• This record comes from PubMed

Low Ecotoxicological Impact of Magnesium Oxychloride Cement Composites Doped with 2D Carbon-Based Nanoadditives

. 2025 Aug 12 ; 10 (31) : 35013-35028. [epub] 20250731

Status In-Process Language English Country United States Media electronic-ecollection

Document type Journal Article

Magnesium oxychloride cement (MOC) is gaining attention as a sustainable alternative to Portland cement. Its mechanical performance and water resistance may be enhanced by reinforcement with two-dimensional nanomaterials, such as graphene (G) and graphene oxide (GO). However, the ecotoxicological impact of these composites, determining their implementation, remains largely unexplored. This study evaluated the effects of G platelets with a surface area of 750 m2/g (G750) and GO, both as isolated particles and embedded within MOC, on a range of prokaryotic (, , and ) and eukaryotic (, , and ) model organisms. G750 and GO exhibited species-specific antibacterial activity, notably inhibiting growth and biofilm formation, while remained largely unaffected. The addition of G750 or GO did not enhance MOC's antibacterial effect, as MOC alone exhibited strong antimicrobial activity. Both G750 and GO were toxic to at concentrations of ≥0.05 g/L, with GO showing greater toxicity. Phytotoxic effects were observed in , particularly with the GO and MOC-G750 composites. Algal growth was unaffected by MOC-G750 but inhibited by MOC-GO after extended exposure. G750, GO, and MOC samples showed no genotoxic potential in vitro and in vivo; ROS production occurred without a significant change from the control. Overall, incorporating G750 and GO into MOC improved material properties without substantially increasing ecotoxicity, though species- and material-specific responses underscore the need for thorough environmental impact evaluation.

See more in PubMed

Jankovský O., Lojka M., Lauermannová A.-M., Antončík F., Pavlíková M., Pavlík Z., Sedmidubský D.. Carbon Dioxide Uptake by MOC-Based Materials. Appl. Sci. 2020;10:2254. doi: 10.3390/app10072254. DOI

Power I. M., Dipple G. M., Francis P. S.. Assessing the carbon sequestration potential of magnesium oxychloride cement building materials. Cem. Concr. Compos. 2017;78:97–107. doi: 10.1016/j.cemconcomp.2017.01.003. DOI

Kastiukas G., Ruan S., Unluer C., Liang S., Zhou X.. Environmental Assessment of Magnesium Oxychloride Cement Samples: A Case Study in Europe. Sustainability. 2019;11:6957. doi: 10.3390/su11246957. DOI

Singh A., Kumar R., Goel P.. Factors influencing strength of magnesium oxychloride cement. Constr. Build. Mater. 2021;303:124571. doi: 10.1016/j.conbuildmat.2021.124571. DOI

Dehua D., Chuanmei Z.. The formation mechanism of the hydrate phases in magnesium oxychloride cement. Cem. Concr. Res. 1999;29(9):1365–1371. doi: 10.1016/S0008-8846(98)00247-6. DOI

Wang Y., Wang H., Zhang L., Peng L., Lyu S., Huang L.. Optimization of raw-material ratios and curing temperature of magnesium oxychloride cement. Constr. Build. Mater. 2024;435:136795. doi: 10.1016/j.conbuildmat.2024.136795. DOI

Sugimoto K., Dinnebier R. E., Hanson J. C.. Structures of three dehydration products of bischofite from in situ synchrotron powder diffraction data (MgCl2.nH2O; n = 1, 2, 4) Acta Crystallogr., Sect. B. 2007;63(63):235–242. doi: 10.1107/S0108768107002558. PubMed DOI

Zhang M., Yu H., Ma H., Wu C., Zhu B., Li Y., Li L., Kang Y., Ding Z.. Effect of 5·1·8 whiskers on the mechanical properties and microstructure of magnesium oxychloride cement. Composites, Part B. 2025;292:112095. doi: 10.1016/j.compositesb.2024.112095. DOI

Li K., Wang Y., Zhang X., Wang X., Zhang A.. Raw material ratio optimization of magnesium oxychloride cement using response surface method. Constr. Build. Mater. 2021;272:121648. doi: 10.1016/j.conbuildmat.2020.121648. DOI

Li Z., Chau C. K.. Influence of Molar Ratios on Properties of Magnesium Oxychloride Cement. Cem. Concr. Res. 2007;37:866–870. doi: 10.1016/j.cemconres.2007.03.015. DOI

Singh, N. B. ; Shukla, S. K. . Chapter 3 - Properties of two-dimensional nanomaterials. In Two-Dimensional Nanostructures for Biomedical Technology, Khan, R. ; Barua, S. , Eds.; Elsevier, 2020, pp. 73–100.

Shanmugam V., Mensah R. A., Babu K., Gawusu S., Chanda A., Tu Y., Neisiany R. E., Försth M., Sas G., Das O.. A Review of the Synthesis, Properties, and Applications of 2D Materials. Part. Syst. Charact. 2022;39(6):2200031. doi: 10.1002/ppsc.202200031. DOI

Liu B., Zhou K.. Recent progress on graphene-analogous 2D nanomaterials: Properties, modeling and applications. Prog. Mater. Sci. 2019;100:99–169. doi: 10.1016/j.pmatsci.2018.09.004. DOI

Fatma, I. ; Assad, H. ; Kumar, A. . Introduction to Two-Dimensional Nanomaterials. In Two-Dimensional Nanomaterials-Based Polymer Nanocomposites, Pandey, M. ; Desmukh, K. ; Hussain, C. M. , Eds.; Scrivener Publishing, 2024, pp. 1–45.

Fan Y., Zhang G., Li Y.. Study on graphene oxide reinforced magnesium phosphate cement composites. Constr. Build. Mater. 2022;359:129523. doi: 10.1016/j.conbuildmat.2022.129523. DOI

Lu Z., Hou D., Ma H., Fan T., Li Z.. Effects of graphene oxide on the properties and microstructures of the magnesium potassium phosphate cement paste. Constr. Build. Mater. 2016;119:107–112. doi: 10.1016/j.conbuildmat.2016.05.060. DOI

Jiang L., Liu Z., Yu Y., Ben X.. The effect of graphene on the conductivity of magnesium sulfate cement. Constr. Build. Mater. 2021;312:125342. doi: 10.1016/j.conbuildmat.2021.125342. DOI

Du Y., Yang J., Skariah Thomas B., Li L., Li H., Mohamed Shaban W., Tung Chong W.. Influence of hybrid graphene oxide/carbon nanotubes on the mechanical properties and microstructure of magnesium potassium phosphate cement paste. Constr. Build. Mater. 2020;260:120449. doi: 10.1016/j.conbuildmat.2020.120449. DOI

Jiříčková A., Lauermannová A.-M., Jankovský O., Lojka M., Záleská M., Pivák A., Pavlíková M., Merglová A., Pavlik Z.. Impact of nano-dopants on the mechanical and physical properties of magnesium oxychloride cement composites – Experimental assessment. J. Build. Eng. 2024;87:108981. doi: 10.1016/j.jobe.2024.108981. DOI

Freixa A., Acuña V., Sanchís J., Farré M., Barceló D., Sabater S.. Ecotoxicological effects of carbon based nanomaterials in aquatic organisms. Sci. Total Environ. 2018;619–620:328–337. doi: 10.1016/j.scitotenv.2017.11.095. PubMed DOI

Gamoń F., Ziembińska-Buczyńska A., Łukowiec D., Tomaszewski M.. Ecotoxicity of selected carbon-based nanomaterials. Int. J. Environ. Sci. Technol. 2023;20(9):10153–10162. doi: 10.1007/s13762-022-04692-w. DOI

Seabra A. B., Paula A. J., de Lima R., Alves O. L., Durán N.. Nanotoxicity of Graphene and Graphene Oxide. Chem. Res. Toxicol. 2014;27(2):159–168. doi: 10.1021/tx400385x. PubMed DOI

Akhavan O., Ghaderi E.. Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. ACS Nano. 2010;4(10):5731–5736. doi: 10.1021/nn101390x. PubMed DOI

Hu W., Peng C., Luo W., Lv M., Li X., Li D., Huang Q., Fan C.. Graphene-Based Antibacterial Paper. ACS Nano. 2010;4(7):4317–4323. doi: 10.1021/nn101097v. PubMed DOI

Bykkam S., Rao K., Chakra S., Thunugunta T.. Synthesis and characterization of graphene oxide and its antibacterial activity against Klebseilla and Staphylococus . Int. J. Adv. Biotechnol. Res. 2013;4:1005–1009.

Feng L., Liu Z.. Graphene in Biomedicine: Opportunities and Challenges. Nanomedicine. 2011;6(2):317–324. doi: 10.2217/nnm.10.158. PubMed DOI

Breijyeh Z., Jubeh B., Karaman R.. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules. 2020;25:1340. doi: 10.3390/molecules25061340. PubMed DOI PMC

Liu J., Tang J., Gooding J. J.. Strategies for chemical modification of graphene and applications of chemically modified graphene. J. Mater. Chem. 2012;22(25):12435–12452. doi: 10.1039/c2jm31218b. DOI

Malina T., Maršálková E., Holá K., Tuček J., Scheibe M., Zbořil R., Maršálek B.. Toxicity of graphene oxide against algae and cyanobacteria: Nanoblade-morphology-induced mechanical injury and self-protection mechanism. Carbon. 2019;155:386–396. doi: 10.1016/j.carbon.2019.08.086. DOI

Ouyang S., Hu X., Zhou Q.. Envelopment–Internalization Synergistic Effects and Metabolic Mechanisms of Graphene Oxide on Single-Cell Chlorella vulgaris Are Dependent on the Nanomaterial Particle Size. ACS Appl. Mater. Interfaces. 2015;7(32):18104–18112. doi: 10.1021/acsami.5b05328. PubMed DOI

Pikula K., Johari S. A., Santos-Oliveira R., Golokhvast K.. The Comparative Toxic Impact Assessment of Carbon Nanotubes, Fullerene, Graphene, and Graphene Oxide on Marine Microalgae Porphyridium purpureum. Toxics. 2023;11:491. doi: 10.3390/toxics11060491. PubMed DOI PMC

Hazeem L. J., Bououdina M., Dewailly E., Slomianny C., Barras A., Coffinier Y., Szunerits S., Boukherroub R.. Toxicity effect of graphene oxide on growth and photosynthetic pigment of the marine alga Picochlorum sp. during different growth stages. Environ. Sci. Pollut. Res. Int. 2017;24(4):4144–4152. doi: 10.1007/s11356-016-8174-z. PubMed DOI

Nogueira P. F. M., Nakabayashi D., Zucolotto V.. The effects of graphene oxide on green algae Raphidocelis subcapitata. Aquat. Toxicol. 2015;166:29–35. doi: 10.1016/j.aquatox.2015.07.001. PubMed DOI

Matos D., Almeida S. F. P., Marques P. A. A. P., Pinto S., Figueira E.. Effects of Graphene Oxide Nanosheets in Freshwater Biofilms. Molecules. 2023;28:4577. doi: 10.3390/molecules28124577. PubMed DOI PMC

Wang Q., Li C., Wang Y., Que X.. Phytotoxicity of Graphene Family Nanomaterials and Its Mechanisms: A Review. Front. Chem. 2019;7:292. doi: 10.3389/fchem.2019.00292. PubMed DOI PMC

Liu S., Wei H., Li Z., Li S., Yan H., He Y., Tian Z.. Effects of Graphene on Germination and Seedling Morphology in Rice. J. Nanosci. Nanotechnol. 2015;15(4):2695–2701. doi: 10.1166/jnn.2015.9254. PubMed DOI

Chen J., Yang L., Li S., Ding W.. Various Physiological Response to Graphene Oxide and Amine-Functionalized Graphene Oxide in Wheat (Triticum aestivum) Molecules. 2018;23:1104. doi: 10.3390/molecules23051104. PubMed DOI PMC

Yin L., Wang Z., Wang S., Xu W., Bao H.. Effects of Graphene Oxide and/or Cd2+ on Seed Germination, Seedling Growth, and Uptake to Cd2+ in Solution Culture. Water, Air, Soil Pollut. 2018;229(5):151. doi: 10.1007/s11270-018-3809-y. DOI

Begum P., Ikhtiari R., Fugetsu B.. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon. 2011;49(12):3907–3919. doi: 10.1016/j.carbon.2011.05.029. DOI

He Y., Hu R., Zhong Y., Zhao X., Chen Q., Zhu H.. Graphene oxide as a water transporter promoting germination of plants in soil. Nano Res. 2018;11(4):1928–1937. doi: 10.1007/s12274-017-1810-1. DOI

Zhang M., Gao B., Chen J., Li Y.. Effects of graphene on seed germination and seedling growth. J. Nanopart. Res. 2015;17(2):78. doi: 10.1007/s11051-015-2885-9. DOI

Németh I., László K., Bulátkó A., Vaszita E., Molnár M.. Ecotoxicity Assessment of Graphene Oxides Using Test Organisms from Three Hierarchical Trophic Levels to Evaluate Their Potential Environmental Risk. Nanomaterials. 2023;13:2858. doi: 10.3390/nano13212858. PubMed DOI PMC

Fekete-Kertész I., László K., Terebesi C., Gyarmati B. S., Farah S., Márton R., Molnár M.. Ecotoxicity Assessment of Graphene Oxide by Daphnia magna through a Multimarker Approach from the Molecular to the Physiological Level including Behavioral Changes. Nanomaterials. 2020;10:2048. doi: 10.3390/nano10102048. PubMed DOI PMC

Souza J. P., Venturini F. P., Santos F., Zucolotto V.. Chronic toxicity in Ceriodaphnia dubia induced by graphene oxide. Chemosphere. 2018;190:218–224. doi: 10.1016/j.chemosphere.2017.10.018. PubMed DOI

Malhotra N., Villaflores O. B., Audira G., Siregar P., Lee J.-S., Ger T.-R., Hsiao C.-D.. Toxicity Studies on Graphene-Based Nanomaterials in Aquatic Organisms: Current Understanding. Molecules. 2020;25:3618. doi: 10.3390/molecules25163618. PubMed DOI PMC

Jankovský O., Lojka M., Lauermannová A.-M., Antončík F., Pavlíková M., Záleská M., Pavlik Z., Pivák A., Sedmidubský D.. Towards novel building materials: High-strength nanocomposites based on graphene, graphite oxide and magnesium oxychloride. Appl. Mater. Today. 2020;20:100766. doi: 10.1016/j.apmt.2020.100766. DOI

Sobarzo-Bernal O., Gómez-Merino F. C., Alcántar-González G., Saucedo-Veloz C., Trejo-Téllez L. I.. Biostimulant Effects of Cerium on Seed Germination and Initial Growth of Tomato Seedlings. Agronomy. 2021;11:1525. doi: 10.3390/agronomy11081525. DOI

Jiříčková A., Lauermannová A.-M., Jankovský O., Fathi J., Záleská M., Pivák A., Pavlíková M., Jeremiáš M., Pavlik Z.. Utilization of waste carbon spheres in Magnesium Oxychloride Cement. Case Stud. Constr. Mater. 2023;19:e02374. doi: 10.1016/j.cscm.2023.e02374. DOI

Lauermannová A.-M., Pavlíková M., Pavlík Z., Pivák A., Jiříčková A., Sklenka J., Záleská M., Růžička K., Jankovský O.. Magnesium oxychloride cement with phase change material: Novel environmentally-friendly composites for heat storage. J. Mater. Res. Technol. 2022;21:3327–3342. doi: 10.1016/j.jmrt.2022.10.113. DOI

Lencova S., Stindlova M., Havlickova K., Jencova V., Peroutka V., Navratilova K., Zdenkova K., Stiborova H., Hauzerova S., Kostakova E. K., Jankovsky O., Kejzlar P., Lukas D., Demnerova K.. Influence of Fiber Diameter of Polycaprolactone Nanofibrous Materials on Biofilm Formation and Retention of Bacterial Cells. ACS Appl. Mater. Interfaces. 2024;16(20):25813–25824. doi: 10.1021/acsami.4c03642. PubMed DOI PMC

Lencova S., Kofronova J., Peroutka V., Lauermannova A. M., Jirickova A., Lojka M., Jankovsky O., Vurm R.. Ecotoxicological assessment of MWCNT-reinforced MOC composites: Impacts on model bacteria and eukaryotes with environmental relevance. Environ. Sci.: Nano. 2025;12:3018–3034. doi: 10.1039/D4EN01088D. DOI

Gies V., Zou S.. Systematic toxicity investigation of graphene oxide: Evaluation of assay selection, cell type, exposure period and flake size. Tox. Res. 2018;7(1):93–101. doi: 10.1039/C7TX00278E. PubMed DOI PMC

da Cruz Nizer W. S., Allison Kira N., Adams Madison E., Vargas Mario A., Ahmed D., Beaulieu C., Raju D., Cassol E., Howell P. L., Overhage J.. The role of exopolysaccharides Psl and Pel in resistance of Pseudomonas aeruginosa to the oxidative stressors sodium hypochlorite and hydrogen peroxide. Microbiol. Spectrum. 2024;12(10):e00922–00924. doi: 10.1128/spectrum.00922-24. PubMed DOI PMC

Melaugh G., Martinez V. A., Baker P., Hill P. J., Howell P. L., Wozniak D. J., Allen R. J.. Distinct types of multicellular aggregates in Pseudomonas aeruginosa liquid cultures. Npj Biofilms Microbiomes. 2023;9(1):52. doi: 10.1038/s41522-023-00412-5. PubMed DOI PMC

Gaylarde C., Silva M., Warscheid T.. Microbial impact on building materials: An overview. Mater. Struct. 2003;36:342–352. doi: 10.1007/BF02480875. DOI

Krishnamoorthy K., Umasuthan N., Mohan R., Lee J., Kim S.-J.. Antibacterial Activity of Graphene Oxide Nanosheets. Sci. Adv. Mater. 2012;4:1111–1117. doi: 10.1166/sam.2012.1402. DOI

Yadav N., Dubey A., Shukla S., Saini C. P., Gupta G., Priyadarshini R., Lochab B.. Graphene Oxide-Coated Surface: Inhibition of Bacterial Biofilm Formation due to Specific Surface–Interface Interactions. ACS Omega. 2017;2(7):3070–3082. doi: 10.1021/acsomega.7b00371. PubMed DOI PMC

Mesarič T., Gambardella C., Milivojević T., Faimali M., Drobne D., Falugi C., Makovec D., Jemec Kokalj A., Sepcic K.. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae. Aquat. Toxicol. 2015;163:121–129. doi: 10.1016/j.aquatox.2015.03.014. PubMed DOI

Zhu S., Luo F., Chen W., Zhu B., Wang G.. Toxicity evaluation of graphene oxide on cysts and three larval stages of Artemia salina. Sci. Total Environ. 2017;595:101–109. doi: 10.1016/j.scitotenv.2017.03.224. PubMed DOI

Lu J., Zhu X., Tian S., Lv X., Chen Z., Jiang Y., Liao X., Cai Z., Chen B.. Graphene oxide in the marine environment: Toxicity to Artemia salina with and without the presence of Phe and Cd2+ Chemosphere. 2018;211:390–396. doi: 10.1016/j.chemosphere.2018.07.140. PubMed DOI

Pretti C., Oliva M., Pietro R. D., Monni G., Cevasco G., Chiellini F., Pomelli C., Chiappe C.. Ecotoxicity of pristine graphene to marine organisms. Ecotoxicol. Environ. Saf. 2014;101:138–145. doi: 10.1016/j.ecoenv.2013.11.008. PubMed DOI

Ren W., Chang H., Li L., Teng Y.. Effect of Graphene Oxide on Growth of Wheat Seedlings: Insights from Oxidative Stress and Physiological Flux. Bull. Environ. Contam. Toxicol. 2020;105(1):139–145. doi: 10.1007/s00128-020-02888-9. PubMed DOI

Cheng F., Liu Y.-F., Lu G.-Y., Zhang X.-K., Xie L.-L., Yuan C.-F., Xu B.-B.. Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration. J. Plant Physiol. 2016;193:57–63. doi: 10.1016/j.jplph.2016.02.011. PubMed DOI

Lv B., Wang C., Hou J., Wang P., Miao L., Li Y., Ao Y., Yang Y., You G., Xu Y.. Influence of shear forces on the aggregation and sedimentation behavior of cerium dioxide (CeO2) nanoparticles under different hydrochemical conditions. J. Nanopart. Res. 2016;18(7):193. doi: 10.1007/s11051-016-3501-3. DOI

Zhao J., Cao X., Wang Z., Dai Y., Xing B.. Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae. Water Res. 2017;111:18–27. doi: 10.1016/j.watres.2016.12.037. PubMed DOI

Jin Q., Kirk M. F.. pH as a Primary Control in Environmental Microbiology: 1. Thermodynamic Perspective. Front. Environ. Sci. 2018;6:101. doi: 10.3389/fenvs.2018.00021. DOI

Maier A., Manea D. L.. Perspective of Using Magnesium Oxychloride Cement (MOC) and Wood as a Composite Building Material: A Bibliometric Literature Review. Materials. 2022;15(5):1772. doi: 10.3390/ma15051772. PubMed DOI PMC

Anand A., Unnikrishnan B., Wei S. C., Chou C. P., Zhang L. Z., Huang C. C.. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents – a minireview. Nanoscale Horiz. 2019;4(1):117–137. doi: 10.1039/C8NH00174J. PubMed DOI

Augustyniak A., Jablonska J., Cendrowski K., Głowacka A., Stephan D., Mijowska E., Sikora P.. Investigating the release of ZnO nanoparticles from cement mortars on microbiological models. Appl. Nanosci. 2022;12(3):489–502. doi: 10.1007/s13204-021-01695-w. DOI

Sikora P., Augustyniak A., Cendrowski K., Nawrotek P., Mijowska E.. Antimicrobial Activity of Al2O3, CuO, Fe3O4, and ZnO Nanoparticles in Scope of Their Further Application in Cement-Based Building Materials. Nanomaterials. 2018;8(4):212. doi: 10.3390/nano8040212. PubMed DOI PMC

Cezairliyan B., Vinayavekhin N., Grenfell-Lee D., Yuen G. J., Saghatelian A., Ausubel F. M.. Identification of Pseudomonas aeruginosa Phenazines that Kill Caenorhabditis elegans. PLoS Pathog. 2013;9(1):e1003101. doi: 10.1371/journal.ppat.1003101. PubMed DOI PMC

Goldmann E., Kudlek E., Bialas O., Górski M., Adamiak M., Klemczak B.. Environmental Toxicity of Cement Nanocomposites Reinforced with Carbon Nanotubes. Materials. 2025;18:1176. doi: 10.3390/ma18051176. PubMed DOI PMC

Gao Y., Pham V. H., Weidman J., Kim K.-J., Spaulding R. E., Wang C., Matranga C. S.. High-performance cementitious composites containing nanostructured carbon additives made from charred coal fines. Sci. Rep. 2024;14(1):8912. doi: 10.1038/s41598-024-59046-y. PubMed DOI PMC

Yu Q., Zhang B., Li J., Du T., Yi X., Li M., Chen W., Alvarez P. J. J.. Graphene oxide significantly inhibits cell growth at sublethal concentrations by causing extracellular iron deficiency. Nanotoxicology. 2017;11(9–10):1102–1114. doi: 10.1080/17435390.2017.1398357. PubMed DOI

Domenech J., Rodríguez-Garraus A., López de Cerain A., Azqueta A., Catalán J.. Genotoxicity of Graphene-Based Materials. Nanomaterials. 2022;12:1795. doi: 10.3390/nano12111795. PubMed DOI PMC

Aunkor M. T. H., Raihan T., Prodhan S. H., Metselaar H. S. C., Malik S. U. F., Azad A. K.. Antibacterial activity of graphene oxide nanosheet against multidrug resistant superbugs isolated from infected patients. R. Soc. Open Sci. 2020;7(7):200640. doi: 10.1098/rsos.200640. PubMed DOI PMC

Seixas A. F., Quendera A. P., Sousa J. P., Silva A. F. Q., Arraiano C. M., Andrade J. M.. Bacterial Response to Oxidative Stress and RNA Oxidation. Front. Genet. 2022;12:821535. doi: 10.3389/fgene.2021.821535. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...