LOMS.cz computational platform for high-throughput classical and combinatorial Judd-Ofelt analysis and rare-earth spectroscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA24-11361S
Grantová Agentura České Republiky
24-10814S
Grantová Agentura České Republiky
PubMed
40774993
PubMed Central
PMC12331946
DOI
10.1038/s41598-025-13620-0
PII: 10.1038/s41598-025-13620-0
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We present LOMS.cz (Luminescence, Optical and Magneto-optical Software), an open-source computational platform that addresses the long-standing challenge of standardizing Judd-Ofelt (JO) calculations in rare-earth spectroscopy. Despite JO theory's six-decade history as the fundamental framework for understanding [Formula: see text] transitions, the field lacks standardized computational methodologies for precise and reproducible parameter determination. LOMS integrates three key innovations: (1) automated computation of JO parameters, transition probabilities, branching ratios, and theoretical radiative lifetimes, (2) a dynamically expanding database of experimentally validated parameters enabling direct comparison between computed and empirical results, and (3) a novel Combinatorial JO (C-JO) analysis algorithm that systematically identifies optimal absorption band combinations to ensure reliable parameter extraction. As a proof-of-concept, we demonstrate how this computational framework enables rapid screening of spectroscopic parameters, allowing researchers to predict optical properties with enhanced reliability. By combining automated analysis with experimental validation through its integrated database, LOMS.cz establishes a standardized platform for accelerating the discovery and optimization of rare-earth-based photonic and optoelectronic materials.
Department of Physics New Mexico State University MSC 3D Las Cruces NM 88003 8001 USA
Faculty of Mathematics and Physics Charles University Ke Karlovu 5 121 16 Prague Czech Republic
Zobrazit více v PubMed
Wybourne, B. The fascination of the rare earths-then, now and in the future.
Walsh, B. Judd-Ofelt theory: principles and practices.
Zhou, B., Li, Z. & Chen, C. Global potential of rare earth resources and rare earth demand from clean technologies.
Liu, G. & (eds), B. J.
Zhou, B., Li, Z., Zhao, Y., Zhang, C. & Wei, Y. Rare earth elements supply vs. clean energy technologies: new problems to be solve.
Gutfleisch, O. et al. Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. PubMed
Sagawa, M., Fujimura, S., Togawa, N., Yamamoto, H. & Matsuura, Y. New material for permanent magnets on a base of Nd and Fe (invited).
Dong, H. et al. Lanthanide nanoparticles: From design toward bioimaging and therapy. PubMed
Zhou, J., Liu, Z. & Li, F. Upconversion nanophosphors for small-animal imaging. PubMed
HCSS/TNO.
Tukker, A. Rare earth elements supply restrictions: Market failures, not scarcity, hamper their current use in high-tech applications. PubMed
Hehlen, M., Brik, M. & Kramer, K. 50th anniversary of the Judd-Ofelt theory: An experimentalist’s view of the formalism and its application.
Ciric, A., Marciniak, L. & Dramicanin, M. Self-referenced method for the Judd-Ofelt parametrisation of the Eu PubMed PMC
Judd, B. Optical absorption intensities of rare-earth ions.
Ofelt, G. Intensities of crystal spectra of rare-earth ions.
Goldner, P. & Auzel, F. Application of standard and modified Judd-Ofelt theories to a praseodymium-doped fluorozirconate glass.
Smentek, L.
Sytsma, J., Imbusch, G. & Blasse, G. The spectroscopy of Gd
Görller-Walrand, C. & Binnemans, K. Chapter 167 spectral intensities of
Ciric, A., Stojadinovic, S. & Dramicanin, M. An extension of the Judd-Ofelt theory to the field of lanthanide thermometry.
Ciric, A., Stojadinovic, S. & Dramicanin, M. Approximate prediction of the cie coordinates of lanthanide-doped materials from the judd-ofelt intensity parameters.
Ciric, A., Stojadinovic, S., Sekulic, M. & Dramicanin, M. JOES: An application software for Judd-Ofelt analysis from Eu
Dutra, J., Bispo, T. & Freire, R. LUMPAC lanthanide luminescence software: Efficient and user friendly. PubMed
Moura Jr., R.
Hrabovský, J., Kučera, M., Paloušová, L., Bi, L. & Veis, M. Optical characterization of [Image: see text] and [Image: see text] single crystals.
Hrabovský, J. et al. Rapid and precise large area mapping of rare-earth doping homogeneity in luminescent materials.
Dieke, G. & Crosswhite, H. The spectra of the doubly and triply ionized rare earths.
Peijzel, P., Meijerink, A., Wegh, R., Reid, M. & Burdick, G. A complete 4f
Vleck, J. The puzzle of rare-earth spectra in solids.
Broer, L., Gorter, C. & Hoogschagen, J. On the intensities and the multipole character in the spectra of the rare earth ions.
Edgar, A. Optical properties of glasses. In
Wybourne, B.
Hrabovsky, J. et al. Classical and combinatorial Judd-Ofelt analysis of spectroscopic properties in Er-doped materials: [Image: see text]-ZnO-BaO: [Image: see text]: glasses.
Carnall, W., Fields, P. & Rajnak, K. Electronic energy levels in the trivalent lanthanide aquo ions. I. [Image: see text] , and [Image: see text].
Zhang, Y. et al. Error evaluation of Judd-Ofelt spectroscopic analysis. PubMed
Afef, B. et al. Green and near-infrared emission of [Image: see text] doped PZS and PZC glasses.
Karthikeyan, P., Suthanthirakumar, P., Vijayakumar, R. & Marimuthu, K. Structural and luminescence behaviour of [Image: see text] doped telluro-fluoroborate glasses.
Mariyappan, M., Arunkumar, S. & Marimuthu, K. Judd-Ofelt analysis and NIR luminescence investigations on [Image: see text] ions doped [Image: see text] .
Aoki, T., Strizik, L., Hrabovsky, J. & Wagner, T. Quadrature frequency resolved spectroscopy of upconversion photoluminescence in GeGaS: [Image: see text]; II. elucidating excitation mechanisms of red emission besides green emission.
Bureau, B. et al. Chalcogenide glass fibers for infrared sensing and space optics.
Seddon, A. Chalcogenide glasses: a review of their preparation, properties and applications.
Polyanskiy, M. Refractiveindex.info database of optical constants. PubMed PMC
Hrabovsky, J., Varak, P. & Krystufek, R. LOMS.cz: interactive online software for Classical and Combinatorial Judd-Ofelt analysis with integrated database of Judd-Ofelt parameters.
Merkle, L. D. & Dubinskii, M. [Image: see text]: temperature dependent spectra, dynamics and three-for-one excitation. PubMed
Walsh, B. M. et al. Spectroscopic characterization of [Image: see text]: application toward a differential absorption lidar system for remote sensing of ozone.
Shinn, M. D., Krupke, W. F., Solarz, R. W. & Kirchoff, T. A. Spectroscopic and laser properties of [Image: see text].
Manjunath, C. et al. Optical absorption intensity analysis using judd-ofelt theory and photoluminescence investigation of orange-red [Image: see text]: [Image: see text] nanopigments.
Vasyliev, V., Villora, E. G., Sugahara, Y. & Shimamura, K. Judd-Ofelt analysis and emission quantum efficiency of Tb-fluoride single crystals: [Image: see text] and [Image: see text].
Cavalli, E., Bettinelli, M., Belletti, A. & Speghini, A. Optical spectra of yttrium phosphate and yttrium vanadate single crystals activated with [Image: see text].
Kaminskii, A. et al. Optical spectroscopy and visible stimulated emission of [Image: see text] ions in monoclinic [Image: see text] and [Image: see text] crystals.
Walsh, B., Grew, G. & Barnes, N. Energy levels and intensity parameters of ions in [Image: see text] and [Image: see text].
Walsh, B. M., Barnes, N. P. & Di Bartolo, B. Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm
Strizik, L. et al. Green, red and near-infrared photon up-conversion in Ga-Ge-Sb-S:Er
Walsh, B. M., Barnes, N. P., Reichle, D. J. & Jiang, S. Optical properties of Tm
Bonner, C. et al. A spectroscopic and Judd-Ofelt analysis of the relaxation dynamics of Tm