In vivo anti-aging effects of naringin, a bioflavonoid: insights from the budding yeast Saccharomyces cerevisiae as a model organism
Jazyk angličtina Země Nizozemsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40764880
DOI
10.1007/s10522-025-10295-y
PII: 10.1007/s10522-025-10295-y
Knihovny.cz E-zdroje
- Klíčová slova
- Saccharomyces cerevisiae, Aging, Apoptosis, Naringin, Oxidative stress, Target of rapamycin,
- MeSH
- antioxidancia * farmakologie MeSH
- flavanony * farmakologie MeSH
- oxidační stres účinky léků MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae * účinky léků genetika metabolismus MeSH
- signální transdukce účinky léků MeSH
- stárnutí * účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia * MeSH
- flavanony * MeSH
- naringin MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny MeSH
Naringin is an antioxidant flavonoid rich in diverse plant species, including citrus plants. While the antioxidant activity of naringin is well documented, there has been limited research on its anti-aging potential. The aim of this study is to investigate the in vivo anti-aging effects of naringin in the budding yeast Saccharomyces cerevisiae as a model. Our findings showed that naringin substantially increased cell viability during the chronological lifespan of wild-type yeast by mitigating oxidative and apoptotic stress markers. However, naringin did not affect the viability of yeast null mutants lacking antioxidant enzymes (sod2Δ, cta1Δ, ctt1Δ, gpx1Δ, gpx2Δ, gsh1Δ; except sod1Δ and tsa1Δ), but slightly increased the viability of only pep4Δ and fis1Δ mutants, not mca1Δ. Gene expression results indicate that naringin altered the expression of genes associated with the TORC1 signaling pathway and other anti-aging genes such as SIR2 and ATG1. The study's findings also demonstrate that naringin could not increase cell viability of yeast null mutants lacking signaling pathway genes (tor1Δ, rim15Δ ras2Δ, and atg1Δ), except sch9Δ mutant during CLS. Metabolomic studies suggest that naringin treatment affects the levels of diverse class of metabolites such as amino acids, nucleotides and related compounds, vitamins, carbohydrates, and lipids in stationary phase yeast. Altogether, these findings suggest that naringin might exerts its anti-aging effects via modulating the nutrient sensing TORC1 signaling pathway, paving the way for future research to explore other aging associated gene targets.
Baiya Phytopharm Co Ltd Bangkok 10330 Thailand
Department of Biophysics Faculty of Science Palacký University 779 00 Olomouc Czech Republic
Zobrazit více v PubMed
Adil M, Kandhare AD, Visnagri A, Bodhankar SL (2015) Naringin ameliorates sodium arsenite-induced renal and hepatic toxicity in rats: decisive role of KIM-1, Caspase-3, TGF-β, and TNF-α. Ren Fail 37(8):1396–1407. https://doi.org/10.3109/0886022x.2015.1074462 PubMed DOI
Aerts AM, Zabrocki P, Govaert G, Mathys J, Carmona-Gutierrez D, Madeo F, Winderickx J, Cammue BP, Thevissen K (2009) Mitochondrial dysfunction leads to reduced chronological lifespan and increased apoptosis in yeast. FEBS Lett 583(1):113–117. https://doi.org/10.1016/j.febslet.2008.11.028 PubMed DOI
Ahmad SF, Attia SM, Bakheet SA, Zoheir KM, Ansari MA, Korashy HM, Zoheir KMA, Abdel-Hamied HE, Ashour AE, Abd-Allah ARA, Abd-Allah AR (2015) Naringin attenuates the development of carrageenan-induced acute lung inflammation through inhibition of NF-κb, STAT3 and pro-inflammatory mediators and enhancement of IκBα and anti-inflammatory cytokines. Inflammation 38(2):846–857. https://doi.org/10.1007/s10753-014-9994-y PubMed DOI
Allen C, Büttner S, Aragon AD, Thomas JA, Meirelles O, Jaetao JE, Benn D, Ruby SW, Veenhuis M, Madeo F, Werner-Washburne M (2006) Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J Cell Biol 174(1):89–100. https://doi.org/10.1083/jcb.200604072 PubMed DOI PMC
Alugoju P, Tencomnao T (2024) Effect of levan polysaccharide on chronological aging in the yeast Saccharomyces cerevisiae. Int J Biol Macromol 266:131307. https://doi.org/10.1016/j.ijbiomac.2024.131307 PubMed DOI
Alugoju P, Janardhanshetty SS, Subaramanian S, Periyasamy L, Dyavaiah M (2018) Quercetin protects yeast Saccharomyces cerevisiae pep4 mutant from oxidative and apoptotic stress and extends chronological lifespan. Curr Microbiol 75(5):519–530. https://doi.org/10.1007/s00284-017-1412-x PubMed DOI
Alugoju P, Chella Perumal DP, Anthikapalli N, Jayaraman S, Prasansuklab A, Chuchawankul S, Tencomnao T (2023) Exploring the anti-aging potential of natural products and plant extracts in budding yeast Saccharomyces cerevisiae. F1000 Research 12:1265. https://doi.org/10.12688/f1000research.141669.1 PubMed DOI
Arora BP (2008) Anti-aging medicine. Indian J Plast Surg 41(Suppl):S130-133 PubMed PMC
Assalve G, Lunetti P, Zara V, Ferramosca A (2024) In vivo antioxidant activity of common dietary flavonoids: insights from the yeast model Saccharomyces cerevisiae. Antioxidants 2024:1103. https://doi.org/10.3390/antiox13091103 DOI
Bacanlı M, Başaran AA, Başaran N (2015) The antioxidant and antigenotoxic properties of citrus phenolics limonene and naringin. Food Chem Toxicol 81:160–170. https://doi.org/10.1016/j.fct.2015.04.015 PubMed DOI
Bayliak MM, Burdylyuk NI, Lushchak VI (2016) Quercetin increases stress resistance in the yeast Saccharomyces cerevisiae not only as an antioxidant. Ann Microbiol 66(2):569–576. https://doi.org/10.1007/s13213-015-1136-8 DOI
Bonawitz ND, Chatenay-Lapointe M, Pan Y, Shadel GS (2007) Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab 5(4):265–277. https://doi.org/10.1016/j.cmet.2007.02.009 PubMed DOI PMC
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999 PubMed DOI
Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310. https://doi.org/10.1016/s0076-6879(78)52032-6 PubMed DOI
Burtner CR, Murakami CJ, Kennedy BK, Kaeberlein M (2009) A molecular mechanism of chronological aging in yeast. Cell Cycle 8(8):1256–1270. https://doi.org/10.4161/cc.8.8.8287 PubMed DOI
Caligaris M, Sampaio-Marques B, Hatakeyama R, Pillet B, Ludovico P, De Virgilio C, Nicastro R (2023) The yeast protein kinase Sch9 functions as a central nutrient-responsive hub that calibrates metabolic and stress-related responses. J Fungi (Basel). https://doi.org/10.3390/jof9080787 PubMed DOI PMC
Cao L, Tang Y, Quan Z, Zhang Z, Oliver SG, Zhang N (2016) Chronological lifespan in yeast is dependent on the accumulation of storage carbohydrates mediated by Yak1, Mck1 and Rim15 kinases. PLoS Genet 12(12):e1006458. https://doi.org/10.1371/journal.pgen.1006458 PubMed DOI PMC
Carmona-Gutierrez D, Eisenberg T, Büttner S, Meisinger C, Kroemer G, Madeo F (2010) Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ 17(5):763–773. https://doi.org/10.1038/cdd.2009.219 PubMed DOI
Chen Q, Ding Q, Keller JN (2005) The stationary phase model of aging in yeast for the study of oxidative stress and age-related neurodegeneration. Biogerontology 6(1):1–13. https://doi.org/10.1007/s10522-004-7379-6 PubMed DOI
Chen RC, Sun GB, Wang J, Zhang HJ, Sun XB (2015) Naringin protects against anoxia/reoxygenation-induced apoptosis in H9c2 cells via the Nrf2 signaling pathway. Food Funct 6(4):1331–1344. https://doi.org/10.1039/c4fo01164c PubMed DOI
Choe SC, Kim HS, Jeong TS, Bok SH, Park YB (2001) Naringin has an antiatherogenic effect with the inhibition of intercellular adhesion molecule-1 in hypercholesterolemic rabbits. J Cardiovasc Pharmacol 38(6):947–955. https://doi.org/10.1097/00005344-200112000-00017 PubMed DOI
Crespo JL, Powers T, Fowler B, Hall MN (2002) The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl Acad Sci U S A 99(10):6784–6789. https://doi.org/10.1073/pnas.102687599 PubMed DOI PMC
Dai XJ, Jia Y, Cao R, Zhou MN (2023) Naringin prevents cognitive dysfunction in aging rats by inhibiting toll-like receptor 4 (TLR4)/NF-κB pathway and endoplasmic reticulum stress. Evid Based Complement Alternat Med 2023:2919811. https://doi.org/10.1155/2023/2919811 PubMed DOI PMC
Deprez M-A, Caligaris M, Rosseels J, Hatakeyama R, Ghillebert R, Sampaio-Marques B, Mudholkar K, Eskes E, Meert E, Ungermann C, Ludovico P, Rospert S, De Virgilio C, Winderickx J (2023) The nutrient-responsive CDK Pho85 primes the Sch9 kinase for its activation by TORC1. PLoS Genet 19(2):e1010641. https://doi.org/10.1371/journal.pgen.1010641 PubMed DOI PMC
Fabrizio P, Pletcher SD, Minois N, Vaupel JW, Longo VD (2004) Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. FEBS Lett 557(1–3):136–142. https://doi.org/10.1016/s0014-5793(03)01462-5 PubMed DOI
Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C, McGrew K, Longo VD (2005) Sir2 blocks extreme life-span extension. Cell 123(4):655–667. https://doi.org/10.1016/j.cell.2005.08.042 PubMed DOI
Gerçek E, Zengin H, Erdem Erişir F, Yılmaz Ö (2021) Biochemical changes and antioxidant capacity of naringin and naringenin against malathion toxicity in Saccharomyces cerevisiae. Comp Biochem Physiol c: Toxicol Pharmacol 241:108969. https://doi.org/10.1016/j.cbpc.2020.108969 PubMed DOI
Golechha M, Chaudhry U, Bhatia J, Saluja D, Arya DS (2011) Naringin protects against kainic acid-induced status epilepticus in rats: evidence for an antioxidant, anti-inflammatory and neuroprotective intervention. Biol Pharm Bull 34(3):360–365. https://doi.org/10.1248/bpb.34.360 PubMed DOI
Gopinath K, Prakash D, Sudhandiran G (2011) Neuroprotective effect of naringin, a dietary flavonoid against 3-nitropropionic acid-induced neuronal apoptosis. Neurochem Int 59(7):1066–1073. https://doi.org/10.1016/j.neuint.2011.08.022 PubMed DOI
Guo C, Zhang H, Guan X, Zhou Z (2019) The anti-aging potential of Neohesperidin and its synergistic effects with other citrus flavonoids in extending chronological lifespan of Saccharomyces cerevisiae BY4742. Molecules. https://doi.org/10.3390/molecules24224093 PubMed DOI PMC
Guo P, Wang P, Liu L, Wang P, Lin G, Qu Z, Yu Z, Liu N (2023) Naringin alleviates glucose-induced aging by reducing fat accumulation and promoting autophagy in Caenorhabditis elegans. Nutrients. https://doi.org/10.3390/nu15040907 PubMed DOI PMC
Habauzit V, Sacco SM, Gil-Izquierdo A, Trzeciakiewicz A, Morand C, Barron D, Pinaud S, Offord E, Horcajada MN (2011) Differential effects of two citrus flavanones on bone quality in senescent male rats in relation to their bioavailability and metabolism. Bone 49(5):1108–1116. https://doi.org/10.1016/j.bone.2011.07.030 PubMed DOI
Harisa GI (2014) Naringin mitigates erythrocytes aging induced by paclitaxel: an in vitro study. J Biochem Mol Toxicol 28(3):129–136. https://doi.org/10.1002/jbt.21544 PubMed DOI
Harr MW, Distelhorst CW (2010) Apoptosis and autophagy: decoding calcium signals that mediate life or death. Cold Spring Harb Perspect Biol 2(10):a005579. https://doi.org/10.1101/cshperspect.a005579 PubMed DOI PMC
Hill SM, Hao X, Liu B, Nyström T (2014) Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae. Science 344(6190):1389–1392. https://doi.org/10.1126/science.1252634 PubMed DOI
Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, Bohr VA (2019) Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 15(10):565–581. https://doi.org/10.1038/s41582-019-0244-7 PubMed DOI
Hsu C-H, Liu C-Y, Lo K-Y (2024) Mutations of ribosomal protein genes induce overexpression of catalase in Saccharomyces cerevisiae. FEMS Yeast Res. https://doi.org/10.1093/femsyr/foae005 PubMed DOI PMC
Jagetia GC, Reddy TK (2005) Modulation of radiation-induced alteration in the antioxidant status of mice by naringin. Life Sci 77(7):780–794. https://doi.org/10.1016/j.lfs.2005.01.015 PubMed DOI
Jeon SM, Bok SH, Jang MK, Lee MK, Nam KT, Park YB, Rhee S-J, Choi MS (2001) Antioxidative activity of naringin and lovastatin in high cholesterol-fed rabbits. Life Sci 69(24):2855–2866. https://doi.org/10.1016/s0024-3205(01)01363-7 PubMed DOI
Jiménez J, Bru S, Ribeiro M, Clotet J (2015) Live fast, die soon: cell cycle progression and lifespan in yeast cells. Microb Cell 2(3):62–67. https://doi.org/10.15698/mic2015.03.191 PubMed DOI PMC
Kaeberlein M, Burtner CR, Kennedy BK (2007) Recent developments in yeast aging. PLoS Genet 3(5):e84. https://doi.org/10.1371/journal.pgen.0030084 PubMed DOI PMC
Kalita AI, Letai CT, Enriquez-Hesles E, Power LN, Mishra S, Saha S, Dinda M, Wang D, Singh PK, Smith JS (2025) Chronological lifespan extension and nucleotide salvage inhibition in yeast by isonicotinamide supplementation. bioRxiv [Preprint] 2025 Jun 24. https://doi.org/10.1101/2021.07.11.451986
Kaur G, Prakash A (2020) Involvement of the nitric oxide signaling in modulation of naringin against intranasal manganese and intracerbroventricular β-amyloid induced neurotoxicity in rats. J Nutr Biochem 76:108255. https://doi.org/10.1016/j.jnutbio.2019.108255 PubMed DOI
Kerstens W, Van Dijck P (2018) A cinderella story: how the vacuolar proteases Pep4 and Prb1 do more than cleaning up the cell’s mass degradation processes. Microb Cell 5(10):438–443. https://doi.org/10.15698/mic2018.10.650 PubMed DOI PMC
Kim SY, Kim HJ, Lee MK, Jeon SM, Do GM, Kwon EY, Cho Y-Y, Kim D-J, Jeong K-S, Park YB, Ha TY, Choi MS (2006) Naringin time-dependently lowers hepatic cholesterol biosynthesis and plasma cholesterol in rats fed high-fat and high-cholesterol diet. J Med Food 9(4):582–586. https://doi.org/10.1089/jmf.2006.9.582 PubMed DOI
Kitagaki H, Araki Y, Funato K, Shimoi H (2007) Ethanol-induced death in yeast exhibits features of apoptosis mediated by mitochondrial fission pathway. FEBS Lett 581(16):2935–2942. https://doi.org/10.1016/j.febslet.2007.05.048 PubMed DOI
Kulasekaran G, Ganapasam S (2015) Neuroprotective efficacy of naringin on 3-nitropropionic acid-induced mitochondrial dysfunction through the modulation of Nrf2 signaling pathway in PC12 cells. Mol Cell Biochem 409(1–2):199–211. https://doi.org/10.1007/s11010-015-2525-9 PubMed DOI
Kumar A, Prakash A, Dogra S (2010) Naringin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress induced by D-galactose in mice. Food Chem Toxicol 48(2):626–632. https://doi.org/10.1016/j.fct.2009.11.043 PubMed DOI
Kwolek-Mirek M, Zadrag-Tecza R (2014) Comparison of methods used for assessing the viability and vitality of yeast cells. FEMS Yeast Res 14(7):1068–1079. https://doi.org/10.1111/1567-1364.12202 PubMed DOI
Lee RE, Brunette S, Puente LG, Megeney LA (2010) Metacaspase Yca1 is required for clearance of insoluble protein aggregates. Proc Natl Acad Sci U S A 107(30):13348–13353. https://doi.org/10.1073/pnas.1006610107 PubMed DOI PMC
Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478. https://doi.org/10.1016/0076-6879(90)86141-h PubMed DOI
Liu X, Liu M, Mo Y, Peng H, Gong J, Li Z, Xie J (2016) Naringin ameliorates cognitive deficits in streptozotocin-induced diabetic rats. Iran J Basic Med Sci 19(4):417–422 PubMed PMC
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262 PubMed DOI
Longo VD, Shadel GS, Kaeberlein M, Kennedy B (2012) Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab 16(1):18–31. https://doi.org/10.1016/j.cmet.2012.06.002 PubMed DOI PMC
Ludovico P, Burhans WC (2014) Reactive oxygen species, ageing and the hormesis police. FEMS Yeast Res 14(1):33–39. https://doi.org/10.1111/1567-1364.12070 PubMed DOI
Ludovico P, Sansonetty F, Côrte-Real M (2001) Assessment of mitochondrial membrane potential in yeast cell populations by flow cytometry. Microbiology (Reading) 147(Pt 12):3335–3343. https://doi.org/10.1099/00221287-147-12-3335 PubMed DOI
Lutchman V, Dakik P, McAuley M, Cortes B, Ferraye G, Gontmacher L, Graziano D, Moukhariq F-Z, Simard É, Titorenko VI (2016) Six plant extracts delay yeast chronological aging through different signaling pathways. Oncotarget 7(32):50845–50863. https://doi.org/10.18632/oncotarget.10689 PubMed DOI PMC
Madeo F, Herker E, Maldener C, Wissing S, Lächelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S, Fröhlich KU (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9(4):911–917. https://doi.org/10.1016/s1097-2765(02)00501-4 PubMed DOI
Mandadi K, Ramirez M, Jayaprakasha GK, Faraji B, Lihono M, Deyhim F, Patil BS (2009) Citrus bioactive compounds improve bone quality and plasma antioxidant activity in orchidectomized rats. Phytomedicine 16(6–7):513–520. https://doi.org/10.1016/j.phymed.2008.09.001 PubMed DOI
Mandalari G, Bennett RN, Bisignano G, Trombetta D, Saija A, Faulds CB, Gasson MJ, Narbad A (2007) Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. J Appl Microbiol 103(6):2056–2064. https://doi.org/10.1111/j.1365-2672.2007.03456.x PubMed DOI
Maslanka R, Zadrag-Tecza R, Kwolek-Mirek M (2020) Linkage between carbon metabolism, redox status and cellular physiology in the yeast Saccharomyces cerevisiae devoid of SOD1 or SOD2 gene. Genes 11(7):780. https://doi.org/10.3390/genes11070780 PubMed DOI PMC
Mat Nanyan NSb, Watanabe D, Sugimoto Y, Takagi H (2019) Involvement of the stress-responsive transcription factor gene MSN2 in the control of amino acid uptake in Saccharomyces cerevisiae. FEMS Yeast Res. https://doi.org/10.1093/femsyr/foz052 PubMed DOI
Matsui A, Kamada Y, Matsuura A (2013) The role of autophagy in genome stability through suppression of abnormal mitosis under starvation. PLoS Genet 9(1):e1003245. https://doi.org/10.1371/journal.pgen.1003245 PubMed DOI PMC
Matsuura A, Tsukada M, Wada Y, Ohsumi Y (1997) Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene 192(2):245–250. https://doi.org/10.1016/s0378-1119(97)00084-x PubMed DOI
Ming H, Chuang Q, Jiashi W, Bin L, Guangbin W, Xianglu J (2018) Naringin targets Zeb1 to suppress osteosarcoma cell proliferation and metastasis. Aging (Albany NY) 10(12):4141–4151. https://doi.org/10.18632/aging.101710 PubMed DOI
Mozdy AD, McCaffery JM, Shaw JM (2000) Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J Cell Biol 151(2):367–380. https://doi.org/10.1083/jcb.151.2.367 PubMed DOI PMC
Naparlo K, Zyracka E, Bartosz G, Sadowska-Bartosz I (2019) Flavanols protect the yeast Saccharomyces cerevisiae against heating and freezing/thawing injury. J Appl Microbiol 126(3):872–880. https://doi.org/10.1111/jam.14170 PubMed DOI
Owsiak A, Bartosz G, Bilinski T (2010) Oxidative stress during aging of the yeast in a stationary culture and its attenuation by antioxidants. Cell Biol Int 34(7):731–736. https://doi.org/10.1042/cbi20100134 PubMed DOI
Palermo V, Falcone C, Calvani M, Mazzoni C (2010) Acetyl-L-carnitine protects yeast cells from apoptosis and aging and inhibits mitochondrial fission. Aging Cell 9(4):570–579. https://doi.org/10.1111/j.1474-9726.2010.00587.x PubMed DOI
Pan Y, Schroeder EA, Ocampo A, Barrientos A, Shadel GS (2011) Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Cell Metab 13(6):668–678. https://doi.org/10.1016/j.cmet.2011.03.018 PubMed DOI PMC
Pawelczak P, Fedoruk-Wyszomirska A, Wyszko E (2022) Antiaging effect of 4-N-furfurylcytosine in yeast model manifests through enhancement of mitochondrial activity and ROS reduction. Antioxidants. https://doi.org/10.3390/antiox11050850 PubMed DOI PMC
Penninckx MJ (2002) An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Res 2(3):295–305. https://doi.org/10.1016/s1567-1356(02)00081-8 PubMed DOI
Petit P, Glab N, Marie D, Kieffer H, Métézeau P (1996) Discrimination of respiratory dysfunction in yeast mutants by confocal microscopy, image, and flow cytometry. Cytometry 23(1):28–38. https://doi.org/10.1002/(sici)1097-0320(19960101)23:1%3c28::Aid-cyto5%3e3.0.Co;2-i PubMed DOI
Powers RW 3rd, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20(2):174–184. https://doi.org/10.1101/gad.1381406 PubMed DOI PMC
Prasanth MI, Gayathri S, Bhaskar JP, Krishnan V, Balamurugan K (2020) Analyzing the synergistic effects of antioxidants in combating photoaging using model nematode, Caenorhabditis elegans. Photochem Photobiol 96(1):139–147. https://doi.org/10.1111/php.13167 PubMed DOI
Rajadurai M, Stanely Mainzen Prince P (2006) Preventive effect of naringin on lipid peroxides and antioxidants in isoproterenol-induced cardiotoxicity in Wistar rats: biochemical and histopathological evidences. Toxicology 228(2–3):259–268. https://doi.org/10.1016/j.tox.2006.09.005 PubMed DOI
Rattan SI (2005) Anti-ageing strategies: prevention or therapy? Showing ageing from within. EMBO Rep 6(Suppl 1):S25-29. https://doi.org/10.1038/sj.embor.7400401 PubMed DOI PMC
Salama AAA, Yassen NN, Mansour HM (2023) Naringin protects mice from D-galactose-induced lung aging and mitochondrial dysfunction: implication of SIRT1 pathways. Life Sci 324:121471. https://doi.org/10.1016/j.lfs.2023.121471 PubMed DOI
Schlossarek D, Luzarowski M, Sokołowska EM, Thirumalaikumar VP, Dengler L, Willmitzer L, Ewald JC, Skirycz A (2022) Rewiring of the protein-protein-metabolite interactome during the diauxic shift in yeast. Cell Mol Life Sci 79(11):550. https://doi.org/10.1007/s00018-022-04569-8 PubMed DOI
Sinha A, Pick E (2021) Fluorescence detection of increased reactive oxygen species levels in Saccharomyces cerevisiae at the diauxic shift. Methods Mol Biol 2202:81–91. https://doi.org/10.1007/978-1-0716-0896-8_7 PubMed DOI
Srinivasan S, Vinothkumar V, Murali R (2019) Chapter 22 - antidiabetic efficacy of citrus fruits with special allusion to flavone glycosides. In: Watson RR, Preedy VR (eds) Bioactive food as dietary interventions for diabetes, 2nd edn. Academic Press, pp 335–346
Stępień K, Wojdyła D, Nowak K, Mołoń M (2020) Impact of curcumin on replicative and chronological aging in the Saccharomyces cerevisiae yeast. Biogerontology 21(1):109–123. https://doi.org/10.1007/s10522-019-09846-x PubMed DOI
Stracka D, Jozefczuk S, Rudroff F, Sauer U, Hall MN (2014) Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/Rag proteins. J Biol Chem 289(36):25010–25020. https://doi.org/10.1074/jbc.M114.574335 PubMed DOI PMC
Subramaniyan S, Alugoju P, Sj S, Veerabhadrappa B, Dyavaiah M (2019) Magnolol protects Saccharomyces cerevisiae antioxidant-deficient mutants from oxidative stress and extends yeast chronological life span. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnz065 PubMed DOI
Sudharshan SJ, Veerabhadrappa B, Subramaniyan S, Dyavaiah M (2018) Astaxanthin enhances the longevity of Saccharomyces cerevisiae by decreasing oxidative stress and apoptosis. FEMS Yeast Res. https://doi.org/10.1093/femsyr/foy113 DOI
Sun S, Gresham D (2021) Cellular quiescence in budding yeast. Yeast 38(1):12–29. https://doi.org/10.1002/yea.3545 PubMed DOI
Taormina G, Ferrante F, Vieni S, Grassi N, Russo A, Mirisola MG (2019) Longevity: lesson from model organisms. Genes. https://doi.org/10.3390/genes10070518 PubMed DOI PMC
Trancíková A, Weisová P, Kissová I, Zeman I, Kolarov J (2004) Production of reactive oxygen species and loss of viability in yeast mitochondrial mutants: protective effect of Bcl-xL. FEMS Yeast Res 5(2):149–156. https://doi.org/10.1016/j.femsyr.2004.06.014 PubMed DOI
Tungmunnithum D, Drouet S, Hano C (2022) Flavonoids from sacred lotus stamen extract slows chronological aging in yeast model by reducing oxidative stress and maintaining cellular metabolism. Cells. https://doi.org/10.3390/cells11040599 PubMed DOI PMC
Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H, Broach JR, De Virgilio C, Hall MN, Loewith R (2007) Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26(5):663–674. https://doi.org/10.1016/j.molcel.2007.04.020 PubMed DOI
Wei M, Fabrizio P, Hu J, Ge H, Cheng C, Li L, Longo V (2008) Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 4:e13. https://doi.org/10.1371/journal.pgen.0040013 PubMed DOI PMC
Werner-Washburne M, Braun E, Johnston GC, Singer RA (1993) Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev 57(2):383–401. https://doi.org/10.1128/mr.57.2.383-401.1993 PubMed DOI PMC
Xiang L, Disasa D, Liu Y, Fujii R, Yang M, Wu E, Matsuura A, Qi J (2022) Gentirigeoside B from Gentiana rigescens Franch prolongs yeast lifespan via inhibition of TORC1/Sch9/Rim15/Msn signaling pathway and modification of oxidative stress and autophagy. Antioxidants. https://doi.org/10.3390/antiox11122373 PubMed DOI PMC
Xue J-C, Yuan S, Meng H, Hou X-T, Li J, Zhang H-M, Chen L-L, Zhang C-H, Zhang Q-G (2023) The role and mechanism of flavonoid herbal natural products in ulcerative colitis. Biomed Pharmacother 158:114086. https://doi.org/10.1016/j.biopha.2022.114086 PubMed DOI
Yabuki Y, Ikeda A, Araki M, Kajiwara K, Mizuta K, Funato K (2019) Sphingolipid/Pkh1/2-TORC1/Sch9 signaling regulates ribosome biogenesis in tunicamycin-induced stress response in yeast. Genetics 212(1):175–186. https://doi.org/10.1534/genetics.118.301874 PubMed DOI PMC
Yalcin G, Lee C-K (2019) Recent studies on anti-aging compounds with Saccharomyces cerevisiae as a model organism. Transl Med Aging 3:109–115. https://doi.org/10.1016/j.tma.2019.10.001 DOI
Yan Y, Zou Q, Zhou Y, He H, Yu W, Yan H, Yi Yi, Zhao Z (2023) Water extract from Ligusticum chuanxiong delays the aging of Saccharomyces cerevisiae via improving antioxidant activity. Heliyon 9(8):e19027. https://doi.org/10.1016/j.heliyon.2023.e19027 PubMed DOI PMC
Zahoor H, Watchaputi K, Hata J, Pabuprapap W, Suksamrarn A, Chua LS, Soontorngun N (2022) Model yeast as a versatile tool to examine the antioxidant and anti-ageing potential of flavonoids, extracted from medicinal plants. Front Pharmacol 13:980066. https://doi.org/10.3389/fphar.2022.980066 PubMed DOI PMC
Zimmermann A, Hofer S, Pendl T, Kainz K, Madeo F, Carmona-Gutierrez D (2018) Yeast as a tool to identify anti-aging compounds. FEMS Yeast Res. https://doi.org/10.1093/femsyr/foy020 PubMed DOI PMC