Effect of pre-germination temperature conditions on germination characteristics of temperate grassland species
Status In-Process Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
40814073
PubMed Central
PMC12351819
DOI
10.1186/s12862-025-02424-5
PII: 10.1186/s12862-025-02424-5
Knihovny.cz E-zdroje
- Klíčová slova
- Climate change, Germination capacity, Grassland specialist species, Seed dormancy, Stratification,
- Publikační typ
- časopisecké články MeSH
Understanding germination characteristics, including optimal stratification requirements of target species, is necessary for supporting grassland restoration yet poorly understood. This knowledge is essential for effective conservation, particularly with climate change altering germination conditions and thus germination capacity of plants. Here we studied the effect of three different durations of warm dry and cold wet stratification treatments, and their combinations in a full factorial design (in total 15 different pre-germination treatments), on the germination capacity of 48 grassland species native to Central Europe. Stratification treatments modelled present and forecasted summer (1-3 months warm period) and winter (1-3 months cold period) temperature conditions, while the study of the combined effect of these treatments is especially important in spring-germinating species. As response variables, we calculated relative response indexes and germination uncertainties of each species separately and applied general linear models to study the effect of treatments on these variables. We found clear effect of warm- or cold stratification on relative response indexes only in four species: strong positive response to warm stratification was found in Silene conica, while strong positive response to cold stratification was found in Agrimonia eupatoria, Echium vulgare, and Plantago lanceolata. The responses to treatment combinations were contradictory or lacked clear trends in most of the species. Germination uncertainty in general was high for all species, supporting the fact that Central European grassland species often rely on bet hedging as risk spreading strategy, to avoid unfavourable conditions during seedling establishment.
Department of Ecology University of Szeged Szeged Hungary
Institute of Botany of the Czech Academy of Sciences Průhonice Czech Republic
National Laboratory for Health Security HUN REN Centre for Ecological Research Budapest Hungary
University of South Bohemia Faculty of Science České Budějovice Czech Republic
Zobrazit více v PubMed
Dengler J, Biurrun I, Boch S, Dembicz I, Török P. Biodiversity of palaearctic biogeographic realm: introduction and synthesis. Encycloped World Biomes. 2020;6:617–37.
Dass P, Houlton BZ, Wang Y, Warlind D. Grasslands May be more reliable carbon sinks than forests in California. Environ Res Lett. 2018;13:074027.
Dudley N, Eufemia L, Fleckenstein M, Periago ME, Petersen I, Timmers JF. Grasslands and savannahs in the UN decade on ecosystem restoration. Rest Ecol. 2020;28:1313–7.
Bardgett RD, Bullock JM, Lavorel S, Manning P, Schaffner U, Ostle N, Chomel M, Durigan G, Fry EL, Johnson D, Lavallee JM, Le Provost G, Luo S, Png K, Sankaran M, Hou X, Zhou H, Ma L, Ren W, Li X, Ding Y, Li Y, Shi H. Combatting global grassland degradation. Nat Rev Earth Environ. 2021;2:720–35.
Tölgyesi C, Buisson E, Helm A, Temperton VM, Török P. Urgent need for updating the slogan of global climate actions from tree planting to restore native vegetation. Rest Ecol. 2022;30:e13594.
Slodowicz D, Durbecq A, Ladouceur E, Eschen R, Humbert JY, Arlettaz R. The relative effectiveness of different grassland restoration methods: A systematic literature search and meta-analysis. Ecol Solut Evid. 2023;4:e12221.
Hall SA, Holmes PM, Gaertner M, Esler KJ. Active seed sowing can overcome constraints to passive restoration of a critically endangered vegetation type. S Afr J Bot. 2021;138:249–61.
Shaw N, Barak RS, Campbell RE, Kirmer A, Pedrini S, Dixon K, Frischie S. Seed use in the field: delivering seeds for restoration success. Rest Ecol. 2020;28:S276-85.
Shackelford N, Paterno GB, Winkler DE, Erickson TE, Leger EA, Svejcar LN, Breed MF, Faist AM, Harrison PA, Curran MF, Guo Q, Kirmer A, Law DJ, Mganga KZ, Munson SM, Porensky LM, Quiroga RE, Török P, Wainwright CE, Abdullahi A, Bahm MA, Ballenger EA, Barger N, Baughman OW, Becker C, Lucas-Borja ME, Boyd CS, Burton CM, Burton PJ, Calleja E, Carrick PJ, Caruana A, Clements CD, Davies KW, Deák B, Drake J, Dullau S, Eldridge J, Espeland E, Farrell HL, Fick SE, Garbowski M, de la Riva EG, Golos PJ, Grey PA, Heydenrych B, Holmes PM, James JJ, Jonas-Bratten J, Kiss R, Kramer AT, Larson JE, Lorite J, Mayence CE, Merino-Martín L, Miglécz T, Milton SJ, Monaco TA, Montalvo AM, Navarro-Cano JA, Paschke MW, Peri PL, Pokorny ML, Rinella MJ, Saayman N, Schantz MC, Parkhurst T, Seabloom EW, Stuble KL, Uselman SM, Valkó O, Veblen K, Wilson S, Wong M, Xu Z, Suding KL. Drivers of seedling establishment success in dryland restoration efforts. Nat Ecol Evol. 2021;5:1283–90. PubMed
Kaulfuß F, Rosbakh S, Reisch C. Grassland restoration by local seed mixtures: new evidence from a practical 15-year restoration study. Appl Veg Sci. 2022;25:e12652.
Kiss R, Deák B, Tóth K, Lukács K, Rádai Z, Kelemen A, Miglécz T, Tóth Á, Valkó O. Co-seeding grasses and forbs supports restoration of species-rich grasslands and improves weed control in ex-arable land. Sci Rep. 2022;12:21239. PubMed PMC
Ladouceur E, Jiménez-Alfaro B, Marin M, De Vitis M, Abbandonato H, Iannetta PPM, Bonomi C, Pritchard HW. Native seed supply and the restoration species pool. Conserv Lett. 2018;11:e12381. PubMed PMC
Török K, Valkó O, Deák B. 2024. Ecosystem restoration with local or broad seed provenancing: Debates and perceptions in science and practice. Biol Conserv. 293: 110535
Kildisheva OA, Dixon KW, Silveira FA, Chapman T, Di Sacco A, Mondoni A, Turner SR, Cross AT. Dormancy and germination: making every seed count in restoration. Rest Ecol. 2020;28:S256-65.
Pedrini S, Balestrazzi A, Madsen MD, Bhalsing K, Hardegree SP, Dixon KW, Kildisheva OA. Seed enhancement: getting seeds restoration-ready. Rest Ecol. 2020;28:S266-75.
Baskin CC, Baskin JM, Seeds. Ecology, Biogeography, and Evolution of Dormancy and Germination, 2nd edition. San Diego:Elsevier/Academic Press;2014.
Baskin JM, Baskin CC. A classification system for seed dormancy. Seed Sci Res. 2004;14:1–16.
Jayasuriya KG, Baskin JM, Baskin CC. Sensitivity cycling and its ecological role in seeds with physical dormancy. Seed Sci Res. 2009;19:3–13.
Seger J, Brockmann HJ. What is bet-hedging? Oxf Surv Evolut Biol. 1987;4:182–211.
Venable DL. Bet hedging in a guild of desert annuals. Ecol. 2007;88:1086–90. PubMed
Ooi MK, Auld TD, Denham AJ. Climate change and bet-hedging: interactions between increased soil temperatures and seed bank persistence. Glob Change Biol. 2009;15:2375–86.
Gremer JR, Crone EE, Lesica P. Are dormant plants hedging their bets? Demographic consequences of prolonged dormancy in variable environments. Am Nat. 2012;179:315–27. PubMed
Cohen D. Optimizing reproduction in a randomly varying environment. J Theor Biol. 1966;12:119–29. PubMed
Nikolaeva MG. An update of nikolaeva’s seed dormancy classification system and its relevance to the ecology, physiology, biogeography and phylogenetic relationships of seed dormancy and germination. Modif Artic Publish Russ Bot Zhurn. 2001;86:1–14.
Pausas JG, Lamont BB, Keeley JE, Bond WJ. Bet-hedging and best‐bet strategies shape seed dormancy. New Phytol. 2022;236:1232. PubMed PMC
Gioria M, Pyšek P, Baskin CC, Carta A. Phylogenetic relatedness mediates persistence and density of soil seed banks. J Ecol. 2020;108:2121–31.
Wyse SV, Dickie JB. Ecological correlates of seed dormancy differ among dormancy types: a case study in the legumes. New Phytol. 2018;217:477–9. PubMed
Zhang Y, Liu Y, Sun L, Baskin CC, Baskin JM, Cao M, Yang J. Seed dormancy in space and time: global distribution paleoclimatic and present Climatic drivers and evolutionary adaptations. New Phytol. 2022;234:1770–81. PubMed
Rubio de Casas R, Willis CG, Pearse WD, Baskin CC, Baskin JM, Cavender-Bares J. Global biogeography of seed dormancy is determined by seasonality and seed size: a case study in the legumes. New Phytol. 2017;214:1527–36. PubMed
Carta A, Fernández-Pascual E, Gioria M, Müller JV, Rivière S, Rosbakh S, Saatkamp A, Vandelook F, Mattana E. Climate shapes the seed germination niche of temperate flowering plants: a meta-analysis of European seed conservation data. Ann Bot. 2022;129:775–86. PubMed PMC
Rosbakh S, Carta A, Fernández-Pascual E, Phartyal SS, Dayrell RL, Mattana E, Saatkamp A, Vandelook F, Baskin J, Baskin C. Global seed dormancy patterns are driven by macroclimate but not fire regime. New Phytol. 2023;240:555–64. PubMed
Finch-Savage WE, Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol. 2006;171:501–23. PubMed
Reed RC, Bradford KJ, Khanday I. Seed germination and vigor: ensuring crop sustainability in a changing climate. Hered. 2022;128:450–9. PubMed PMC
Maleki K, Maleki K, Soltani E, Oveisi M, Gonzalez-Andujar JL. A model for changes in germination synchrony and its implements to study weed population dynamics: a case study of brassicaceae. Plants. 2023;12:233. PubMed PMC
Fernández-Pascual E, Carta A, Rosbakh S, Guja L, Phartyal SS, Silveira FAO, Chen S-C, Larson JE. Jiménez-Alfaro B. SeedArc, a global archive of primary seed germination data. New Phytol. 2023;240:466–70. PubMed
Baskin CC, Baskin JM. Seed dormancy in asteraceae: a global vegetation zone and taxonomic/phylogenetic assessment. Seed Sci Res. 2023;33:135–69.
Rosbakh S, Baskin CC, Baskin JM. Nikolaeva et al’s reference book on seed dormancy and germination. Ecol. 2020;101:e03049. PubMed
Trotta G, Vuerich M, Petrussa E, Hay FR, Assolari S, Boscutti F. Germination performance of alien and native species could shape community assembly of temperate grasslands under different temperature scenarios. Plant Ecol. 2023;224:1097–111.
Twardosz R, Walanus A, Guzik I. Warming in europe: recent trends in annual and seasonal temperatures. Pure Appl Geophys. 2021;178:4021–32.
Hari V, Rakovec O, Markonis Y, Hanel M, Kumar R. Increased future occurrences of the exceptional 2018–2019 central European drought under global warming. Sci Rep. 2020;10:12207. PubMed PMC
Jaagus J, Aasa A, Aniskevich S, Boincean B, Bojariu R, Briede A, Danilovich I, Domínguez Castro F, Dumitrescu A, Labuda M, Labudová L, Lõhmus K, Melnik V, Mõisja K, Pongracz R, Potopová V, Reznícková L, Rimkus E, Semenova I, Stonevicius E, Štepánek P, Trnka M, Vicente-Serrano SM, Wibig J, Zahradnícek P. Long-term changes in drought indices in Eastern and central Europe. Int J Climatol. 2022;42:225–49.
Bartholy J, Pongrácz R, Pieczka I. How the climate will change in this century? Hung Geogr Bull. 2014;63:55–67.
Szabó P, Bartholy J, Pongrácz R. Seasonal temperature and precipitation record breakings in Hungary in a warming world. GEM-Int J Geomathema. 2024;15:2.
Walck JL, Hidayati SN, Dixon KW, Thompson KEN, Poschlod P. Climate change and plant regeneration from seed. Glob Change Biol. 2011;17:2145–61.
Larson JE, Sheley RL, Hardegree SP, Doescher PS, James JJ. Seed and seedling traits affecting critical life stage transitions and recruitment outcomes in dryland grasses. J Appl Ecol. 2015;52:199–209.
Kövendi-Jakó A, Csecserits A, Halassy M, Halász K, Szitár K, Török K. Relationship of germination and establishment for twelve plant species in restored dry grassland. Appl Ecol Environ Res. 2017;15:227–39.
Király G. Új Magyar füvészkönyv. Magyarország Hatásos Növényei (New Hungarian herbal. The vascular plants of hungary. Identification Key) [in hungarian]. Jósvafő: Aggtelek National Park Directorate; 2009.
Armas C, Ordiales R, Pugnaire FI. Measuring plant interactions: a new comparative index. Ecol. 2004;85:2682–6.
Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27:379–423.
Labouriau LG, Valadares MEB. On the germination of seeds of
Labouriau LG. Uma Nova Linha de pesquisa Na fisiologia Da germinação Das Sementes in Anais do XXXIV Congresso Nacional de botânica SBB Porto Alegre. (Sociedade Botânica Do Brasil) 1983;11–50.
Aravind J, Vimala Devi S, Radhamani J, Jacob SR, Kalyani Srinivasan. Germinationmetrics: Seed Germination Indices and Curve Fitting. R package version 0.1.8. 2023. https://github.com/aravind-j/germinationmetricshttps://cran.r-project.org/package=germinationmetrics
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2023.https://www.r-project.org/
Zani D, Müller JV. Climatic control of germination in the genus
Baskin JM, Baskin CC. High temperature requirement for afterripening in seeds of winter annuals. New Phytol. 1976;77:619–24.
Hicks RN, Wang F, Hidayati SN, Walck JL. Seed germination of exotic and native winter annuals differentially responds to temperature and moisture, especially with climate change scenarios. Plant Species Biol. 2019;34:174–83.
Kahmen S, Poschlod P. Does germination success differ with respect to seed mass and germination season? Experimental testing of plant functional trait responses to grassland management. Ann Bot. 2008;101:541–8. PubMed PMC
Saarinen T, Lundell R, Åström H, Hänninen H. Parental overwintering history affects the responses of
Vandvik V, Vange V. Germination ecology of the clonal herb
Ņečajeva J, Probert RJ. Effect of cold stratification and germination temperature on seed germination of two ecologically distinct species,
Mira S, Veiga-Barbosa L, González-Benito ME, Pérez-García F. Inter-population variation in germination characteristics of Plantago lanceolata seeds: effects of temperature, osmotic stress and salinity. Mediterr Bot. 2018;39:89–96.
Asaadi AM. Influence of some physicochemical treatments to stimulate seed germination of
Krock S, Smith S, Elliott C, Kennedy A, Hamman ST. Using smoke-water and cold-moist stratification to improve germination of native prairie species. Native Plants J. 2016;17:19–27.
Saffari P, Majd A, Jonoubi P, Najafi F. Effect of treatments on seed dormancy breaking, seedling growth, and seedling antioxidant potential of
Szalai Z, Ferschl B. The effect of seed treatments on the germination of different fabaceae species of a natural Meadow-Like association. Anal Tech Szeged. 2016;10:58–63.
Wagner M, Pywell RF, Knopp T, Bullock JM, Heard MS. The germination niches of grassland species targeted for restoration: effects of seed pre-treatments. Seed Sci Res. 2011;21:117–31.
Van Assche JA, Debucquoy KL, Rommens WA. Seasonal cycles in the germination capacity of buried seeds of some leguminosae (Fabaceae). New Phytol. 2003;158:315–23.
Kiss R, Sonkoly J, Török P, Tóthmérész B, Deák B, Tóth K, Lukács K, Godó L, Kelemen A, Miglécz T, Radócz S, Tóth E, Balogh N, Valkó O. Germination capacity of 75 herbaceous species of the Pannonian flora and implications for restoration. Acta Bot Hung. 2018;60:357–68.
Dönmez Ş, Önal F. Seed germination ability and biochemical features of two Teucrium taxa (Germander) of lamiaceae. BioResources. 2023;18:7981–94.
Giménez-Benavides L, Escudero A, Pérez-García F. Seed germination of high mountain mediterranean species: altitudinal, interpopulation and interannual variability. Ecol Res. 2005;20:433–44.
Jaganathan GK. Influence of maternal environment in developing different levels of physical dormancy and its ecological significance. Plant Ecol. 2016;217:71–9.
Mondoni A, Orsenigo S, Donà M, Balestrazzi A, Probert RJ, Hay FR, Petraglia A, Abeli T. Environmentally induced transgenerational changes in seed longevity: maternal and genetic influence. Ann Bot. 2014;113:1257–63. PubMed PMC
Penfield S, MacGregor DR. Effects of environmental variation during seed production on seed dormancy and germination. J Exp Bot. 2017;68:819–25. PubMed
Fenner M. The effects of the parent environment on seed germinability. Seed Sci Res. 1991;1:75–84.
Prasad B, Prasad R, Prasad S. Seed quality variation in relation to pod and seed position on the mother plant of soybean [Glycine max. (L.) Merrill] seed lot. J Crop Weed. 2010;6:1–5.
Lu JJ, Dan DY, Baskin CC, Baskin JM. Effect of seed position on parental plant on proportion of seeds produced with nondeep and intermediate physiological dormancy. Plant Sci. 2017;8:147. PubMed PMC
Baskin CC, Baskin JM. Breaking seed dormancy during dry storage: a useful tool or major problem for successful restoration via direct seedling? Plants. 2020;9:636. PubMed PMC