reduced and Stabilized Gold Nanoparticles as Model Particles for Foliar Application of Fertilizers. TANGER Ltd, 2022, 155–160. 10.37904/nanocon.2022.4600 DOI
Andrade G. C., Santana B. V. N., Rinaldi M. C. S., Ferreira S. O., Silva R. C. D., Silva L. C.. Leaf Surface Traits Related to Differential Particle Adsorption – A Case Study of Two Tropical Legumes. Sci. Total Environ. 2022;823:153681. doi: 10.1016/j.scitotenv.2022.153681. PubMed DOI
Fernández V., Guzmán-Delgado P., Graça J., Santos S., Gil L.. Cuticle Structure in Relation to Chemical Composition: Re-Assessing the Prevailing Model. Front. Plant Sci. 2016;7:7. doi: 10.3389/fpls.2016.00427. PubMed DOI PMC
Fernández V., Bahamonde H. A., Javier peguero-Pina J., Gil-Pelegrín E., Sancho-Knapik D., Gil L., Goldbach H. E., Eichert T.. Physico-Chemical Properties of Plant Cuticles and Their Functional and Ecological Significance. J. Exp. Bot. 2017;68(19):5293–5306. doi: 10.1093/jxb/erx302. PubMed DOI
Ossola R., Farmer D.. The Chemical Landscape of Leaf Surfaces and Its Interaction with the Atmosphere. Chem. Rev. 2024;124(9):5764–5794. doi: 10.1021/acs.chemrev.3c00763. PubMed DOI PMC
Heredia-Guerrero J. A., BenÃtez J. J., DomÃnguez E., Bayer I. S., Cingolani R., Athanassiou A., Heredia A.. Infrared and Raman Spectroscopic Features of Plant Cuticles: A Review. Front. Plant Sci. 2014;5:305. doi: 10.3389/fpls.2014.00305. PubMed DOI PMC
Schulz H., Baranska M.. Identification and Quantification of Valuable Plant Substances by IR and Raman Spectroscopy. Vib. Spectrosc. 2007;43:13–25. doi: 10.1016/j.vibspec.2006.06.001. DOI
Gierlinger N., Schwanninger M.. The Potential of Raman Microscopy and Raman Imaging in Plant Research. Spectroscopy. 2007;21(2):69–89. doi: 10.1155/2007/498206. DOI
Butler H. J., Ashton L., Bird B., Cinque G., Curtis K., Dorney J., Esmonde-White K., Fullwood N. J., Gardner B., Martin-Hirsch P. L., Walsh M. J., McAinsh M. R., Stone N., Martin F. L.. Using Raman Spectroscopy to Characterize Biological Materials. Nat. Protoc. 2016;11(4):664–687. doi: 10.1038/nprot.2016.036. PubMed DOI
Atalla R. H., Whitmore R. E., Heimbach C. J.. Raman Spectral Evidence for Molecular Orientation in Native Cellulosic Fibers. Macromolecules. 1980;13(6):1717–1719. doi: 10.1021/ma60078a066. DOI
Edwards H. G. M., Farwell D. W., Webster D.. FT Raman Microscopy of Untreated Natural Plant Fibres. Spectrochim. Acta, Part A. 1997;53(13):2383–2392. doi: 10.1016/S1386-1425(97)00178-9. PubMed DOI
Piot O., Autran J.-C., Manfait M.. Spatial Distribution of Protein and Phenolic Constituents in Wheat Grain as Probed by Confocal Raman Microspectroscopy. J. Cereal Sci. 2000;32(1):57–71. doi: 10.1006/jcrs.2000.0314. DOI
Baranska M., Schulz H., Reitzenstein S., Uhlemann U., Strehle M. A., Krüger H., Quilitzsch R., Foley W., Popp J.. Vibrational Spectroscopic Studies to Acquire a Quality Control Method of Eucalyptus Essential Oils. Biopolymers. 2005;78(5):237–248. doi: 10.1002/bip.20284. PubMed DOI
Schulz H., Özkan G., Baranska M., Krüger H., Özcan M.. Characterisation of Essential Oil Plants from Turkey by IR and Raman Spectroscopy. Vib. Spectrosc. 2005;39(2):249–256. doi: 10.1016/j.vibspec.2005.04.009. DOI
Andersen P. V., Afseth N. K., Aaby K., Gaarder M. Ø., Remberg S. F., Wold J. P.. Prediction of Chemical and Sensory Properties in Strawberries Using Raman Spectroscopy. Postharvest Biol. Technol. 2023;201:112370. doi: 10.1016/j.postharvbio.2023.112370. DOI
Schoefs B.. Chlorophyll and Carotenoid Analysis in Food Products. Properties of the Pigments and Methods of Analysis. Trends Food Sci. Technol. 2002;13(11):361–371. doi: 10.1016/S0924-2244(02)00182-6. DOI
Pascal A., Peterman E., Gradinaru C., van Amerongen H., van Grondelle R., Robert B.. Structure and Interactions of the Chlorophyll a Molecules in the Higher Plant Lhcb4 Antenna Protein. J. Phys. Chem. B. 2000;104(39):9317–9321. doi: 10.1021/jp001504m. DOI
Kralova K., Kral M., Vrtelka O., Setnicka V.. Comparative Study of Raman Spectroscopy Techniques in Blood Plasma-Based Clinical Diagnostics: A Demonstration on Alzheimer’s Disease. Spectrochim. Acta, Part A. 2024;304:123392. doi: 10.1016/j.saa.2023.123392. PubMed DOI
Lu L., Shi L., Secor J., Alfano R.. Resonance Raman Scattering of β-Carotene Solution Excited by Visible Laser Beams into Second Singlet State. J. Photochem. Photobiol., B. 2018;179:18–22. doi: 10.1016/j.jphotobiol.2017.12.022. PubMed DOI
Schulz H., Baranska M., Baranski R.. Potential of NIR-FT-Raman Spectroscopy in Natural Carotenoid Analysis. Biopolymers. 2005;77(4):212–221. doi: 10.1002/bip.20215. PubMed DOI
Withnall R., Chowdhry B. Z., Silver J., Edwards H. G. M., de Oliveira L. F. C.. Raman Spectra of Carotenoids in Natural Products. Spectrochim. Acta, Part A. 2003;59(10):2207–2212. doi: 10.1016/S1386-1425(03)00064-7. PubMed DOI
Baranska M., Schulz H., Rösch P., Strehle M. A., Popp J.. Identification of Secondary Metabolites in Medicinal and Spice Plants by NIR-FT-Raman Microspectroscopic Mapping. Analyst. 2004;129(10):926–930. doi: 10.1039/B408933M. PubMed DOI
Baranski R., Baranska M., Schulz H.. Changes in Carotenoid Content and Distribution in Living Plant Tissue Can Be Observed and Mapped in Situ Using NIR-FT-Raman Spectroscopy. Planta. 2005;222(3):448–457. doi: 10.1007/s00425-005-1566-9. PubMed DOI
Farber C., Li J., Hager E., Chemelewski R., Mullet J., Rogachev A. Y., Kurouski D.. Complementarity of Raman and Infrared Spectroscopy for Structural Characterization of Plant Epicuticular Waxes. ACS Omega. 2019;4(2):3700–3707. doi: 10.1021/acsomega.8b03675. DOI
Ferraro, J. R. Introductory Raman Spectroscopy; Elsevier, 2003. 10.1016/B978-0-12-254105-6.X5000-8. DOI
Zhang Z., Guo H., Deng Y., Xing B., He L.. Mapping Gold Nanoparticles on and in Edible Leaves: In Situ Using Surface Enhanced Raman Spectroscopy. RSC Adv. 2016;6(65):60152–60159. doi: 10.1039/C6RA11748A. DOI
Airy G.. On the Diffraction of an Object-Glass with Circular Aperture. Trans. Camb. Philos. Soc. 1834;5:283–291.
Abbe E.. Beiträge Zur Theorie Des Mikroskops Und Der Mikroskopischen Wahrnehmung. Arch. Mikrosk. Anat. 1873;9(1):413–468. doi: 10.1007/BF02956173. DOI
Rayleigh F. R. S. XXXI.. Investigations in Optics, with Special Reference to the Spectroscope. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 1879;8(49):261–274. doi: 10.1080/14786447908639684. DOI
Wang X., Huang S. C., Hu S., Yan S., Ren B.. Fundamental Understanding and Applications of Plasmon-Enhanced Raman Spectroscopy. Nat. Rev. Phys. 2020;1:253–271. doi: 10.1038/s42254-020-0171-y. DOI
Král M., Dendisová M., Matějka P.. Development and Characterization of a Novel Reference Sample for Tip-Enhanced Raman Spectroscopy. Monatsh. Chem. 2021;152(9):1119–1125. doi: 10.1007/s00706-021-02808-5. DOI
Zhang Y., Zhao C., Picchetti P., Zheng K., Zhang X., Wu Y., Shen Y., De Cola L., Shi J., Guo Z., Zou X.. Quantitative SERS Sensor for Mycotoxins with Extraction and Identification Function. Food Chem. 2024;456:140040. doi: 10.1016/j.foodchem.2024.140040. PubMed DOI
Fang S., Fan L., Niu Y., Jiao G., Jia H., Wang F., Yang H., Kang Y.. SERS Imaging Investigation of the Removal Efficiency of Pesticide on Vegetable Leaves by Using Different Surfactants. Food Chem. 2024;445:138722. doi: 10.1016/j.foodchem.2024.138722. PubMed DOI
Kumar N., Weckhuysen B. M., Wain A. J., Pollard A. J.. Nanoscale Chemical Imaging Using Tip-Enhanced Raman Spectroscopy. Nat. Protoc. 2019;14(4):1169–1193. doi: 10.1038/s41596-019-0132-z. PubMed DOI
Kral M., Dendisova M., Svoboda J., Cernescu A., Svecova M., Johnson C. M., Pop-Georgievski O., Matejka P.. Nano-FTIR Spectroscopy of Surface Confluent Polydopamine Films – What Is the Role of Deposition Time and Substrate Material? Colloids Surf., B. 2024;235:113769. doi: 10.1016/j.colsurfb.2024.113769. PubMed DOI
Dendisová M., Jeništová A., Parchaňská-Kokaislová A., Matějka P., Prokopec V., Švecová M.. The Use of Infrared Spectroscopic Techniques to Characterize Nanomaterials and Nanostructures: A Review. Anal. Chim. Acta. 2018;1031:1–14. doi: 10.1016/j.aca.2018.05.046. PubMed DOI
dos Santos V. D., C A., Hondl N., Ramos-Garcia V., Kuligowski J., Lendl B., Ramer G.. AFM-IR for Nanoscale Chemical Characterization in Life Sciences: Recent Developments and Future Directions. ACS Meas. Sci. Au. 2023;3(5):301–314. doi: 10.1021/acsmeasuresciau.3c00010. PubMed DOI PMC
Kotov N., Larsson P. A., Jain K., Abitbol T., Cernescu A., Wågberg L., Johnson C. M.. Elucidating the Fine-Scale Structural Morphology of Nanocellulose by Nano Infrared Spectroscopy. Carbohydr. Polym. 2023;302:120320. doi: 10.1016/j.carbpol.2022.120320. PubMed DOI
Zavafer A., Ball M. C.. Good Vibrations: Raman Spectroscopy Enables Insights into Plant Biochemical Composition. Funct. Plant Biol. 2023;50(1):1–16. doi: 10.1071/FP21335. PubMed DOI
Bock P., Felhofer M., Mayer K., Gierlinger N.. A Guide to Elucidate the Hidden Multicomponent Layered Structure of Plant Cuticles by Raman Imaging. Front. Plant Sci. 2021;12:12. doi: 10.3389/fpls.2021.793330. PubMed DOI PMC
Zeng J., Ping W., Sanaeifar A., Xu X., Luo W., Sha J., Huang Z., Huang Y., Liu X., Zhan B., Zhang H.. et al. Quantitative Visualization of Photosynthetic Pigments in Tea Leaves Based on Raman Spectroscopy and Calibration Model Transfer. Plant Methods. 2021;17(1):1–13. doi: 10.1186/s13007-020-00704-3. PubMed DOI PMC
Hara R., Ishigaki M., Ozaki Y., Ahamed T., Noguchi R., Miyamoto A., Genkawa T.. Effect of Raman Exposure Time on the Quantitative and Discriminant Analyses of Carotenoid Concentrations in Intact Tomatoes. Food Chem. 2021;360:360. doi: 10.1016/j.foodchem.2021.129896. PubMed DOI
Guillon F., Gierlinger N., Devaux M.-F., Gorzsás A.. Chapter Six - In situ imaging of lignin and related compounds by Raman, Fourier-transform infrared (FTIR) and fluorescence microscopy. Adv. Bot. Res. 2022;104:215–270. doi: 10.1016/bs.abr.2022.03.009. DOI
Simões R., Rodrigues A., Ferreira-Dias S., Miranda I., Pereira H.. Chemical Composition of Cuticular Waxes and Pigments and Morphology of Leaves of Quercus Suber Trees of Different Provenance. Plants. 2020;9(9):1165. doi: 10.3390/plants9091165. PubMed DOI PMC
Yeats T. H., Rose J. K. C.. The Formation and Function of Plant Cuticles. Plant Physiol. 2013;163(1):5–20. doi: 10.1104/pp.113.222737. PubMed DOI PMC
Mateu, B. P. ; Bock, P. ; Gierlinger, N. R. . Raman Imaging of Plant Cell Walls, 2020, Humana:New York: 251–295. 10.1007/978-1-0716-0621-6_15 PubMed DOI
Czamara K., Majzner K., Pacia M. Z., Kochan K., Kaczor A., Baranska M.. Raman Spectroscopy of Lipids: A Review. J. Raman Spectrosc. 2015;46(1):4–20. doi: 10.1002/jrs.4607. DOI
Krysa M., Szymańska-Chargot M., Zdunek A.. FT-IR and FT-Raman Fingerprints of Flavonoids – A Review. Food Chem. 2022;393:133430. doi: 10.1016/j.foodchem.2022.133430. PubMed DOI
Picaud T., Le Moigne C., Gomez de Gracia A., Desbois A.. Soret-Excited Raman Spectroscopy of the Spinach Cytochrome b 6 f Complex. Structures of the b - and c -Type Hemes, Chlorophyll a, and β-Carotene. Biochemistry. 2001;40(24):7309–7317. doi: 10.1021/bi0106641. PubMed DOI
Song J., Yang C., Hu H., Dai X., Wang C., Zhang H.. Penetration Depth at Various Raman Excitation Wavelengths and Stress Model for Raman Spectrum in Biaxially-Strained Si. Sci. China Phys. Mech. Astron. 2013;56(11):2065–2070. doi: 10.1007/s11433-013-5205-3. DOI
Hänsch, T. W. ; Kamiya, G. T. ; Krausz, T. F. ; Monemar, G. B. ; Venghaus, L. H. ; Weber, B. H. ; Weinfurter, B. H. . Springer Series in Optical Sciences 158 http://www.springer.com/series/624.
Zhang M., Wang R., Zhu Z., Wang J., Tian Q.. Experimental Research on the Spectral Response of Tips for Tip-Enhanced Raman Spectroscopy. J. Optics. 2013;15(5):055006. doi: 10.1088/2040-8978/15/5/055006. DOI
Kumar N., Mignuzzi S., Su W., Roy D.. Tip-Enhanced Raman Spectroscopy: Principles and Applications. EPJ. Tech. Instrum. 2015;2(1):9. doi: 10.1140/epjti/s40485-015-0019-5. DOI
Udensi J., Loughman J., Loskutova E., Byrne H. J.. Raman Spectroscopy of Carotenoid Compounds for Clinical Applications-A Review. Molecules. 2022;27(24):9017. doi: 10.3390/molecules27249017. PubMed DOI PMC
Llansola-Portoles M. J., Pascal A. A., Robert B.. Electronic and Vibrational Properties of Carotenoids: From in Vitro to in Vivo . J. R. Soc., Interface. 2017;14(135):20170504. doi: 10.1098/rsif.2017.0504. PubMed DOI PMC
Hara R., Ishigaki M., Kitahama Y., Ozaki Y., Genkawa T.. Excitation Wavelength Selection for Quantitative Analysis of Carotenoids in Tomatoes Using Raman Spectroscopy. Food Chem. 2018;258:308–313. doi: 10.1016/j.foodchem.2018.03.089. PubMed DOI
Prinsloo L. C., du Plooy W., van der Merwe C.. Raman Spectroscopic Study of the Epicuticular Wax Layer of Mature Mango (Mangifera Indica) Fruit. J. Raman Spectrosc. 2004;35(7):561–567. doi: 10.1002/jrs.1185. DOI
Greene P. R., Bain C. D.. Total Internal Reflection Raman Spectroscopy of Barley Leaf Epicuticular Waxes in Vivo. Colloids Surf., B. 2005;45(3–4):174–180. doi: 10.1016/j.colsurfb.2005.08.010. PubMed DOI
Zhang S., Jie R. A., Teo M. J. T., Xinhui V. T., Koh S. S., Tan J. J., Urano D., Dinish U. S., Olivo M.. A Pilot Study on Non-Invasive in Situ Detection of Phytochemicals and Plant Endogenous Status Using Fiber Optic Infrared Spectroscopy. Sci. Rep. 2023;13(1):22261. doi: 10.1038/s41598-023-48426-5. PubMed DOI PMC
Muhammad, S. ; Wuyts, K. ; Nuyts, G. ; De Wael, K. ; Samson, R. . Characterization of Epicuticular Wax Structures on Leaves of Urban Plant Species and Its Association with Leaf Wettability. Vol. 47. Urban For Urban Green. 2020, pp 126557, 10.1016/j.ufug.2019.126557. DOI