Low Ecotoxicological Impact of Magnesium Oxychloride Cement Composites Doped with 2D Carbon-Based Nanoadditives
Status In-Process Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
40821558
PubMed Central
PMC12355315
DOI
10.1021/acsomega.5c04437
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Magnesium oxychloride cement (MOC) is gaining attention as a sustainable alternative to Portland cement. Its mechanical performance and water resistance may be enhanced by reinforcement with two-dimensional nanomaterials, such as graphene (G) and graphene oxide (GO). However, the ecotoxicological impact of these composites, determining their implementation, remains largely unexplored. This study evaluated the effects of G platelets with a surface area of 750 m2/g (G750) and GO, both as isolated particles and embedded within MOC, on a range of prokaryotic (, , and ) and eukaryotic (, , and ) model organisms. G750 and GO exhibited species-specific antibacterial activity, notably inhibiting growth and biofilm formation, while remained largely unaffected. The addition of G750 or GO did not enhance MOC's antibacterial effect, as MOC alone exhibited strong antimicrobial activity. Both G750 and GO were toxic to at concentrations of ≥0.05 g/L, with GO showing greater toxicity. Phytotoxic effects were observed in , particularly with the GO and MOC-G750 composites. Algal growth was unaffected by MOC-G750 but inhibited by MOC-GO after extended exposure. G750, GO, and MOC samples showed no genotoxic potential in vitro and in vivo; ROS production occurred without a significant change from the control. Overall, incorporating G750 and GO into MOC improved material properties without substantially increasing ecotoxicity, though species- and material-specific responses underscore the need for thorough environmental impact evaluation.
See more in PubMed
Jankovský O., Lojka M., Lauermannová A.-M., Antončík F., Pavlíková M., Pavlík Z., Sedmidubský D.. Carbon Dioxide Uptake by MOC-Based Materials. Appl. Sci. 2020;10:2254. doi: 10.3390/app10072254. DOI
Power I. M., Dipple G. M., Francis P. S.. Assessing the carbon sequestration potential of magnesium oxychloride cement building materials. Cem. Concr. Compos. 2017;78:97–107. doi: 10.1016/j.cemconcomp.2017.01.003. DOI
Kastiukas G., Ruan S., Unluer C., Liang S., Zhou X.. Environmental Assessment of Magnesium Oxychloride Cement Samples: A Case Study in Europe. Sustainability. 2019;11:6957. doi: 10.3390/su11246957. DOI
Singh A., Kumar R., Goel P.. Factors influencing strength of magnesium oxychloride cement. Constr. Build. Mater. 2021;303:124571. doi: 10.1016/j.conbuildmat.2021.124571. DOI
Dehua D., Chuanmei Z.. The formation mechanism of the hydrate phases in magnesium oxychloride cement. Cem. Concr. Res. 1999;29(9):1365–1371. doi: 10.1016/S0008-8846(98)00247-6. DOI
Wang Y., Wang H., Zhang L., Peng L., Lyu S., Huang L.. Optimization of raw-material ratios and curing temperature of magnesium oxychloride cement. Constr. Build. Mater. 2024;435:136795. doi: 10.1016/j.conbuildmat.2024.136795. DOI
Sugimoto K., Dinnebier R. E., Hanson J. C.. Structures of three dehydration products of bischofite from in situ synchrotron powder diffraction data (MgCl2.nH2O; n = 1, 2, 4) Acta Crystallogr., Sect. B. 2007;63(63):235–242. doi: 10.1107/S0108768107002558. PubMed DOI
Zhang M., Yu H., Ma H., Wu C., Zhu B., Li Y., Li L., Kang Y., Ding Z.. Effect of 5·1·8 whiskers on the mechanical properties and microstructure of magnesium oxychloride cement. Composites, Part B. 2025;292:112095. doi: 10.1016/j.compositesb.2024.112095. DOI
Li K., Wang Y., Zhang X., Wang X., Zhang A.. Raw material ratio optimization of magnesium oxychloride cement using response surface method. Constr. Build. Mater. 2021;272:121648. doi: 10.1016/j.conbuildmat.2020.121648. DOI
Li Z., Chau C. K.. Influence of Molar Ratios on Properties of Magnesium Oxychloride Cement. Cem. Concr. Res. 2007;37:866–870. doi: 10.1016/j.cemconres.2007.03.015. DOI
Singh, N. B. ; Shukla, S. K. . Chapter 3 - Properties of two-dimensional nanomaterials. In Two-Dimensional Nanostructures for Biomedical Technology, Khan, R. ; Barua, S. , Eds.; Elsevier, 2020, pp. 73–100.
Shanmugam V., Mensah R. A., Babu K., Gawusu S., Chanda A., Tu Y., Neisiany R. E., Försth M., Sas G., Das O.. A Review of the Synthesis, Properties, and Applications of 2D Materials. Part. Syst. Charact. 2022;39(6):2200031. doi: 10.1002/ppsc.202200031. DOI
Liu B., Zhou K.. Recent progress on graphene-analogous 2D nanomaterials: Properties, modeling and applications. Prog. Mater. Sci. 2019;100:99–169. doi: 10.1016/j.pmatsci.2018.09.004. DOI
Fatma, I. ; Assad, H. ; Kumar, A. . Introduction to Two-Dimensional Nanomaterials. In Two-Dimensional Nanomaterials-Based Polymer Nanocomposites, Pandey, M. ; Desmukh, K. ; Hussain, C. M. , Eds.; Scrivener Publishing, 2024, pp. 1–45.
Fan Y., Zhang G., Li Y.. Study on graphene oxide reinforced magnesium phosphate cement composites. Constr. Build. Mater. 2022;359:129523. doi: 10.1016/j.conbuildmat.2022.129523. DOI
Lu Z., Hou D., Ma H., Fan T., Li Z.. Effects of graphene oxide on the properties and microstructures of the magnesium potassium phosphate cement paste. Constr. Build. Mater. 2016;119:107–112. doi: 10.1016/j.conbuildmat.2016.05.060. DOI
Jiang L., Liu Z., Yu Y., Ben X.. The effect of graphene on the conductivity of magnesium sulfate cement. Constr. Build. Mater. 2021;312:125342. doi: 10.1016/j.conbuildmat.2021.125342. DOI
Du Y., Yang J., Skariah Thomas B., Li L., Li H., Mohamed Shaban W., Tung Chong W.. Influence of hybrid graphene oxide/carbon nanotubes on the mechanical properties and microstructure of magnesium potassium phosphate cement paste. Constr. Build. Mater. 2020;260:120449. doi: 10.1016/j.conbuildmat.2020.120449. DOI
Jiříčková A., Lauermannová A.-M., Jankovský O., Lojka M., Záleská M., Pivák A., Pavlíková M., Merglová A., Pavlik Z.. Impact of nano-dopants on the mechanical and physical properties of magnesium oxychloride cement composites – Experimental assessment. J. Build. Eng. 2024;87:108981. doi: 10.1016/j.jobe.2024.108981. DOI
Freixa A., Acuña V., Sanchís J., Farré M., Barceló D., Sabater S.. Ecotoxicological effects of carbon based nanomaterials in aquatic organisms. Sci. Total Environ. 2018;619–620:328–337. doi: 10.1016/j.scitotenv.2017.11.095. PubMed DOI
Gamoń F., Ziembińska-Buczyńska A., Łukowiec D., Tomaszewski M.. Ecotoxicity of selected carbon-based nanomaterials. Int. J. Environ. Sci. Technol. 2023;20(9):10153–10162. doi: 10.1007/s13762-022-04692-w. DOI
Seabra A. B., Paula A. J., de Lima R., Alves O. L., Durán N.. Nanotoxicity of Graphene and Graphene Oxide. Chem. Res. Toxicol. 2014;27(2):159–168. doi: 10.1021/tx400385x. PubMed DOI
Akhavan O., Ghaderi E.. Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. ACS Nano. 2010;4(10):5731–5736. doi: 10.1021/nn101390x. PubMed DOI
Hu W., Peng C., Luo W., Lv M., Li X., Li D., Huang Q., Fan C.. Graphene-Based Antibacterial Paper. ACS Nano. 2010;4(7):4317–4323. doi: 10.1021/nn101097v. PubMed DOI
Bykkam S., Rao K., Chakra S., Thunugunta T.. Synthesis and characterization of graphene oxide and its antibacterial activity against Klebseilla and Staphylococus . Int. J. Adv. Biotechnol. Res. 2013;4:1005–1009.
Feng L., Liu Z.. Graphene in Biomedicine: Opportunities and Challenges. Nanomedicine. 2011;6(2):317–324. doi: 10.2217/nnm.10.158. PubMed DOI
Breijyeh Z., Jubeh B., Karaman R.. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules. 2020;25:1340. doi: 10.3390/molecules25061340. PubMed DOI PMC
Liu J., Tang J., Gooding J. J.. Strategies for chemical modification of graphene and applications of chemically modified graphene. J. Mater. Chem. 2012;22(25):12435–12452. doi: 10.1039/c2jm31218b. DOI
Malina T., Maršálková E., Holá K., Tuček J., Scheibe M., Zbořil R., Maršálek B.. Toxicity of graphene oxide against algae and cyanobacteria: Nanoblade-morphology-induced mechanical injury and self-protection mechanism. Carbon. 2019;155:386–396. doi: 10.1016/j.carbon.2019.08.086. DOI
Ouyang S., Hu X., Zhou Q.. Envelopment–Internalization Synergistic Effects and Metabolic Mechanisms of Graphene Oxide on Single-Cell Chlorella vulgaris Are Dependent on the Nanomaterial Particle Size. ACS Appl. Mater. Interfaces. 2015;7(32):18104–18112. doi: 10.1021/acsami.5b05328. PubMed DOI
Pikula K., Johari S. A., Santos-Oliveira R., Golokhvast K.. The Comparative Toxic Impact Assessment of Carbon Nanotubes, Fullerene, Graphene, and Graphene Oxide on Marine Microalgae Porphyridium purpureum. Toxics. 2023;11:491. doi: 10.3390/toxics11060491. PubMed DOI PMC
Hazeem L. J., Bououdina M., Dewailly E., Slomianny C., Barras A., Coffinier Y., Szunerits S., Boukherroub R.. Toxicity effect of graphene oxide on growth and photosynthetic pigment of the marine alga Picochlorum sp. during different growth stages. Environ. Sci. Pollut. Res. Int. 2017;24(4):4144–4152. doi: 10.1007/s11356-016-8174-z. PubMed DOI
Nogueira P. F. M., Nakabayashi D., Zucolotto V.. The effects of graphene oxide on green algae Raphidocelis subcapitata. Aquat. Toxicol. 2015;166:29–35. doi: 10.1016/j.aquatox.2015.07.001. PubMed DOI
Matos D., Almeida S. F. P., Marques P. A. A. P., Pinto S., Figueira E.. Effects of Graphene Oxide Nanosheets in Freshwater Biofilms. Molecules. 2023;28:4577. doi: 10.3390/molecules28124577. PubMed DOI PMC
Wang Q., Li C., Wang Y., Que X.. Phytotoxicity of Graphene Family Nanomaterials and Its Mechanisms: A Review. Front. Chem. 2019;7:292. doi: 10.3389/fchem.2019.00292. PubMed DOI PMC
Liu S., Wei H., Li Z., Li S., Yan H., He Y., Tian Z.. Effects of Graphene on Germination and Seedling Morphology in Rice. J. Nanosci. Nanotechnol. 2015;15(4):2695–2701. doi: 10.1166/jnn.2015.9254. PubMed DOI
Chen J., Yang L., Li S., Ding W.. Various Physiological Response to Graphene Oxide and Amine-Functionalized Graphene Oxide in Wheat (Triticum aestivum) Molecules. 2018;23:1104. doi: 10.3390/molecules23051104. PubMed DOI PMC
Yin L., Wang Z., Wang S., Xu W., Bao H.. Effects of Graphene Oxide and/or Cd2+ on Seed Germination, Seedling Growth, and Uptake to Cd2+ in Solution Culture. Water, Air, Soil Pollut. 2018;229(5):151. doi: 10.1007/s11270-018-3809-y. DOI
Begum P., Ikhtiari R., Fugetsu B.. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon. 2011;49(12):3907–3919. doi: 10.1016/j.carbon.2011.05.029. DOI
He Y., Hu R., Zhong Y., Zhao X., Chen Q., Zhu H.. Graphene oxide as a water transporter promoting germination of plants in soil. Nano Res. 2018;11(4):1928–1937. doi: 10.1007/s12274-017-1810-1. DOI
Zhang M., Gao B., Chen J., Li Y.. Effects of graphene on seed germination and seedling growth. J. Nanopart. Res. 2015;17(2):78. doi: 10.1007/s11051-015-2885-9. DOI
Németh I., László K., Bulátkó A., Vaszita E., Molnár M.. Ecotoxicity Assessment of Graphene Oxides Using Test Organisms from Three Hierarchical Trophic Levels to Evaluate Their Potential Environmental Risk. Nanomaterials. 2023;13:2858. doi: 10.3390/nano13212858. PubMed DOI PMC
Fekete-Kertész I., László K., Terebesi C., Gyarmati B. S., Farah S., Márton R., Molnár M.. Ecotoxicity Assessment of Graphene Oxide by Daphnia magna through a Multimarker Approach from the Molecular to the Physiological Level including Behavioral Changes. Nanomaterials. 2020;10:2048. doi: 10.3390/nano10102048. PubMed DOI PMC
Souza J. P., Venturini F. P., Santos F., Zucolotto V.. Chronic toxicity in Ceriodaphnia dubia induced by graphene oxide. Chemosphere. 2018;190:218–224. doi: 10.1016/j.chemosphere.2017.10.018. PubMed DOI
Malhotra N., Villaflores O. B., Audira G., Siregar P., Lee J.-S., Ger T.-R., Hsiao C.-D.. Toxicity Studies on Graphene-Based Nanomaterials in Aquatic Organisms: Current Understanding. Molecules. 2020;25:3618. doi: 10.3390/molecules25163618. PubMed DOI PMC
Jankovský O., Lojka M., Lauermannová A.-M., Antončík F., Pavlíková M., Záleská M., Pavlik Z., Pivák A., Sedmidubský D.. Towards novel building materials: High-strength nanocomposites based on graphene, graphite oxide and magnesium oxychloride. Appl. Mater. Today. 2020;20:100766. doi: 10.1016/j.apmt.2020.100766. DOI
Sobarzo-Bernal O., Gómez-Merino F. C., Alcántar-González G., Saucedo-Veloz C., Trejo-Téllez L. I.. Biostimulant Effects of Cerium on Seed Germination and Initial Growth of Tomato Seedlings. Agronomy. 2021;11:1525. doi: 10.3390/agronomy11081525. DOI
Jiříčková A., Lauermannová A.-M., Jankovský O., Fathi J., Záleská M., Pivák A., Pavlíková M., Jeremiáš M., Pavlik Z.. Utilization of waste carbon spheres in Magnesium Oxychloride Cement. Case Stud. Constr. Mater. 2023;19:e02374. doi: 10.1016/j.cscm.2023.e02374. DOI
Lauermannová A.-M., Pavlíková M., Pavlík Z., Pivák A., Jiříčková A., Sklenka J., Záleská M., Růžička K., Jankovský O.. Magnesium oxychloride cement with phase change material: Novel environmentally-friendly composites for heat storage. J. Mater. Res. Technol. 2022;21:3327–3342. doi: 10.1016/j.jmrt.2022.10.113. DOI
Lencova S., Stindlova M., Havlickova K., Jencova V., Peroutka V., Navratilova K., Zdenkova K., Stiborova H., Hauzerova S., Kostakova E. K., Jankovsky O., Kejzlar P., Lukas D., Demnerova K.. Influence of Fiber Diameter of Polycaprolactone Nanofibrous Materials on Biofilm Formation and Retention of Bacterial Cells. ACS Appl. Mater. Interfaces. 2024;16(20):25813–25824. doi: 10.1021/acsami.4c03642. PubMed DOI PMC
Lencova S., Kofronova J., Peroutka V., Lauermannova A. M., Jirickova A., Lojka M., Jankovsky O., Vurm R.. Ecotoxicological assessment of MWCNT-reinforced MOC composites: Impacts on model bacteria and eukaryotes with environmental relevance. Environ. Sci.: Nano. 2025;12:3018–3034. doi: 10.1039/D4EN01088D. DOI
Gies V., Zou S.. Systematic toxicity investigation of graphene oxide: Evaluation of assay selection, cell type, exposure period and flake size. Tox. Res. 2018;7(1):93–101. doi: 10.1039/C7TX00278E. PubMed DOI PMC
da Cruz Nizer W. S., Allison Kira N., Adams Madison E., Vargas Mario A., Ahmed D., Beaulieu C., Raju D., Cassol E., Howell P. L., Overhage J.. The role of exopolysaccharides Psl and Pel in resistance of Pseudomonas aeruginosa to the oxidative stressors sodium hypochlorite and hydrogen peroxide. Microbiol. Spectrum. 2024;12(10):e00922–00924. doi: 10.1128/spectrum.00922-24. PubMed DOI PMC
Melaugh G., Martinez V. A., Baker P., Hill P. J., Howell P. L., Wozniak D. J., Allen R. J.. Distinct types of multicellular aggregates in Pseudomonas aeruginosa liquid cultures. Npj Biofilms Microbiomes. 2023;9(1):52. doi: 10.1038/s41522-023-00412-5. PubMed DOI PMC
Gaylarde C., Silva M., Warscheid T.. Microbial impact on building materials: An overview. Mater. Struct. 2003;36:342–352. doi: 10.1007/BF02480875. DOI
Krishnamoorthy K., Umasuthan N., Mohan R., Lee J., Kim S.-J.. Antibacterial Activity of Graphene Oxide Nanosheets. Sci. Adv. Mater. 2012;4:1111–1117. doi: 10.1166/sam.2012.1402. DOI
Yadav N., Dubey A., Shukla S., Saini C. P., Gupta G., Priyadarshini R., Lochab B.. Graphene Oxide-Coated Surface: Inhibition of Bacterial Biofilm Formation due to Specific Surface–Interface Interactions. ACS Omega. 2017;2(7):3070–3082. doi: 10.1021/acsomega.7b00371. PubMed DOI PMC
Mesarič T., Gambardella C., Milivojević T., Faimali M., Drobne D., Falugi C., Makovec D., Jemec Kokalj A., Sepcic K.. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae. Aquat. Toxicol. 2015;163:121–129. doi: 10.1016/j.aquatox.2015.03.014. PubMed DOI
Zhu S., Luo F., Chen W., Zhu B., Wang G.. Toxicity evaluation of graphene oxide on cysts and three larval stages of Artemia salina. Sci. Total Environ. 2017;595:101–109. doi: 10.1016/j.scitotenv.2017.03.224. PubMed DOI
Lu J., Zhu X., Tian S., Lv X., Chen Z., Jiang Y., Liao X., Cai Z., Chen B.. Graphene oxide in the marine environment: Toxicity to Artemia salina with and without the presence of Phe and Cd2+ Chemosphere. 2018;211:390–396. doi: 10.1016/j.chemosphere.2018.07.140. PubMed DOI
Pretti C., Oliva M., Pietro R. D., Monni G., Cevasco G., Chiellini F., Pomelli C., Chiappe C.. Ecotoxicity of pristine graphene to marine organisms. Ecotoxicol. Environ. Saf. 2014;101:138–145. doi: 10.1016/j.ecoenv.2013.11.008. PubMed DOI
Ren W., Chang H., Li L., Teng Y.. Effect of Graphene Oxide on Growth of Wheat Seedlings: Insights from Oxidative Stress and Physiological Flux. Bull. Environ. Contam. Toxicol. 2020;105(1):139–145. doi: 10.1007/s00128-020-02888-9. PubMed DOI
Cheng F., Liu Y.-F., Lu G.-Y., Zhang X.-K., Xie L.-L., Yuan C.-F., Xu B.-B.. Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration. J. Plant Physiol. 2016;193:57–63. doi: 10.1016/j.jplph.2016.02.011. PubMed DOI
Lv B., Wang C., Hou J., Wang P., Miao L., Li Y., Ao Y., Yang Y., You G., Xu Y.. Influence of shear forces on the aggregation and sedimentation behavior of cerium dioxide (CeO2) nanoparticles under different hydrochemical conditions. J. Nanopart. Res. 2016;18(7):193. doi: 10.1007/s11051-016-3501-3. DOI
Zhao J., Cao X., Wang Z., Dai Y., Xing B.. Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae. Water Res. 2017;111:18–27. doi: 10.1016/j.watres.2016.12.037. PubMed DOI
Jin Q., Kirk M. F.. pH as a Primary Control in Environmental Microbiology: 1. Thermodynamic Perspective. Front. Environ. Sci. 2018;6:101. doi: 10.3389/fenvs.2018.00021. DOI
Maier A., Manea D. L.. Perspective of Using Magnesium Oxychloride Cement (MOC) and Wood as a Composite Building Material: A Bibliometric Literature Review. Materials. 2022;15(5):1772. doi: 10.3390/ma15051772. PubMed DOI PMC
Anand A., Unnikrishnan B., Wei S. C., Chou C. P., Zhang L. Z., Huang C. C.. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents – a minireview. Nanoscale Horiz. 2019;4(1):117–137. doi: 10.1039/C8NH00174J. PubMed DOI
Augustyniak A., Jablonska J., Cendrowski K., Głowacka A., Stephan D., Mijowska E., Sikora P.. Investigating the release of ZnO nanoparticles from cement mortars on microbiological models. Appl. Nanosci. 2022;12(3):489–502. doi: 10.1007/s13204-021-01695-w. DOI
Sikora P., Augustyniak A., Cendrowski K., Nawrotek P., Mijowska E.. Antimicrobial Activity of Al2O3, CuO, Fe3O4, and ZnO Nanoparticles in Scope of Their Further Application in Cement-Based Building Materials. Nanomaterials. 2018;8(4):212. doi: 10.3390/nano8040212. PubMed DOI PMC
Cezairliyan B., Vinayavekhin N., Grenfell-Lee D., Yuen G. J., Saghatelian A., Ausubel F. M.. Identification of Pseudomonas aeruginosa Phenazines that Kill Caenorhabditis elegans. PLoS Pathog. 2013;9(1):e1003101. doi: 10.1371/journal.ppat.1003101. PubMed DOI PMC
Goldmann E., Kudlek E., Bialas O., Górski M., Adamiak M., Klemczak B.. Environmental Toxicity of Cement Nanocomposites Reinforced with Carbon Nanotubes. Materials. 2025;18:1176. doi: 10.3390/ma18051176. PubMed DOI PMC
Gao Y., Pham V. H., Weidman J., Kim K.-J., Spaulding R. E., Wang C., Matranga C. S.. High-performance cementitious composites containing nanostructured carbon additives made from charred coal fines. Sci. Rep. 2024;14(1):8912. doi: 10.1038/s41598-024-59046-y. PubMed DOI PMC
Yu Q., Zhang B., Li J., Du T., Yi X., Li M., Chen W., Alvarez P. J. J.. Graphene oxide significantly inhibits cell growth at sublethal concentrations by causing extracellular iron deficiency. Nanotoxicology. 2017;11(9–10):1102–1114. doi: 10.1080/17435390.2017.1398357. PubMed DOI
Domenech J., Rodríguez-Garraus A., López de Cerain A., Azqueta A., Catalán J.. Genotoxicity of Graphene-Based Materials. Nanomaterials. 2022;12:1795. doi: 10.3390/nano12111795. PubMed DOI PMC
Aunkor M. T. H., Raihan T., Prodhan S. H., Metselaar H. S. C., Malik S. U. F., Azad A. K.. Antibacterial activity of graphene oxide nanosheet against multidrug resistant superbugs isolated from infected patients. R. Soc. Open Sci. 2020;7(7):200640. doi: 10.1098/rsos.200640. PubMed DOI PMC
Seixas A. F., Quendera A. P., Sousa J. P., Silva A. F. Q., Arraiano C. M., Andrade J. M.. Bacterial Response to Oxidative Stress and RNA Oxidation. Front. Genet. 2022;12:821535. doi: 10.3389/fgene.2021.821535. PubMed DOI PMC