• Je něco špatně v tomto záznamu ?

Ostreococcus tauri is a new model green alga for studying iron metabolism in eukaryotic phytoplankton

G. Lelandais, I. Scheiber, J. Paz-Yepes, JC. Lozano, H. Botebol, J. Pilátová, V. Žárský, T. Léger, PL. Blaiseau, C. Bowler, FY. Bouget, JM. Camadro, R. Sutak, E. Lesuisse,

. 2016 ; 17 (-) : 319. [pub] 20160503

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc17031762

BACKGROUND: Low iron bioavailability is a common feature of ocean surface water and therefore micro-algae developed original strategies to optimize iron uptake and metabolism. The marine picoeukaryotic green alga Ostreococcus tauri is a very good model for studying physiological and genetic aspects of the adaptation of the green algal lineage to the marine environment: it has a very compact genome, is easy to culture in laboratory conditions, and can be genetically manipulated by efficient homologous recombination. In this study, we aimed at characterizing the mechanisms of iron assimilation in O. tauri by combining genetics and physiological tools. Specifically, we wanted to identify and functionally characterize groups of genes displaying tightly orchestrated temporal expression patterns following the exposure of cells to iron deprivation and day/night cycles, and to highlight unique features of iron metabolism in O. tauri, as compared to the freshwater model alga Chalamydomonas reinhardtii. RESULTS: We used RNA sequencing to investigated the transcriptional responses to iron limitation in O. tauri and found that most of the genes involved in iron uptake and metabolism in O. tauri are regulated by day/night cycles, regardless of iron status. O. tauri lacks the classical components of a reductive iron uptake system, and has no obvious iron regulon. Iron uptake appears to be copper-independent, but is regulated by zinc. Conversely, iron deprivation resulted in the transcriptional activation of numerous genes encoding zinc-containing regulation factors. Iron uptake is likely mediated by a ZIP-family protein (Ot-Irt1) and by a new Fea1-related protein (Ot-Fea1) containing duplicated Fea1 domains. The adaptation of cells to iron limitation involved an iron-sparing response tightly coordinated with diurnal cycles to optimize cell functions and synchronize these functions with the day/night redistribution of iron orchestrated by ferritin, and a stress response based on the induction of thioredoxin-like proteins, of peroxiredoxin and of tesmin-like methallothionein rather than ascorbate. We briefly surveyed the metabolic remodeling resulting from iron deprivation. CONCLUSIONS: The mechanisms of iron uptake and utilization by O. tauri differ fundamentally from those described in C. reinhardtii. We propose this species as a new model for investigation of iron metabolism in marine microalgae.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17031762
003      
CZ-PrNML
005      
20171026123249.0
007      
ta
008      
171025s2016 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12864-016-2666-6 $2 doi
035    __
$a (PubMed)27142620
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Lelandais, Gaëlle $u CNRS, Institut Jacques Monod, Université Paris Diderot-Paris 7, F-75013, Paris, France.
245    10
$a Ostreococcus tauri is a new model green alga for studying iron metabolism in eukaryotic phytoplankton / $c G. Lelandais, I. Scheiber, J. Paz-Yepes, JC. Lozano, H. Botebol, J. Pilátová, V. Žárský, T. Léger, PL. Blaiseau, C. Bowler, FY. Bouget, JM. Camadro, R. Sutak, E. Lesuisse,
520    9_
$a BACKGROUND: Low iron bioavailability is a common feature of ocean surface water and therefore micro-algae developed original strategies to optimize iron uptake and metabolism. The marine picoeukaryotic green alga Ostreococcus tauri is a very good model for studying physiological and genetic aspects of the adaptation of the green algal lineage to the marine environment: it has a very compact genome, is easy to culture in laboratory conditions, and can be genetically manipulated by efficient homologous recombination. In this study, we aimed at characterizing the mechanisms of iron assimilation in O. tauri by combining genetics and physiological tools. Specifically, we wanted to identify and functionally characterize groups of genes displaying tightly orchestrated temporal expression patterns following the exposure of cells to iron deprivation and day/night cycles, and to highlight unique features of iron metabolism in O. tauri, as compared to the freshwater model alga Chalamydomonas reinhardtii. RESULTS: We used RNA sequencing to investigated the transcriptional responses to iron limitation in O. tauri and found that most of the genes involved in iron uptake and metabolism in O. tauri are regulated by day/night cycles, regardless of iron status. O. tauri lacks the classical components of a reductive iron uptake system, and has no obvious iron regulon. Iron uptake appears to be copper-independent, but is regulated by zinc. Conversely, iron deprivation resulted in the transcriptional activation of numerous genes encoding zinc-containing regulation factors. Iron uptake is likely mediated by a ZIP-family protein (Ot-Irt1) and by a new Fea1-related protein (Ot-Fea1) containing duplicated Fea1 domains. The adaptation of cells to iron limitation involved an iron-sparing response tightly coordinated with diurnal cycles to optimize cell functions and synchronize these functions with the day/night redistribution of iron orchestrated by ferritin, and a stress response based on the induction of thioredoxin-like proteins, of peroxiredoxin and of tesmin-like methallothionein rather than ascorbate. We briefly surveyed the metabolic remodeling resulting from iron deprivation. CONCLUSIONS: The mechanisms of iron uptake and utilization by O. tauri differ fundamentally from those described in C. reinhardtii. We propose this species as a new model for investigation of iron metabolism in marine microalgae.
650    _2
$a biologická adaptace $7 D000220
650    _2
$a Chlorophyta $x klasifikace $x genetika $x metabolismus $7 D000460
650    _2
$a shluková analýza $7 D016000
650    _2
$a měď $x metabolismus $7 D003300
650    _2
$a Eukaryota $x genetika $x metabolismus $7 D056890
650    _2
$a stanovení celkové genové exprese $7 D020869
650    _2
$a regulace genové exprese $x účinky záření $7 D005786
650    _2
$a vysoce účinné nukleotidové sekvenování $7 D059014
650    _2
$a homeostáza $7 D006706
650    _2
$a železo $x metabolismus $7 D007501
650    _2
$a sloučeniny železa $x metabolismus $7 D058085
650    _2
$a oxidace-redukce $7 D010084
650    _2
$a fotoperioda $7 D017440
650    _2
$a fylogeneze $7 D010802
650    _2
$a fytoplankton $x genetika $x metabolismus $7 D010839
650    _2
$a rostlinné proteiny $x genetika $x metabolismus $7 D010940
650    _2
$a signální transdukce $7 D015398
650    _2
$a fyziologický stres $7 D013312
650    _2
$a transkriptom $7 D059467
655    _2
$a časopisecké články $7 D016428
700    1_
$a Scheiber, Ivo $u Department of Parasitology, Faculty of Science, Charles University in Prague, 12844, Prague, Czech Republic.
700    1_
$a Paz-Yepes, Javier $u Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005, Paris, France.
700    1_
$a Lozano, Jean-Claude $u Sorbonne Universités, University Pierre et Marie Curie, University of Paris VI, CNRS, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650, Banyuls-sur-Mer, France.
700    1_
$a Botebol, Hugo $u Sorbonne Universités, University Pierre et Marie Curie, University of Paris VI, CNRS, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650, Banyuls-sur-Mer, France.
700    1_
$a Pilátová, Jana $u Department of Parasitology, Faculty of Science, Charles University in Prague, 12844, Prague, Czech Republic.
700    1_
$a Žárský, Vojtěch $u Department of Parasitology, Faculty of Science, Charles University in Prague, 12844, Prague, Czech Republic.
700    1_
$a Léger, Thibaut $u CNRS, Institut Jacques Monod, Université Paris Diderot-Paris 7, F-75013, Paris, France.
700    1_
$a Blaiseau, Pierre-Louis $u Sorbonne Universités, University Pierre et Marie Curie, University of Paris VI, CNRS, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650, Banyuls-sur-Mer, France.
700    1_
$a Bowler, Chris $u Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005, Paris, France.
700    1_
$a Bouget, François-Yves $u Sorbonne Universités, University Pierre et Marie Curie, University of Paris VI, CNRS, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650, Banyuls-sur-Mer, France.
700    1_
$a Camadro, Jean-Michel $u CNRS, Institut Jacques Monod, Université Paris Diderot-Paris 7, F-75013, Paris, France.
700    1_
$a Sutak, Robert $u Department of Parasitology, Faculty of Science, Charles University in Prague, 12844, Prague, Czech Republic. sutak@natur.cuni.cz.
700    1_
$a Lesuisse, Emmanuel $u CNRS, Institut Jacques Monod, Université Paris Diderot-Paris 7, F-75013, Paris, France. emmanuel.lesuisse@ijm.fr.
773    0_
$w MED00008181 $t BMC genomics $x 1471-2164 $g Roč. 17, č. - (2016), s. 319
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27142620 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20171025 $b ABA008
991    __
$a 20171026123332 $b ABA008
999    __
$a ok $b bmc $g 1255355 $s 992789
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 17 $c - $d 319 $e 20160503 $i 1471-2164 $m BMC genomics $n BMC Genomics $x MED00008181
LZP    __
$a Pubmed-20171025

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...