Temporal optimization of CD25-biased IL-2 agonists and immune checkpoint blockade leads to synergistic anticancer activity despite robust regulatory T cell expansion
Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
R01 EB029455
NIBIB NIH HHS - United States
T32 GM135131
NIGMS NIH HHS - United States
PubMed
40789741
PubMed Central
PMC12352230
DOI
10.1136/jitc-2024-010465
PII: jitc-2024-010465
Knihovny.cz E-resources
- Keywords
- Cytokine, Immune Checkpoint Inhibitor, Immunotherapy, T cell, T regulatory cell - Treg,
- MeSH
- Immunotherapy methods MeSH
- Immune Checkpoint Inhibitors * pharmacology therapeutic use MeSH
- Interleukin-2 * agonists pharmacology MeSH
- Humans MeSH
- Mice MeSH
- Interleukin-2 Receptor alpha Subunit * metabolism agonists MeSH
- T-Lymphocytes, Regulatory * immunology drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Immune Checkpoint Inhibitors * MeSH
- Interleukin-2 * MeSH
- Interleukin-2 Receptor alpha Subunit * MeSH
BACKGROUND: Interleukin-2 (IL-2) immunotherapy can induce durable tumor remissions, but its clinical performance has been limited by significant drawbacks such as short serum half-life and high toxicity. Administration of IL-2 in complex with certain anti-IL-2 antibodies (IL-2cx) enhances circulation half-life while also selectivity directing the cytokine to particular immune cell subsets. In particular, IL-2cx has been developed that targets either cells expressing the CD25-containing high-affinity IL-2 receptor (ie, CD25-biased IL-2cx) or cells expressing the CD25-lacking intermediate-affinity IL-2 receptor (ie, CD25-blocking IL-2cx). Since regulatory T (Treg) cells primarily express the high-affinity IL-2 receptor whereas naïve effector T and natural killer cells mainly express the low-affinity IL-2 receptor, CD25-blocking IL-2cx have traditionally been considered as potential cancer therapeutics, particularly in combination with immune checkpoint inhibitors (ICIs). METHODS: Stimulation of antigen-primed T cells by IL-2cx in the absence or presence of ICIs was evaluated through adoptive transfer of primed ovalbumin-specific T cells and analysis of expansion. Effects of IL-2cx on Treg cell-mediated inhibition of CD8+ T cells were assessed by flow cytometry and thymidine incorporation. Tumor-bearing mice received combination treatments comprizing IL-2cx and ICIs, where complexes were delivered either before or after ICIs. Tumor growth and mouse survival were monitored, and immune cell phenotyping was performed. Toxicity was determined by tracking body weight, temperature, and lung edema. Substitution of IL-2cx with single-agent cytokine/antibody fusion proteins (immunocytokines, ICs) was also explored. RESULTS: We showed that CD25-biased IL-2cx and ICs synergize with ICIs to completely eradicate large, established tumors despite robust Treg cell expansion. Importantly, we found that timing is crucial, as administration of IL-2cx after (but not before) ICIs led to profound antitumor effects. Mechanistically, CD25-biased IL-2cx selectively stimulated expansion and effector functions of tumor-specific CD8+ T cells in a CD25-dependent manner, overcoming Treg cell-mediated suppression. Moreover, CD25-biased IL-2cx showed much lower toxicity than CD25-blocking IL-2cx, enabling a larger therapeutic window. Furthermore, we demonstrated that administration of a human IL-2-based IC significantly enhanced the antitumor activity of ICIs, establishing the translational relevance of our work. CONCLUSIONS: Our findings support the temporally optimized use of CD25-biased IL-2-based therapeutics in combination with ICIs for cancer immunotherapy.
Bloomberg~Kimmel Institute for Cancer Immunotherapy Johns Hopkins University Baltimore Maryland USA
Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
Department of Oncology Johns Hopkins University School of Medicine Baltimore Maryland USA
Department of Ophthalmology Johns Hopkins University School of Medicine Baltimore Maryland USA
Program in Molecular Biophysics Johns Hopkins University Baltimore Maryland USA
Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University Baltimore Maryland USA
See more in PubMed
Boyman O, Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol. 2012;12:180–90. doi: 10.1038/nri3156. PubMed DOI
Arenas-Ramirez N, Woytschak J, Boyman O. Interleukin-2: Biology, Design and Application. Trends Immunol. 2015;36:763–77. doi: 10.1016/j.it.2015.10.003. PubMed DOI
Liao W, Lin JX, Leonard WJ. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity. 2013;38:13–25. doi: 10.1016/j.immuni.2013.01.004. PubMed DOI PMC
Höfer T, Krichevsky O, Altan-Bonnet G. Competition for IL-2 between Regulatory and Effector T Cells to Chisel Immune Responses. Front Immunol. 2012;3:268. doi: 10.3389/fimmu.2012.00268. PubMed DOI PMC
Rosenberg SA, Yang JC, Topalian SL, et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA. 1994;271:907–13. PubMed
Rosenberg SA, Yang JC, White DE, et al. Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2: identification of the antigens mediating response. Ann Surg. 1998;228:307–19. doi: 10.1097/00000658-199809000-00004. PubMed DOI PMC
Dhupkar P, Gordon N. Interleukin-2: Old and New Approaches to Enhance Immune-Therapeutic Efficacy. Adv Exp Med Biol. 2017;995:33–51. doi: 10.1007/978-3-319-53156-4_2. PubMed DOI
Tang A, Harding F. The challenges and molecular approaches surrounding interleukin-2-based therapeutics in cancer. Cytokine: X . 2019;1:100001. doi: 10.1016/j.cytox.2018.100001. DOI
Klatzmann D, Abbas AK. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat Rev Immunol. 2015;15:283–94. doi: 10.1038/nri3823. PubMed DOI
Charych DH, Hoch U, Langowski JL, et al. NKTR-214, an Engineered Cytokine with Biased IL2 Receptor Binding, Increased Tumor Exposure, and Marked Efficacy in Mouse Tumor Models. Clin Cancer Res. 2016;22:680–90. doi: 10.1158/1078-0432.CCR-15-1631. PubMed DOI
Hernandez R, LaPorte KM, Hsiung S, et al. High-dose IL-2/CD25 fusion protein amplifies vaccine-induced CD4(+) and CD8(+) neoantigen-specific T cells to promote antitumor immunity. J Immunother Cancer. 2021;9 doi: 10.1136/jitc-2021-002865. PubMed DOI PMC
Boyman O, Kovar M, Rubinstein MP, et al. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science. 2006;311:1924–7. doi: 10.1126/science.1122927. PubMed DOI
Létourneau S, van Leeuwen EMM, Krieg C, et al. IL-2/anti-IL-2 antibody complexes show strong biological activity by avoiding interaction with IL-2 receptor alpha subunit CD25. Proc Natl Acad Sci U S A. 2010;107:2171–6. doi: 10.1073/pnas.0909384107. PubMed DOI PMC
Spangler JB, Tomala J, Luca VC, et al. Antibodies to Interleukin-2 Elicit Selective T Cell Subset Potentiation through Distinct Conformational Mechanisms. Immunity. 2015;42:815–25. doi: 10.1016/j.immuni.2015.04.015. PubMed DOI PMC
Tomala J, Chmelova H, Mrkvan T, et al. In vivo expansion of activated naive CD8+ T cells and NK cells driven by complexes of IL-2 and anti-IL-2 monoclonal antibody as novel approach of cancer immunotherapy. J Immunol. 2009;183:4904–12. doi: 10.4049/jimmunol.0900284. PubMed DOI
Leonard EK, Tomala J, Gould JR, et al. Engineered cytokine/antibody fusion proteins improve IL-2 delivery to pro-inflammatory cells and promote antitumor activity. JCI Insight. 2024;9:18.:e173469. doi: 10.1172/jci.insight.173469. PubMed DOI PMC
VanDyke D, Iglesias M, Tomala J, et al. Engineered human cytokine/antibody fusion proteins expand regulatory T cells and confer autoimmune disease protection. Cell Rep. 2022;41:111478. doi: 10.1016/j.celrep.2022.111478. PubMed DOI PMC
Spangler JB, Trotta E, Tomala J, et al. Engineering a Single-Agent Cytokine/Antibody Fusion That Selectively Expands Regulatory T Cells for Autoimmune Disease Therapy. J Immunol. 2018;201:2094–106. doi: 10.4049/jimmunol.1800578. PubMed DOI PMC
Izquierdo C, Ortiz AZ, Presa M, et al. Treatment of T1D via optimized expansion of antigen-specific Tregs induced by IL-2/anti-IL-2 monoclonal antibody complexes and peptide/MHC tetramers. Sci Rep. 2018;8:8106. doi: 10.1038/s41598-018-26161-6. PubMed DOI PMC
Webster KE, Walters S, Kohler RE, et al. In vivo expansion of T reg cells with IL-2-mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. J Exp Med. 2009;206:751–60. doi: 10.1084/jem.20082824. PubMed DOI PMC
LaPorte KM, Hernandez R, Santos Savio A, et al. Robust IL-2-dependent antitumor immunotherapy requires targeting the high-affinity IL-2R on tumor-specific CD8+ T cells. J Immunother Cancer. 2023;11:e006611. doi: 10.1136/jitc-2022-006611. PubMed DOI PMC
Wu W, Chia T, Lu J, et al. IL-2Rα-biased agonist enhances antitumor immunity by invigorating tumor-infiltrating CD25+CD8+ T cells. Nat Cancer . 2023;4:1309–25. doi: 10.1038/s43018-023-00612-0. PubMed DOI
Hashimoto M, Araki K, Cardenas MA, et al. PD-1 combination therapy with IL-2 modifies CD8+ T cell exhaustion program. Nature New Biol. 2022;610:173–81. doi: 10.1038/s41586-022-05257-0. PubMed DOI PMC
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64. doi: 10.1038/nrc3239. PubMed DOI PMC
Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23. doi: 10.1056/NEJMoa1003466. PubMed DOI PMC
Morad G, Helmink BA, Sharma P, et al. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell. 2021;184:5309–37. doi: 10.1016/j.cell.2021.09.020. PubMed DOI PMC
Kaptein P, Jacoberger-Foissac C, Dimitriadis P, et al. Addition of interleukin-2 overcomes resistance to neoadjuvant CTLA4 and PD1 blockade in ex vivo patient tumors. Sci Transl Med. 2022;14:eabj9779. doi: 10.1126/scitranslmed.abj9779. PubMed DOI
Raeber ME, Sahin D, Karakus U, et al. A systematic review of interleukin-2-based immunotherapies in clinical trials for cancer and autoimmune diseases. EBioMedicine. 2023;90:104539. doi: 10.1016/j.ebiom.2023.104539. PubMed DOI PMC
Tsyklauri O, Chadimova T, Niederlova V, et al. Regulatory T cells suppress the formation of potent KLRK1 and IL-7R expressing effector CD8 T cells by limiting IL-2. Elife. 2023;12:e79342. doi: 10.7554/eLife.79342. PubMed DOI PMC
Aaes TL, Vandenabeele P. The intrinsic immunogenic properties of cancer cell lines, immunogenic cell death, and how these influence host antitumor immune responses. Cell Death Differ. 2021;28:843–60. doi: 10.1038/s41418-020-00658-y. PubMed DOI PMC
Huang AY, Gulden PH, Woods AS, et al. The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product. Proc Natl Acad Sci U S A. 1996;93:9730–5. doi: 10.1073/pnas.93.18.9730. PubMed DOI PMC
Horkova V, Drobek A, Paprckova D, et al. Unique roles of co-receptor-bound LCK in helper and cytotoxic T cells. Nat Immunol. 2023;24:174–85. doi: 10.1038/s41590-022-01366-0. PubMed DOI PMC
Trotta E, Bessette PH, Silveria SL, et al. A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat Med. 2018;24:1005–14. doi: 10.1038/s41591-018-0070-2. PubMed DOI PMC
Codarri Deak L, Nicolini V, Hashimoto M, et al. PD-1-cis IL-2R agonism yields better effectors from stem-like CD8+ T cells. Nature New Biol. 2022;610:161–72. doi: 10.1038/s41586-022-05192-0. PubMed DOI PMC
Tomasovic LM, Liu K, VanDyke D, et al. Molecular Engineering of Interleukin-2 for Enhanced Therapeutic Activity in Autoimmune Diseases. BioDrugs. 2024;38:227–48. doi: 10.1007/s40259-023-00635-0. PubMed DOI PMC
Ward NC, Yu A, Moro A, et al. IL-2/CD25: A Long-Acting Fusion Protein That Promotes Immune Tolerance by Selectively Targeting the IL-2 Receptor on Regulatory T Cells. J Immunol. 2018;201:2579–92. doi: 10.4049/jimmunol.1800907. PubMed DOI PMC
Donohue JH, Rosenberg SA. The fate of interleukin-2 after in vivo administration. J Immunol. 1983;130:2203–8. PubMed
De Paula VS, Jude KM, Nerli S, et al. Interleukin-2 druggability is modulated by global conformational transitions controlled by a helical capping switch. Proc Natl Acad Sci U S A. 2020;117:7183–92. doi: 10.1073/pnas.2000419117. PubMed DOI PMC
Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7:715–25. doi: 10.1038/nri2155. PubMed DOI
Chinen T, Kannan AK, Levine AG, et al. An essential role for the IL-2 receptor in Treg cell function. Nat Immunol. 2016;17:1322–33. doi: 10.1038/ni.3540. PubMed DOI PMC
McNally A, Hill GR, Sparwasser T, et al. CD4+CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-2 homeostasis. Proc Natl Acad Sci U S A. 2011;108:7529–34. doi: 10.1073/pnas.1103782108. PubMed DOI PMC
de Goër de Herve MG, Jaafoura S, Vallée M, et al. FoxP3+ regulatory CD4 T cells control the generation of functional CD8 memory. Nat Commun. 2012;3:986. doi: 10.1038/ncomms1992. PubMed DOI PMC
Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64. PubMed
Sakaguchi S, Miyara M, Costantino CM, et al. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10:490–500. doi: 10.1038/nri2785. PubMed DOI
Surh CD, Sprent J. Homeostasis of naive and memory T cells. Immunity. 2008;29:848–62. doi: 10.1016/j.immuni.2008.11.002. PubMed DOI
Castellino F, Germain RN. Cooperation between CD4+ and CD8+ T cells: when, where, and how. Annu Rev Immunol. 2006;24:519–40. doi: 10.1146/annurev.immunol.23.021704.115825. PubMed DOI
Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12:492–9. doi: 10.1038/ni.2035. PubMed DOI
Kim HP, Kelly J, Leonard WJ. The basis for IL-2-induced IL-2 receptor alpha chain gene regulation: importance of two widely separated IL-2 response elements. Immunity. 2001;15:159–72. doi: 10.1016/s1074-7613(01)00167-4. PubMed DOI
Liu R, Zeng LW, Li HF, et al. PD-1 signaling negatively regulates the common cytokine receptor γ chain via MARCH5-mediated ubiquitination and degradation to suppress anti-tumor immunity. Cell Res. 2023;33:923–39. doi: 10.1038/s41422-023-00890-4. PubMed DOI PMC
Kovar M, Tomala J, Chmelova H, et al. Overcoming immunoescape mechanisms of BCL1 leukemia and induction of CD8+ T-cell-mediated BCL1-specific resistance in mice cured by targeted polymer-bound doxorubicin. Cancer Res. 2008;68:9875–83. doi: 10.1158/0008-5472.CAN-08-1979. PubMed DOI
Aksoylar HI, Boussiotis VA. PD-1+ Treg cells: a foe in cancer immunotherapy? Nat Immunol. 2020;21:1311–2. doi: 10.1038/s41590-020-0801-7. PubMed DOI PMC
Maleki Vareki S. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors. J Immunother Cancer. 2018;6:157. doi: 10.1186/s40425-018-0479-7. PubMed DOI PMC
Krieg C, Létourneau S, Pantaleo G, et al. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc Natl Acad Sci U S A. 2010;107:11906–11. doi: 10.1073/pnas.1002569107. PubMed DOI PMC
Moynihan KD, Kumar MP, Sultan H, et al. IL2 Targeted to CD8+ T Cells Promotes Robust Effector T-cell Responses and Potent Antitumor Immunity. Cancer Discov. 2024;14:1206–25. doi: 10.1158/2159-8290.CD-23-1266. PubMed DOI PMC
Jin GH, Hirano T, Murakami M. Combination treatment with IL-2 and anti-IL-2 mAbs reduces tumor metastasis via NK cell activation. Int Immunol. 2008;20:783–9. doi: 10.1093/intimm/dxn036. PubMed DOI
Kamimura D, Bevan MJ. Naive CD8+ T cells differentiate into protective memory-like cells after IL-2 anti IL-2 complex treatment in vivo. J Exp Med. 2007;204:1803–12. doi: 10.1084/jem.20070543. PubMed DOI PMC