• This record comes from PubMed

Investigation of mobile genetic elements and their association with antibiotic resistance genes in clinical pathogens worldwide

. 2025 ; 20 (8) : e0330304. [epub] 20250818

Status In-Process Language English Country United States Media electronic-ecollection

Document type Journal Article

OBJECTIVES: Antimicrobial-resistant bacteria are a major global health threat. Mobile genetic elements (MGEs) have been crucial for spreading resistance to new bacterial species, including human pathogens. Understanding how MGEs promote resistance could be essential for prevention. Here we present an investigation of MGEs and their association with resistance genes in pathogenic bacteria collected from 59 diagnostic units during 2020, representing a snapshot of clinical infections from 35 counties worldwide. METHODS: We analysed 3,095 whole-genome sequenced clinical bacterial isolates from over 100 species to study the relationship between resistance genes and MGEs. The mobiliome of Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Klebsiella pneumoniae were further examined for geographic differences, as these species were prevalent in all countries. Genes potentially mobilized by MGEs were identified by finding DNA segments containing MGEs and ARGs preserved in multiple species. Network analysis was used to investigate potential MGE interactions, host range, and transmission pathways. RESULTS: The prevalence and diversity of MGEs and resistance genes varied among species, with E. coli and S. aureus carrying more diverse elements. MGE composition differed between bacterial lineages, indicating strong vertical inheritance. 102 MGEs associated with resistance were found in multiple species, and four of these elements seemed to be highly transmissible as they were found in different phyla. We identified 21 genomic regions containing resistance genes potentially mobilized by MGEs, highlighting their importance in transmitting genes to clinically significant bacteria. CONCLUSION: Resistance genes are spread through various MGEs, including plasmids and transposons. Our findings suggest that multiple factors influence MGE prevalence and their transposability, thereby shaping the MGE population and transmission pathways. Some MGEs have a wider host range, which could make them more important for mobilizing genes. We also identified 103 resistance genes potentially mobilised by MGEs, which could increase their transmissibility to unrelated bacteria.

Alberta Precision Laboratories Alberta Canada

Bacteriology laboratory Centre hospitalier de Valenciennes Valenciennes France

Basic Medical Sciences Department Arab American University Jenin Palestine

Bioanalytica AG Luzern Switzerland

Centro de Investigação em Saéude de Manhiça Manhiça Mozambique

Centro de Investigación para la Salud en América Latina Pontificia Universidad Católica del Ecuador Quinto Pichincha Ecuador

Charalampous Microbiology Department National Reference Laboratory for Antimicrobial Resistance Surveillance Nicosia General Hospital Strovolos Nicosia Cyprus

Chinese University of Hong Kong Shatin Hong Kong

Clinical Laboratory of Microbiology and Virology University Hospital Lozenetz Sofia Bulgaria

Clinical Research Unit of Nanoro National Institutes of Medical Research Ouagadougou Burkina Faso

College of Medicine University of Ibadan Ibadan Oyo State Nigeria

Departamento de Bacteriologia Laboratorio Central de Salud Publico Asunción Paraguay

Department of Clinical and Molecular Microbiology University Hospital Centre Zagreb Zagreb Croatia

Department of Clinical Tropical Medicine Faculty of Tropical Medicine Mahidol University Bangkok Thailand

Department of Industrial Biotechnology Atta ur Rahman School of Applied Biosciences National University of Sciences and Technology Islamabad Pakistan

Department of Laboratory Nouna Health Research Centre Nouna Burkina Faso

Department of Medical Microbiology Motol University Hospital Prague Czech Republic

Department of Medical Sciences National Institute of Health Sariburi Thailand

Department of Medicine and Surgery University of Milano Bicocca Milan Italy

Department of Microbiology and Infection Control Akershus University Hospital Lørenskog Norway

Department of Microbiology PathWest Laboratory Medicine Fiona Stanley Hospital Murdoch Western Australia Australia

Department of Microbiology University Hospital in Plzen Plzen Czech Republic

Department of Microbiology University of Dhaka Dhaka Bangladesh

Department of Pathology and Experimental Therapy Universitat de Barcelona Barcelona Spain

Division of Clinical Bacteriology and Mycology University Hospital Basel Basel Switzerland

Division of Clinical Microbiology Qatif Central Hospital Al Qatif Eastern Province Saudi Arabia

Dronning Ingrids Hospital Nuuk Greenland

Faculty of Pharmacy University of Ibadan Ibadan Oyo State Nigeria

Institute of Microbiology Centre Hospitalier Universitaire de Lille Lille France

Klinisk Mikrobiologisk Afdeling Hvidovre Hospital Hvidovre Denmark

Laboratoire de Microbiologie Clinique Centre Hospitalo universitaire Algiers Algeria

Laboratory Medicine Department Hospital of Lithuanian University of Health Sciences Kaunas Lithuania

Levy Mwanawasa Teaching Hospital Lusaka Zambia

Lusaka Apex Medical School Lusaka Zambia

Medical Microbiology and Immunology University of Pecs Medical School Pecs Hungary

Medical Microbiology Department Karadeniz Technical University Farabi Hospital Trabzon Ortahisar Turkey

Microbiology Department Canberra Hospital Garran Australian Capital Territory Australia

Microbiology Department Hospital de Bellvitge Barcelona Spain

Microbiology Department University Hospital Shefqet Ndroqi Tirana Albania

Microbiology Group Instituto Nacional de Salud Bogotá Colombia

Molecular Diagnostic Section Khyber Teaching Hospital Peshawar Pakistan

National Food Institute Technical University of Denmark Kgs Lyngby Denmark

National Hospital Abuja Abuja Nigeria

National Reference Center for Antimicrobial Resistance National Institute of Public Health research Dr Leopoldo Izquieta Pérez Quito Pichicha Ecuador

Obafemi Awolowo University Ile Ife Nigeria

Otto von Guericke University Magdebourg Germany

Research Unit in Applied Microbiology and Pharmacology of Natural Substances Polytechnic School of Abomey Calavi University of Abomey Calavi Abomey Calavi Cotonou Benin

Sekondi Public Health Laboratory Ghana Health Service Effia Nkwanta Regional Hospital Effia Nkwanta Regional Hospital Ghana

Service de Microbiologie Centre Integré Universitaire de Santé et de services sociaux de l'Estrie Centre Hospitalier Universitaire de Sherbrooke Sherbrooke Québec Canada

Southern Community Laboratories University of Otago Otago Dunedin New Zealand

Training and Research Unit in Applied Sciences and Technologies Biochemistry microbiology University of Dedougou Dedougou Boucle du Mouhon Burkina Faso

University College of Ibadan Ibadan Oyo State Nigeria

University of Joseph KI ZERBO Ouagadouogou Burkina Faso

University Teaching Hospital Lusaka Zambia

See more in PubMed

World Health Organization. Antimicrobial resistance: Global Report on Surveillance. 2014 [cited 4 May 2024]. Available from: https://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf

Robinson TP, Bu DP, Carrique-Mas J, Fèvre EM, Gilbert M, Grace D, et al. Antibiotic resistance is the quintessential One Health issue. Trans R Soc Trop Med Hyg. 2016;110(7):377–80. doi: 10.1093/trstmh/trw048 PubMed DOI PMC

Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–55. doi: 10.1016/S0140-6736(21)02724-0 PubMed DOI PMC

Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008;197(8):1079–81. doi: 10.1086/533452 PubMed DOI

World Health Organization. Global Priority List of Antibiotic-Resistance Bacteria to Guide Research, Discovery, and Development of New Antibiotics. 2017 [cited 9 Jun 2023]. Available from: https://remed.org/wp-content/uploads/2017/03/lobal-priority-list-of-antibiotic-resistant-bacteria-2017.pdf

Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev. 2018;31(4):e00088-17. doi: 10.1128/CMR.00088-17 PubMed DOI PMC

Dionisio F, Zilhão R, Gama JA. Interactions between plasmids and other mobile genetic elements affect their transmission and persistence. Plasmid. 2019;102:29–36. doi: 10.1016/j.plasmid.2019.01.003 PubMed DOI

Guédon G, Libante V, Coluzzi C, Payot S, Leblond-Bourget N. The Obscure World of Integrative and Mobilizable Elements, Highly Widespread Elements that Pirate Bacterial Conjugative Systems. Genes (Basel). 2017;8(11):337. doi: 10.3390/genes8110337 PubMed DOI PMC

Botelho J, Schulenburg H. The Role of Integrative and Conjugative Elements in Antibiotic Resistance Evolution. Trends Microbiol. 2021;29(1):8–18. doi: 10.1016/j.tim.2020.05.011 PubMed DOI

Johnson CM, Grossman AD. Integrative and Conjugative Elements (ICEs): What They Do and How They Work. Annu Rev Genet. 2015;49:577–601. doi: 10.1146/annurev-genet-112414-055018 PubMed DOI PMC

Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev. 2014;38(5):865–91. doi: 10.1111/1574-6976.12067 PubMed DOI PMC

Nzabarushimana E, Tang H. Insertion sequence elements-mediated structural variations in bacterial genomes. Mob DNA. 2018;9:29. doi: 10.1186/s13100-018-0134-3 PubMed DOI PMC

Harmer CJ, Pong CH, Hall RM. Structures bounded by directly-oriented members of the IS26 family are pseudo-compound transposons. Plasmid. 2020;111:102530. doi: 10.1016/j.plasmid.2020.102530 PubMed DOI

Haniford DB, Ellis MJ. Transposons Tn10 and Tn5. Microbiol Spectr. 2015;3(1):631–45. doi: 10.1128/microbiolspec.MDNA3-0002-2014 PubMed DOI

Hansson K, Sundström L, Pelletier A, Roy PH. IntI2 integron integrase in Tn7. J Bacteriol. 2002;184(6):1712–21. doi: 10.1128/JB.184.6.1712-1721.2002 PubMed DOI PMC

Santos C, Caetano T, Ferreira S, Mendo S. Tn5090-like class 1 integron carrying bla(VIM-2) in a Pseudomonas putida strain from Portugal. Clin Microbiol Infect. 2010;16(10):1558–61. doi: 10.1111/j.1469-0691.2010.03165.x PubMed DOI

Fonseca ÉL, Vicente AC. Integron Functionality and Genome Innovation: An Update on the Subtle and Smart Strategy of Integrase and Gene Cassette Expression Regulation. Microorganisms. 2022;10(2):224. doi: 10.3390/microorganisms10020224 PubMed DOI PMC

Lu M, Gong T, Zhang A, Tang B, Chen J, Zhang Z, et al. Mobile Genetic Elements in Streptococci. Curr Issues Mol Biol. 2019;32:123–66. doi: 10.21775/cimb.032.123 PubMed DOI

Noel HR, Petrey JR, Palmer LD. Mobile genetic elements in Acinetobacter antibiotic‐resistance acquisition and dissemination. Annals of the New York Academy of Sciences. 2022;1518(1):166–82. doi: 10.1111/nyas.14918 PubMed DOI PMC

Malachowa N, DeLeo FR. Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci. 2010;67(18):3057–71. doi: 10.1007/s00018-010-0389-4 PubMed DOI PMC

Horne T, Orr VT, Hall JP. How do interactions between mobile genetic elements affect horizontal gene transfer?. Curr Opin Microbiol. 2023;73:102282. doi: 10.1016/j.mib.2023.102282 PubMed DOI

Frost LS, Leplae R, Summers AO, Toussaint A. Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol. 2005;3(9):722–32. doi: 10.1038/nrmicro1235 PubMed DOI

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17(3):261–72. doi: 10.1038/s41592-019-0686-2 PubMed DOI PMC

Wein T, Hülter NF, Mizrahi I, Dagan T. Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nat Commun. 2019;10(1):2595. doi: 10.1038/s41467-019-10600-7 PubMed DOI PMC

Sidsel N, Gunhild L, Judit S, Laura B, Gábor G, Wojchiech C, et al. Whole genomes from bacteria collected at diagnostic units around the world 2020. 2022. 10.11583/DTU.21758456 DOI

Center for Genomic Epidemiology. FoodQCPipeline. [cited 4 May 2024]. Available from: https://bitbucket.org/genomicepidemiology/foodqcpipeline/src/master/.

Andrews S. FastQC A Quality Control tool for High Throughput Sequence Data. Babraham Bioinformatics; 2010 [cited 3 Jun 2015]. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77. doi: 10.1089/cmb.2012.0021 PubMed DOI PMC

Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072–5. doi: 10.1093/bioinformatics/btt086 PubMed DOI PMC

Hasman H, Saputra D, Sicheritz-Ponten T, Lund O, Svendsen CA, Frimodt-Møller N, et al. Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples. J Clin Microbiol. 2014;52(1):139–46. doi: 10.1128/JCM.02452-13 PubMed DOI PMC

Silva M, Machado MP, Silva DN, Rossi M, Moran-Gilad J, Santos S, et al. chewBBACA: A complete suite for gene-by-gene schema creation and strain identification. Microb Genom. 2018;4(3):e000166. doi: 10.1099/mgen.0.000166 PubMed DOI PMC

Leopold SR, Goering RV, Witten A, Harmsen D, Mellmann A. Bacterial whole-genome sequencing revisited: portable, scalable, and standardized analysis for typing and detection of virulence and antibiotic resistance genes. J Clin Microbiol. 2014;52(7):2365–70. doi: 10.1128/JCM.00262-14 PubMed DOI PMC

Zhou Z, Alikhan N-F, Mohamed K, Fan Y, Agama Study Group, Achtman M. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 2020;30(1):138–52. doi: 10.1101/gr.251678.119 PubMed DOI PMC

Toorop MMA, Kraakman MEM, Hoogendijk IV, van Prehn J, Claas ECJ, Wessels E, et al. A core-genome multilocus sequence typing scheme for the detection of genetically related Streptococcus pyogenes clusters. J Clin Microbiol. 2023;61(11):e0055823. doi: 10.1128/jcm.00558-23 PubMed DOI PMC

Seemann T. mlst. [cited 24 May 2024]. Available from: https://github.com/tseemann/mlst

Jolley KA, Maiden MCJ. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics. 2010;11:595. doi: 10.1186/1471-2105-11-595 PubMed DOI PMC

Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75(12):3491–500. doi: 10.1093/jac/dkaa345 PubMed DOI PMC

Johansson MHK, Bortolaia V, Tansirichaiya S, Aarestrup FM, Roberts AP, Petersen TN. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J Antimicrob Chemother. 2021;76(1):101–9. doi: 10.1093/jac/dkaa390 PubMed DOI PMC

Pellow D, Mizrahi I, Shamir R. PlasClass improves plasmid sequence classification. PLoS Comput Biol. 2020;16(4):e1007781. doi: 10.1371/journal.pcbi.1007781 PubMed DOI PMC

Schwengers O, Barth P, Falgenhauer L, Hain T, Chakraborty T, Goesmann A. Platon: identification and characterization of bacterial plasmid contigs in short-read draft assemblies exploiting protein sequence-based replicon distribution scores. Microb Genom. 2020;6(10):mgen000398. doi: 10.1099/mgen.0.000398 PubMed DOI PMC

Hunter JD. Matplotlib: A 2D Graphics Environment. Comput Sci Eng. 2007;9(3):90–5. doi: 10.1109/mcse.2007.55 DOI

Waskom M. seaborn: statistical data visualization. J Open Source Softw. 2021;6(60):3021. doi: 10.21105/joss.03021 DOI

Titus Brown C, Irber L. sourmash: a library for MinHash sketching of DNA. JOSS. 2016;1(5):27. doi: 10.21105/joss.00027 DOI

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. doi: 10.1186/1471-2105-10-421 PubMed DOI PMC

Hagberg AA, Schult DA, Swart PJ. Exploring Network Structure, Dynamics, and Function using NetworkX. In: Varoquaux G, Vaught T, Millman J, editors. Proceedings of the 7th Python in Science Conference. Pasadena; 2008. p. 11–15.

Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech. 2008;2008(10):P10008. doi: 10.1088/1742-5468/2008/10/p10008 DOI

Nag S, Larsen G, Szarvas J, Gulyàs GM, Ciok W, Lagermann TMR, et al. Global collection of clinically relevant bacterial genomes from project TWIW 2020. 2023.

Hollenbeck BL, Rice LB. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence. 2012;3(5):421–33. doi: 10.4161/viru.21282 PubMed DOI PMC

Pishtiwan AH, Khadija KM. Prevalence of blaTEM, blaSHV, and blaCTX-M Genes among ESBL-Producing Klebsiella pneumoniae and Escherichia coli Isolated from Thalassemia Patients in Erbil, Iraq. Mediterr J Hematol Infect Dis. 2019;11(1):e2019041. doi: 10.4084/MJHID.2019.041 PubMed DOI PMC

Husna A, Rahman MM, Badruzzaman ATM, Sikder MH, Islam MR, Rahman MT, et al. Extended-Spectrum β-Lactamases (ESBL): Challenges and Opportunities. Biomedicines. 2023;11(11):2937. doi: 10.3390/biomedicines11112937 PubMed DOI PMC

Liakopoulos A, Mevius D, Ceccarelli D. A Review of SHV Extended-Spectrum β-Lactamases: Neglected Yet Ubiquitous. Front Microbiol. 2016;7:1374. doi: 10.3389/fmicb.2016.01374 PubMed DOI PMC

Bonardi S, Cabassi CS, Fiaccadori E, Cavirani S, Parisi A, Bacci C, et al. Detection of carbapenemase- and ESBL-producing Klebsiella pneumoniae from bovine bulk milk and comparison with clinical human isolates in Italy. Int J Food Microbiol. 2023;387:110049. doi: 10.1016/j.ijfoodmicro.2022.110049 PubMed DOI

Surleac M, Czobor Barbu I, Paraschiv S, Popa LI, Gheorghe I, Marutescu L, et al. Whole genome sequencing snapshot of multi-drug resistant Klebsiella pneumoniae strains from hospitals and receiving wastewater treatment plants in Southern Romania. PLoS One. 2020;15(1):e0228079. doi: 10.1371/journal.pone.0228079 PubMed DOI PMC

Zhao H, He Z, Li Y, Sun B. Epidemiology of carbapenem-resistant Klebsiella pneumoniae ST15 of producing KPC-2, SHV-106 and CTX-M-15 in Anhui, China. BMC Microbiol. 2022;22(1):262. doi: 10.1186/s12866-022-02672-1 PubMed DOI PMC

García-Solache M, Rice LB. The Enterococcus: a Model of Adaptability to Its Environment. Clin Microbiol Rev. 2019;32(2):e00058-18. doi: 10.1128/CMR.00058-18 PubMed DOI PMC

Nagata Y, Endo R, Ito M, Ohtsubo Y, Tsuda M. Aerobic degradation of lindane (gamma-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol. 2007;76(4):741–52. doi: 10.1007/s00253-007-1066-x PubMed DOI

Targant H, Doublet B, Aarestrup FM, Cloeckaert A, Madec J-Y. IS6100-mediated genetic rearrangement within the complex class 1 integron In104 of the Salmonella genomic island 1. J Antimicrob Chemother. 2010;65(7):1543–5. doi: 10.1093/jac/dkq163 PubMed DOI

Liu N, Tang B, Wang H, Chen X, Wen P, Wang Z, et al. Coexistence of a novel NDM-1-encoding MDR plasmid and an IMP-4-encoding IncN-IncU hybrid plasmid in a clinical isolate of Citrobacter freundii BC73. Front Microbiol. 2024;15:1388651. doi: 10.3389/fmicb.2024.1388651 PubMed DOI PMC

Rossolini GM, D’Andrea MM, Mugnaioli C. The spread of CTX-M-type extended-spectrum beta-lactamases. Clin Microbiol Infect. 2008;14:33–41. doi: 10.1111/j.1469-0691.2007.01867.x PubMed DOI

Botts RT, Page DM, Bravo JA, Brown ML, Castilleja CC, Guzman VL, et al. Polluted wetlands contain multidrug-resistance plasmids encoding CTX-M-type extended-spectrum β-lactamases. Plasmid. 2023;126:102682. doi: 10.1016/j.plasmid.2023.102682 PubMed DOI PMC

Nakayama T, Yamaguchi T, Jinnai M, Kumeda Y, Hase A. ESBL-producing Vibrio vulnificus and V. alginolyticus harbour a plasmid encoding ISEc9 upstream of blaCTX-M-55 and qnrS2 isolated from imported seafood. Arch Microbiol. 2023;205(6):241. doi: 10.1007/s00203-023-03569-x PubMed DOI

Domingues S, Lima T, Escobar C, Plantade J, Charpentier X, da Silva GJ. Large DNA fragment ISEc9-mediated transposition during natural transformation allows interspecies dissemination of antimicrobial resistance genes. Eur J Clin Microbiol Infect Dis. 2025;44(6):1417–24. doi: 10.1007/s10096-025-05113-9 PubMed DOI PMC

Dobrindt U, Chowdary MG, Krumbholz G, Hacker J. Genome dynamics and its impact on evolution of Escherichia coli. Med Microbiol Immunol. 2010;199(3):145–54. doi: 10.1007/s00430-010-0161-2 PubMed DOI

Johansson MH, Aarestrup FM, Petersen T. Importance of mobile genetic elements for dissemination of antimicrobial resistance in metagenomic sewage samples across the world. PLoS One. 2023. PubMed PMC

Hu Y, Yang X, Li J, Lv N, Liu F, Wu J, et al. The Bacterial Mobile Resistome Transfer Network Connecting the Animal and Human Microbiomes. Appl Environ Microbiol. 2016;82(22):6672–81. doi: 10.1128/AEM.01802-16 PubMed DOI PMC

Ellabaan MMH, Munck C, Porse A, Imamovic L, Sommer MOA. Forecasting the dissemination of antibiotic resistance genes across bacterial genomes. Nat Commun. 2021;12(1):2435. doi: 10.1038/s41467-021-22757-1 PubMed DOI PMC

Rahiminejad S, Maurya MR, Subramaniam S. Topological and functional comparison of community detection algorithms in biological networks. BMC Bioinformatics. 2019;20(1):212. doi: 10.1186/s12859-019-2746-0 PubMed DOI PMC

Mlynarczyk-Bonikowska B, Kowalewski C, Krolak-Ulinska A, Marusza W. Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. Int J Mol Sci. 2022;23(15):8088. doi: 10.3390/ijms23158088 PubMed DOI PMC

Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001;14(4):933–51, table of contents. doi: 10.1128/CMR.14.4.933-951.2001 PubMed DOI PMC

D’Andrea MM, Arena F, Pallecchi L, Rossolini GM. CTX-M-type β-lactamases: a successful story of antibiotic resistance. Int J Med Microbiol. 2013;303(6–7):305–17. doi: 10.1016/j.ijmm.2013.02.008 PubMed DOI

Evans BA, Amyes SGB. OXA β-lactamases. Clin Microbiol Rev. 2014;27(2):241–63. doi: 10.1128/CMR.00117-13 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...