Potential mechanisms for the rapid post-drought reversal of ABA-induced stomatal closure by melatonin, 5-aminolevulinic acid, and brassinosteroids

. 2025 ; 63 (2) : 104-115. [epub] 20250519

Jazyk angličtina Země Česko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40766745

The regulation of stomatal movements is crucial for plants to optimize gas exchange and water balance. The plant hormone abscisic acid (ABA) triggers stomatal closure in response to drought, effectively minimizing water loss to prevent hydraulic failure. However, it significantly constrains photosynthesis, restricting plant growth and productivity. Therefore, rapid post-drought stomatal opening is crucial for earlier photosynthetic recovery. This review explores how phytohormones or plant growth regulators reverse ABA-induced stomatal closure. Phytomelatonin, 5-aminolevulinic acid, and brassinosteroids promote stomatal reopening by either ABA degradation or suppressing its biosynthesis through the downregulation of corresponding genes. This results in less ABA-induced H2O2 accumulation in guard cells, which lowers H2O2-triggered Ca2+ levels in guard cells, and promotes the opening of KAT1 (K+ in channels). Insights from this review highlight the potential mechanisms of stomatal reopening for earlier post-drought gas exchange recovery, offering potential avenues to enhance plant productivity under changing environmental conditions.

Zobrazit více v PubMed

Abid M., Ali S., Qi L.K. et al. : Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat ( PubMed DOI PMC

Akram N.A., Ashraf M.: Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. – J. Plant Growth Regul. 32: 663-679, 2013. 10.1007/s00344-013-9325-9 DOI

An Y., Liu L., Chen L., Wang L.: ALA inhibits ABA-induced stomatal closure PubMed DOI PMC

An Y.Y., Xiong L.J., Hu S., Wang L.: PP2A and microtubules function in 5-aminolevulinic acid-mediated H PubMed DOI

Arnao M.B., Hernández-Ruiz J.: Growth conditions determine different melatonin levels in PubMed DOI

Assmann S.M., Simoncini L., Schroeder J.I.: Blue light activates electrogenic ion pumping in guard cell protoplasts of DOI

Back K.: Melatonin metabolism, signaling and possible roles in plants. – Plant J. 105: 376-391, 2021. 10.1111/tpj.14915 PubMed DOI

Back K., Tan D.X., Reiter R.J.: Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. – J. Pineal Res. 61: 426-437, 2016. 10.1111/jpi.12364 PubMed DOI

Belkhadir Y., Chory J.: Brassinosteroid signaling: a paradigm for steroid hormone signaling from the cell surface. – Science 314: 1410-1411, 2006. 10.1126/science.1134040 PubMed DOI

Bharath P., Gahir S., Raghavendra A.S.: Abscisic acid-induced stomatal closure: An important component of plant defense against abiotic and biotic stress. – Front. Plant Sci. 12: 615114, 2021. 10.3389/fpls.2021.615114 PubMed DOI PMC

Bindu R.C., Vivekanandan M.: Hormonal activities of 5-aminolevulinic acid in callus induction and micropropagation. – Plant Growth Regul. 26: 15-18, 1998. 10.1023/A:1006098005335 DOI

Blackman C.J., Brodribb T.J., Jordan G.J.: Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species. – Plant Cell Environ. 32: 1584-1595, 2009. 10.1111/j.1365-3040.2009.02023.x PubMed DOI

Boudsocq M., Barbier-Brygoo H., Laurière C.: Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in PubMed DOI

Brodribb T., Brodersen C.R., Carriquí M. et al. : Linking xylem network failure with leaf tissue death. – New Phytol. 232: 68-79, 2021. 10.1111/nph.17577 PubMed DOI

Brodribb T.J., McAdam S.A.M.: Abscisic acid mediates a divergence in the drought response of two conifers. – Plant Physiol. 162: 1370-1377, 2013. 10.1104/pp.113.217877 PubMed DOI PMC

Brunetti C., Savi T., Nardini A. et al. : Changes in abscisic acid content during and after drought are related to carbohydrate mobilization and hydraulic recovery in poplar stems. – Tree Physiol. 40: 1043-1057, 2020. 10.1093/treephys/tpaa032 PubMed DOI

Chen S., Jia H., Wang X. et al. : Hydrogen sulfide positively regulates abscisic acid signaling through persulfidation of SnRK2.6 in guard cells. – Mol. Plant 13: 732-744, 2020. 10.1016/j.molp.2020.01.004 PubMed DOI

Chen Z., An Y., Wang L.: ALA reverses ABA-induced stomatal closure by modulating PP2AC and SnRK2.6 activity in apple leaves. – Hortic. Res. 10: uhad067, 2023. 10.1093/hr/uhad067 PubMed DOI PMC

Choat B., Brodribb T.J., Brodersen C.R. et al. : Triggers of tree mortality under drought. – Nature 558: 531-539, 2018. 10.1038/s41586-018-0240-x PubMed DOI

Chung Y., Choe S.: The regulation of brassinosteroid biosynthesis in DOI

Clouse S.D.: Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. – Plant Cell 23: 1219-1230, 2011. 10.1105/tpc.111.084475 PubMed DOI PMC

Czarnecki O., Grimm B.: Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. – J. Exp. Bot. 63: 1675-1687, 2012. 10.1093/jxb/err437 PubMed DOI

Dai L., Li J., Harmens H. et al. : Melatonin enhances drought resistance by regulating leaf stomatal behaviour, root growth and catalase activity in two contrasting rapeseed ( PubMed DOI

Damour G., Vandame M., Urban L.: Long-term drought results in a reversible decline in photosynthetic capacity in mango leaves, not just a decrease in stomatal conductance. – Tree Physiol. 29: 675-684, 2009. 10.1093/treephys/tpp011 PubMed DOI

Demidchik V., Straltsova D., Medvedev S.S. et al. : Stress-induced electrolyte leakage: the role of K PubMed DOI

Deuner S., Alves J.D., Zanandrea I. et al. : Stomatal behavior and components of the antioxidative system in coffee plants under water stress. – Sci. Agr. 68: 77-85, 2011. 10.1590/S0103-90162011000100012 DOI

Dietrich P., Sanders D., Hedrich R.: The role of ion channels in light-dependent stomatal opening. – J. Exp. Bot. 52: 1959-1967, 2001. 10.1093/jexbot/52.363.1959 PubMed DOI

Duan H., Wang D., Wei X. et al. : The decoupling between gas exchange and water potential of DOI

Duan H., Wang D., Zhao N. et al. : Limited hydraulic recovery in seedlings of six tree species with contrasting leaf habits in subtropical China. – Front. Plant Sci. 13: 967187, 2022. 10.3389/fpls.2022.967187 PubMed DOI PMC

Dubbels R., Reiter R.J., Klenke E. et al. : Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. – J. Pineal Res. 18: 28-31, 1995. 10.1111/j.1600-079X.1995.tb00136.x PubMed DOI

Erland L.A.E., Yasunaga A., Li I.T.S. et al. : Direct visualization of location and uptake of applied melatonin and serotonin in living tissues and their redistribution in plants in response to thermal stress. – J. Pineal Res. 66: e12527, 2019. 10.1111/jpi.12527 PubMed DOI

Flor L., Toro G., Carriquí M. et al. : Severe water stress impact on drought resistance mechanisms and hydraulic vulnerability segmentation in grapevines: the role of rootstock. – J. Exp. Bot., eraf044, 2025. 10.1093/jxb/eraf044 PubMed DOI

Fujii H., Zhu J.-K.: PubMed DOI PMC

Fujioka S., Yokota T.: Biosynthesis and metabolism of brassinosteroids. – Annu. Rev. Plant Biol. 54: 137-164, 2003. 10.1146/annurev.arplant.54.031902.134921 PubMed DOI

Gago J., Carriquí M., Nadal M. et al. : Photosynthesis optimized across land plant phylogeny. – Trends Plant Sci. 24: 947-958, 2019. 10.1016/j.tplants.2019.07.002 PubMed DOI

Gago J., Daloso D.M., Carriquí M. et al. : The photosynthesis game is in the "inter-play": Mechanisms underlying CO DOI

Geiger D., Scherzer S., Mumm P. et al. : Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. – PNAS 106: 21425-21430, 2009. 10.1073/pnas.0912021106 PubMed DOI PMC

Ha Y.M., Shang Y., Yang D., Nam K.H.: Brassinosteroid reduces ABA accumulation leading to the inhibition of ABA-induced stomatal closure. – Biochem. Bioph. Res. Co. 504: 143-148, 2018. 10.1016/j.bbrc.2018.08.146 PubMed DOI

Hasan M.M., Alabdallah N.M., Alharbi B.M. et al. : GABA: a key player in drought stress resistance in plants. – Int. J. Mol. Sci. 22: 10136, 2021a. 10.3390/ijms221810136 PubMed DOI PMC

Hasan M.M., Gong L., Nie Z.-F. et al. : ABA-induced stomatal movements in vascular plants during dehydration and rehydration. – Environ. Exp. Bot. 186: 104436, 2021b. 10.1016/j.envexpbot.2021.104436 DOI

Hasan M.M., Liu X.-D., Waseem M. et al. : ABA activated SnRK2 kinases: An emerging role in plant growth and physiology. – Plant Signal. Behav. 17: 2071024, 2022. 10.1080/15592324.2022.2071024 PubMed DOI PMC

Hasan M.M., Liu X.-D., Yao G.-Q. et al. : Ethylene-mediated stomatal responses to dehydration and rehydration in seed plants. – J. Exp. Bot. 75: 6719-6732, 2024. 10.1093/jxb/erae060 PubMed DOI

Hasanuzzaman M., Nahar K., Anee T.I., Fujita M.: Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. – Physiol. Mol. Biol. Plants 23: 249-268, 2017. 10.1007/s12298-017-0422-2 PubMed DOI PMC

Hattori A., Migitaka H., Iigo M. et al. : Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. – Biochem. Mol. Biol. Int. 35: 627-634, 1995. https://www.researchgate.net/publication/15426392_Identification_of_melatonin_in_plants_and_its_effects_on_plasma_melatonin_levels_and_binding_to_melatonin_receptors_in_vertebrates PubMed

He Z., Wang Z.-Y., Li J. et al. : Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. – Science 288: 2360-2363, 2000. 10.1126/science.288.5475.2360 PubMed DOI

Hedrich R., Geiger D.: Biology of SLAC 1-type anion channels – from nutrient uptake to stomatal closure. – New Phytol. 216: 46-61, 2017. 10.1111/nph.14685 PubMed DOI

Hsu P.K., Dubeaux G., Takahashi Y., Schroeder J.I.: Signaling mechanisms in abscisic acid-mediated stomatal closure. – Plant J. 105: 307-321, 2021. 10.1111/tpj.15067 PubMed DOI PMC

Hua D., Wang C., He J. et al. : A plasma membrane receptor kinase, GHR1, mediates abscisic acid-and hydrogen peroxide-regulated stomatal movement in PubMed DOI PMC

Huber A.E., Melcher P.J., Piñeros M.A. et al. : Signal coordination before, during and after stomatal closure in response to drought stress. – New Phytol. 224: 675-688, 2019. 10.1111/nph.16082 PubMed DOI

Inoue S.-I., Iwashita N., Takahashi Y. et al. : Brassinosteroid involvement in PubMed DOI

Inoue S.-I., Takemiya A., Shimazaki K.-I.: Phototropin signaling and stomatal opening as a model case. – Curr. Opin. Plant Biol. 13: 587-593, 2010. 10.1016/j.pbi.2010.09.002 PubMed DOI

Iuchi S., Kobayashi M., Taji T. et al. : Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in PubMed DOI

Jiang C., Cui Q., Feng K. et al. : Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. – Acta Physiol. Plant. 38: 82, 2016. 10.1007/s11738-016-2101-2 DOI

Jiang M., Hong K., Mao Y. et al. : Natural 5-aminolevulinic acid: Sources, biosynthesis, detection and applications. – Front. Bioeng. Biotechnol. 10: 841443, 2022. 10.3389/fbioe.2022.841443 PubMed DOI PMC

Jiang M., Zhang J.: Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. – J. Exp. Bot. 53: 2401-2410, 2002. 10.1093/jxb/erf090 PubMed DOI

Jones H.G.: Stomatal control of photosynthesis and transpiration. – J. Exp. Bot. 49: 387-398, 1998. 10.1093/jxb/49.Special_Issue.387 DOI

Keller B.U., Hedrich R., Raschke K.: Voltage-dependent anion channels in the plasma membrane of guard cells. – Nature 341: 450-453, 1989. 10.1038/341450a0 PubMed DOI PMC

Khan A., Numan M., Khan A.L. et al. : Melatonin: awakening the defense mechanisms during plant oxidative stress. – Plants-Basel 9: 407, 2020. 10.3390/plants9040407 PubMed DOI PMC

Kollist H., Nuhkat M., Roelfsema M.R.G.: Closing gaps: linking elements that control stomatal movement. – New Phytol. 203: 44-62, 2014. 10.1111/nph.12832 PubMed DOI

Kondo S., Sugaya S., Sugawa S. et al. : Dehydration tolerance in apple seedlings is affected by an inhibitor of ABA 8ꞌ-hydroxylase CYP707A. – J. Plant Physiol. 169: 234-241, 2012. 10.1016/j.jplph.2011.09.007 PubMed DOI

Korkmaz A., Değer Ö., Cuci Y.: Profiling the melatonin content in organs of the pepper plant during different growth stages. – Sci. Hortic.-Amsterdam 172: 242-247, 2014. 10.1016/j.scienta.2014.04.018 DOI

Korkmaz A., Korkmaz Y., Demirkıran A.R.: Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. – Environ. Exp. Bot. 67: 495-501, 2010. 10.1016/j.envexpbot.2009.07.009 DOI

Kushiro T., Okamoto M., Nakabayashi K. et al. : The PubMed DOI PMC

Kusumi K., Hirotsuka S., Kumamaru T., Iba K.: Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein. – J. Exp. Bot. 63: 5635-5644, 2012. 10.1093/jxb/ers216 PubMed DOI PMC

Kwak J.M., Murata Y., Baizabal-Aguirre V.M. et al. : Dominant negative guard cell K PubMed DOI PMC

Lebaudy A., Hosy E., Simonneau T. et al. : Heteromeric K PubMed DOI

Li C., Tan D.-X., Liang D. et al. : Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. – J. Exp. Bot. 66: 669-680, 2015. 10.1093/jxb/eru476 PubMed DOI

Li C., Wang P., Wei Z. et al. : The mitigation effects of exogenous melatonin on salinity-induced stress in PubMed DOI

Li D., Wei J., Peng Z. et al. : Daily rhythms of phytomelatonin signaling modulate diurnal stomatal closure PubMed DOI

Li Z., Su X., Chen Y. et al. : Melatonin improves drought resistance in maize seedlings by enhancing the antioxidant system and regulating abscisic acid metabolism to maintain stomatal opening under PEG-induced drought. – J. Plant Biol. 64: 299-312, 2021. 10.1007/s12374-021-09297-3 DOI

Liu D., Pei Z.F., Naeem M.S. et al. : 5-aminolevulinic acid activates antioxidative defence system and seedling growth in DOI

Liu G., Hu Q., Zhang X. et al. : Melatonin biosynthesis and signal transduction in plants in response to environmental conditions. – J. Exp. Bot. 73: 5818-5827, 2022. 10.1093/jxb/erac196 PubMed DOI

Liu J., Huang J., Peng S., Xiong D.: Rewatering after drought: Unravelling the drought thresholds and function recovery-limiting factors in maize leaves. – Plant Cell Environ. 47: 5457-5469, 2024. 10.1111/pce.15080 PubMed DOI

Liu L., Xiong L., An Y. et al. : Flavonols induced by 5-aminolevulinic acid are involved in regulation of stomatal opening in apple leaves. – Hortic. Plant J. 2: 323-330, 2016. 10.1016/j.hpj.2017.02.002 DOI

Long H., Zheng Z., Zhang Y. et al. : An abscisic acid (ABA) homeostasis regulated by its production, catabolism and transport in peanut leaves in response to drought stress. – PLoS ONE 14: e0213963, 2019. 10.1371/journal.pone.0213963 PubMed DOI PMC

Lovisolo C., Perrone I., Hartung W., Schubert A.: An abscisic acid-related reduced transpiration promotes gradual embolism repair when grapevines are rehydrated after drought. – New Phytol. 180: 642-651, 2008. 10.1111/j.1469-8137.2008.02592.x PubMed DOI

Marchin R.M., Backes D., Ossola A. et al. : Extreme heat increases stomatal conductance and drought-induced mortality risk in vulnerable plant species. – Glob. Change Biol. 28: 1133-1146, 2022. 10.1111/gcb.15976 PubMed DOI PMC

Marten I., Deeken R., Hedrich R., Roelfsema M.R.G.: Light-induced modification of plant plasma membrane ion transport. – Plant Biol. 12: 64-79, 2010. 10.1111/j.1438-8677.2010.00384.x PubMed DOI

Mitchell J.W., Mandava N., Worley J.F. et al. : Brassins – a new family of plant hormones from rape pollen. – Nature 225: 1065-1066, 1970. 10.1038/2251065a0 PubMed DOI

Montillet J.-L., Leonhardt N., Mondy S. et al. : An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in PubMed DOI PMC

Mustilli A.-C., Merlot S., Vavasseur A. et al. : PubMed DOI PMC

Naeem M.S, Jin Z.L., Wan G.L. et al. : 5-Aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape ( DOI

Nagahatenna D.S., Langridge P., Whitford R.: Tetrapyrrole-based drought stress signalling. – Plant Biotechnol. J. 13: 447-459, 2015. 10.1111/pbi.12356 PubMed DOI PMC

Nambara E., Marion-Poll A.: Abscisic acid biosynthesis and catabolism. – Annu. Rev. Plant Biol. 56: 165-185, 2005. 10.1146/annurev.arplant.56.032604.144046 PubMed DOI

Neill S., Desikan R., Hancock J.: Hydrogen peroxide signalling. – Curr. Opin. Plant Biol. 5: 388-395, 2002. 10.1016/S1369-5266(02)00282-0 PubMed DOI

Nolan T.M., Vukašinović N., Liu D. et al. : Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. – Plant Cell 32: 295-318, 2020. 10.1105/tpc.19.00335 PubMed DOI PMC

Oh K., Matsumoto T., Yamagami A. et al. : Fenarimol, a pyrimidine-type fungicide, inhibits brassinosteroid biosynthesis. – Int. J. Mol. Sci. 16: 17273-17288, 2015. 10.3390/ijms160817273 PubMed DOI PMC

Park S., Lee D.E., Jang H. et al. : Melatonin-rich transgenic rice plants exhibit resistance to herbicide-induced oxidative stress. – J. Pineal Res. 54: 258-263, 2013. 10.1111/j.1600-079X.2012.01029.x PubMed DOI

Park S.-Y., Fung P., Nishimura N. et al. : Abscisic acid inhibits type 2C protein phosphatases PubMed DOI PMC

Pei Z.-M., Murata Y., Benning G. et al. : Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. – Nature 406: 731-734, 2000. 10.1038/35021067 PubMed DOI

Peltier D.M.P., Carbone M.S., McIntire C.D. et al. : Carbon starvation following a decade of experimental drought consumes old reserves in PubMed DOI

Pirasteh-Anosheh H., Saed-Moucheshi A., Pakniyat H., Pessarakli M.: Stomatal responses to drought stress. – In: Ahmad P. (ed.): Water Stress and Crop Plants: A Sustainable Approach. Pp. 24-40. John Wiley & Sons, Chichester: 2016. 10.1002/9781119054450.ch3 DOI

Posmyk M.M., Janas K.M.: Melatonin in plants. – Acta Physiol. Plant. 31: 1-11, 2009. 10.1007/s11738-008-0213-z DOI

Postiglione A.E., Muday G.K.: Abscisic acid increases hydrogen peroxide in mitochondria to facilitate stomatal closure. – Plant Physiol. 192: 469-487, 2023. 10.1093/plphys/kiac601 PubMed DOI PMC

Qin X., Zeevaart J.A.: The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. – PNAS 96: 15354-15361, 1999. 10.1073/pnas.96.26.15354 PubMed DOI PMC

Raghavendra A.S., Gonugunta V.K., Christmann A., Grill E.: ABA perception and signalling. – Trends Plant Sci. 15: 395-401, 2010. 10.1016/j.tplants.2010.04.006 PubMed DOI

Rehschuh R., Cecilia A., Zuber M. et al. : Drought-induced xylem embolism limits the recovery of leaf gas exchange in Scots pine. – Plant Physiol. 184: 852-864, 2020. 10.1104/pp.20.00407 PubMed DOI PMC

Reiter R., Tan D.-X., Terron M. et al. : Melatonin and its metabolites: new findings regarding their production and their radical scavenging actions. – Acta Biochim. Pol. 54: 1-9, 2007. 10.18388/abp.2007_3264 PubMed DOI

Ressmeyer A.-R., Mayo J.C., Zelosko V. et al. : Antioxidant properties of the melatonin metabolite N PubMed DOI

Ruehr N.K., Grote R., Mayr S., Arneth A.: Beyond the extreme: recovery of carbon and water relations in woody plants following heat and drought stress. – Tree Physiol. 39: 1285-1299, 2019. 10.1093/treephys/tpz032 PubMed DOI PMC

Sachdev S., Ansari S.A., Ansari M.I. et al. : Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. – Antioxidants 10: 277, 2021. 10.3390/antiox10020277 PubMed DOI PMC

Saito S., Hirai N., Matsumoto C. et al. : PubMed DOI PMC

Saruhashi M., Kumar Ghosh T., Arai K. et al. : Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2. – PNAS 112: E6388-E6396, 2015. 10.1073/pnas.1511238112 PubMed DOI PMC

Schroeder J.I., Hagiwara S.: Cytosolic calcium regulates ion channels in the plasma membrane of DOI

Schwartz A.: Role of Ca PubMed DOI PMC

Sharma M., Kumar P., Verma V. et al. : Understanding plant stress memory response for abiotic stress resilience: molecular insights and prospects. – Plant Physiol. Biochem. 179: 10-24, 2022. 10.1016/j.plaphy.2022.03.004 PubMed DOI

Shimazaki K., Iino M., Zeiger E.: Blue light-dependent proton extrusion by guard-cell protoplasts of DOI

Shimazaki K.-I., Doi M., Assmann S.M., Kinoshita T.: Light regulation of stomatal movement. – Annu. Rev. Plant Biol. 58: 219-247, 2007. 10.1146/annurev.arplant.57.032905.105434 PubMed DOI

Sierla M., Waszczak C., Vahisalu T., Kangasjärvi J.: Reactive oxygen species in the regulation of stomatal movements. – Plant Physiol. 171: 1569-1580, 2016. 10.1104/pp.16.00328 PubMed DOI PMC

Stege P.W., Sombra L.L., Messina G. et al. : Determination of melatonin in wine and plant extracts by capillary electrochromatography with immobilized carboxylic multi-walled carbon nanotubes as stationary phase. – Electrophoresis 31: 2242-2248, 2010. 10.1002/elps.200900782 PubMed DOI

Supriya L., Durgeshwar P., Muthamilarasan M., Padmaja G.: Melatonin mediated differential regulation of drought tolerance in sensitive and tolerant varieties of upland cotton ( PubMed DOI PMC

Tajdel M., Mituła F., Ludwików A.: Regulation of PubMed DOI PMC

Takahashi Y., Ebisu Y., Shimazaki K.-I.: Reconstitution of abscisic acid signaling from the receptor to DNA PubMed DOI PMC

Takahashi Y., Zhang J., Hsu P.-K. et al. : MAP3Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response. – Nat. Commun. 11: 12, 2020. 10.1038/s41467-019-13875-y PubMed DOI PMC

Tan D.-X., Hardeland R., Manchester L.C. et al. : Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. – J. Exp. Bot. 63: 577-597, 2012. 10.1093/jxb/err256 PubMed DOI

Tan D.-X., Manchester L.C., Esteban-Zubero E. et al. : Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. – Molecules 20: 18886-18906, 2015. 10.3390/molecules201018886 PubMed DOI PMC

Tan D.-X., Manchester L.C., Reiter R.J. et al. : Melatonin directly scavenges hydrogen peroxide: a potentially new metabolic pathway of melatonin biotransformation. – Free Radical Bio. Med. 29: 1177-1185, 2000. 10.1016/S0891-5849(00)00435-4 PubMed DOI

Tan D.-X., Manchester L.C., Terron M.P. et al. : One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? – J. Pineal Res. 42: 28-42, 2007. 10.1111/j.1600-079X.2006.00407.x PubMed DOI

Tanaka R., Tanaka A.: Tetrapyrrole biosynthesis in higher plants. – Annu. Rev. Plant Biol. 58: 321-346, 2007. 10.1146/annurev.arplant.57.032905.105448 PubMed DOI

Tomasella M., Casolo V., Aichner N. et al. : Non-structural carbohydrate and hydraulic dynamics during drought and recovery in PubMed DOI

Tombesi S., Nardini A., Frioni T. et al. : Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. – Sci. Rep.-UK 5: 12449, 2015. 10.1038/srep12449 PubMed DOI PMC

Trifilò P., Casolo V., Raimondo F. et al. : Effects of prolonged drought on stem non-structural carbohydrates content and post-drought hydraulic recovery in PubMed DOI

Urban J., Ingwers M.W., McGuire M.A., Teskey R.O.: Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in PubMed DOI PMC

Virlouvet L., Fromm M.: Physiological and transcriptional memory in guard cells during repetitive dehydration stress. – New Phytol. 205: 596-607, 2015. 10.1111/nph.13080 PubMed DOI

Vitalini S., Gardana C., Simonetti P. et al. : Melatonin, melatonin isomers and stilbenes in Italian traditional grape products and their antiradical capacity. – J. Pineal Res. 54: 322-333, 2013. 10.1111/jpi.12028 PubMed DOI

Wagner Y., Volkov M., Nadal-Sala D. et al. : Relationships between xylem embolism and tree functioning during drought, recovery, and recurring drought in Aleppo pine. – Physiol. Plantarum 175: e13995, 2023. 10.1111/ppl.13995 PubMed DOI

Wang K., Xing Q., Ahammed G.J., Zhou J.: Functions and prospects of melatonin in plant growth, yield, and quality. – J. Exp. Bot. 73: 5928-5946, 2022. 10.1093/jxb/erac233 PubMed DOI

Wang L.J., Jiang W.B., Huang B.J.: Promotion of 5-aminolevulinic acid on photosynthesis of melon ( PubMed DOI

Wang P., Grimm B.: Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts. – Photosynth. Res. 126: 189-202, 2015. 10.1007/s11120-015-0154-5 PubMed DOI

Wang P., Yin L., Liang D. et al. : Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate–glutathione cycle. – J. Pineal Res. 53: 11-20, 2012. 10.1111/j.1600-079X.2011.00966.x PubMed DOI

Wang Y., Noguchi K., Ono N. et al. : Overexpression of plasma membrane H PubMed DOI PMC

Wang Z.-Y., Seto H., Fujioka S. et al. : BRI1 is a critical component of a plasma-membrane receptor for plant steroids. – Nature 410: 380-383, 2001. 10.1038/35066597 PubMed DOI

Waseem M., Nie Z.-F., Yao G.-Q. et al. : Dew absorption by leaf trichomes in PubMed DOI

Waseem M., Yao G.-Q., Hasan M.M. et al. : Divergent hydraulic and gas-exchange strategies in two closely related DOI

Watkins J.M., Hechler P.J., Muday G.K.: Ethylene-induced flavonol accumulation in guard cells suppresses reactive oxygen species and moderates stomatal aperture. – Plant Physiol. 164: 1707-1717, 2014. 10.1104/pp.113.233528 PubMed DOI PMC

Wu Y., Liao W., Dawuda M.M. et al. : 5-Aminolevulinic acid (ALA) biosynthetic and metabolic pathways and its role in higher plants: a review. – Plant Growth Regul. 87: 357-374, 2019. 10.1007/s10725-018-0463-8 DOI

Xiong L., An Y., Wang L.: [The role of microtubule skeleton and PP1/PP2A protein phosphatase in ALA-ABA regulating stomatal movement in apple leaves.] – Acta Hortic. Sin. 45: 2073-2088, 2018. [In Chinese] 10.16420/j.issn.0513-353x.2018-0134 DOI

Yang S., Zhao Y., Qin X. et al. : New insights into the role of melatonin in photosynthesis. – J. Exp. Bot. 73: 5918-5927, 2022. 10.1093/jxb/erac230 PubMed DOI

Yang Y., Zheng Q., Liu M. et al. : Difference in sodium spatial distribution in the shoot of two canola cultivars under saline stress. – Plant Cell Physiol. 53: 1083-1092, 2012. 10.1093/pcp/pcs055 PubMed DOI

Ye W., Adachi Y., Munemasa S. et al. : Open Stomata 1 kinase is essential for yeast elicitor-induced stomatal closure in PubMed DOI

Youssef T., Awad M.A.: Mechanisms of enhancing photosynthetic gas exchange in date palm seedlings ( DOI

Zhang H., Zhu J., Gong Z., Zhu J.-K.: Abiotic stress responses in plants. – Nat. Rev. Genet. 23: 104-119, 2022. 10.1038/s41576-021-00413-0 PubMed DOI

Zhang J., Chen X., Song Y., Gong Z.: Integrative regulatory mechanisms of stomatal movements under changing climate. – J. Integr. Plant Biol. 66: 368-393, 2024. 10.1111/jipb.13611 PubMed DOI

Zhang N., Zhao B., Zhang H.-J. et al. : Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber ( PubMed DOI

Zhang X., Zhang L., Dong F. et al. : Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in PubMed DOI PMC

Zhao A., Fang Y., Chen X. et al. : Crystal structure of PubMed DOI PMC

Zhao M.-G., Tian Q.-Y., Zhang W.-H.: Ethylene activates a plasma membrane Ca PubMed DOI

Zheng X., Zhou J., Tan D.-X. et al. : Melatonin improves waterlogging tolerance of PubMed DOI PMC

Zlobin I.E., Vankova R., Dobrev P.I. et al. : Abscisic acid and cytokinins are not involved in the regulation of stomatal conductance of Scots pine saplings during post-drought recovery. – Biomolecules 13: 523, 2023. 10.3390/biom13030523 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...