Investigation of mobile genetic elements and their association with antibiotic resistance genes in clinical pathogens worldwide
Status In-Process Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
40824964
PubMed Central
PMC12360581
DOI
10.1371/journal.pone.0330304
PII: PONE-D-25-13754
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
OBJECTIVES: Antimicrobial-resistant bacteria are a major global health threat. Mobile genetic elements (MGEs) have been crucial for spreading resistance to new bacterial species, including human pathogens. Understanding how MGEs promote resistance could be essential for prevention. Here we present an investigation of MGEs and their association with resistance genes in pathogenic bacteria collected from 59 diagnostic units during 2020, representing a snapshot of clinical infections from 35 counties worldwide. METHODS: We analysed 3,095 whole-genome sequenced clinical bacterial isolates from over 100 species to study the relationship between resistance genes and MGEs. The mobiliome of Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Klebsiella pneumoniae were further examined for geographic differences, as these species were prevalent in all countries. Genes potentially mobilized by MGEs were identified by finding DNA segments containing MGEs and ARGs preserved in multiple species. Network analysis was used to investigate potential MGE interactions, host range, and transmission pathways. RESULTS: The prevalence and diversity of MGEs and resistance genes varied among species, with E. coli and S. aureus carrying more diverse elements. MGE composition differed between bacterial lineages, indicating strong vertical inheritance. 102 MGEs associated with resistance were found in multiple species, and four of these elements seemed to be highly transmissible as they were found in different phyla. We identified 21 genomic regions containing resistance genes potentially mobilized by MGEs, highlighting their importance in transmitting genes to clinically significant bacteria. CONCLUSION: Resistance genes are spread through various MGEs, including plasmids and transposons. Our findings suggest that multiple factors influence MGE prevalence and their transposability, thereby shaping the MGE population and transmission pathways. Some MGEs have a wider host range, which could make them more important for mobilizing genes. We also identified 103 resistance genes potentially mobilised by MGEs, which could increase their transmissibility to unrelated bacteria.
Alberta Precision Laboratories Alberta Canada
Bacteriology laboratory Centre hospitalier de Valenciennes Valenciennes France
Basic Medical Sciences Department Arab American University Jenin Palestine
Bioanalytica AG Luzern Switzerland
Centro de Investigação em Saéude de Manhiça Manhiça Mozambique
Chinese University of Hong Kong Shatin Hong Kong
Clinical Laboratory of Microbiology and Virology University Hospital Lozenetz Sofia Bulgaria
Clinical Research Unit of Nanoro National Institutes of Medical Research Ouagadougou Burkina Faso
College of Medicine University of Ibadan Ibadan Oyo State Nigeria
Departamento de Bacteriologia Laboratorio Central de Salud Publico Asunción Paraguay
Department of Clinical and Molecular Microbiology University Hospital Centre Zagreb Zagreb Croatia
Department of Laboratory Nouna Health Research Centre Nouna Burkina Faso
Department of Medical Microbiology Motol University Hospital Prague Czech Republic
Department of Medical Sciences National Institute of Health Sariburi Thailand
Department of Medicine and Surgery University of Milano Bicocca Milan Italy
Department of Microbiology and Infection Control Akershus University Hospital Lørenskog Norway
Department of Microbiology University Hospital in Plzen Plzen Czech Republic
Department of Microbiology University of Dhaka Dhaka Bangladesh
Department of Pathology and Experimental Therapy Universitat de Barcelona Barcelona Spain
Division of Clinical Bacteriology and Mycology University Hospital Basel Basel Switzerland
Division of Clinical Microbiology Qatif Central Hospital Al Qatif Eastern Province Saudi Arabia
Dronning Ingrids Hospital Nuuk Greenland
Faculty of Pharmacy University of Ibadan Ibadan Oyo State Nigeria
Institute of Microbiology Centre Hospitalier Universitaire de Lille Lille France
Klinisk Mikrobiologisk Afdeling Hvidovre Hospital Hvidovre Denmark
Laboratoire de Microbiologie Clinique Centre Hospitalo universitaire Algiers Algeria
Laboratory Medicine Department Hospital of Lithuanian University of Health Sciences Kaunas Lithuania
Levy Mwanawasa Teaching Hospital Lusaka Zambia
Lusaka Apex Medical School Lusaka Zambia
Medical Microbiology and Immunology University of Pecs Medical School Pecs Hungary
Microbiology Department Canberra Hospital Garran Australian Capital Territory Australia
Microbiology Department Hospital de Bellvitge Barcelona Spain
Microbiology Department University Hospital Shefqet Ndroqi Tirana Albania
Microbiology Group Instituto Nacional de Salud Bogotá Colombia
Molecular Diagnostic Section Khyber Teaching Hospital Peshawar Pakistan
National Food Institute Technical University of Denmark Kgs Lyngby Denmark
National Hospital Abuja Abuja Nigeria
Obafemi Awolowo University Ile Ife Nigeria
Otto von Guericke University Magdebourg Germany
Southern Community Laboratories University of Otago Otago Dunedin New Zealand
University College of Ibadan Ibadan Oyo State Nigeria
See more in PubMed
World Health Organization. Antimicrobial resistance: Global Report on Surveillance. 2014 [cited 4 May 2024]. Available from: https://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf
Robinson TP, Bu DP, Carrique-Mas J, Fèvre EM, Gilbert M, Grace D, et al. Antibiotic resistance is the quintessential One Health issue. Trans R Soc Trop Med Hyg. 2016;110(7):377–80. doi: 10.1093/trstmh/trw048 PubMed DOI PMC
Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–55. doi: 10.1016/S0140-6736(21)02724-0 PubMed DOI PMC
Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008;197(8):1079–81. doi: 10.1086/533452 PubMed DOI
World Health Organization. Global Priority List of Antibiotic-Resistance Bacteria to Guide Research, Discovery, and Development of New Antibiotics. 2017 [cited 9 Jun 2023]. Available from: https://remed.org/wp-content/uploads/2017/03/lobal-priority-list-of-antibiotic-resistant-bacteria-2017.pdf
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev. 2018;31(4):e00088-17. doi: 10.1128/CMR.00088-17 PubMed DOI PMC
Dionisio F, Zilhão R, Gama JA. Interactions between plasmids and other mobile genetic elements affect their transmission and persistence. Plasmid. 2019;102:29–36. doi: 10.1016/j.plasmid.2019.01.003 PubMed DOI
Guédon G, Libante V, Coluzzi C, Payot S, Leblond-Bourget N. The Obscure World of Integrative and Mobilizable Elements, Highly Widespread Elements that Pirate Bacterial Conjugative Systems. Genes (Basel). 2017;8(11):337. doi: 10.3390/genes8110337 PubMed DOI PMC
Botelho J, Schulenburg H. The Role of Integrative and Conjugative Elements in Antibiotic Resistance Evolution. Trends Microbiol. 2021;29(1):8–18. doi: 10.1016/j.tim.2020.05.011 PubMed DOI
Johnson CM, Grossman AD. Integrative and Conjugative Elements (ICEs): What They Do and How They Work. Annu Rev Genet. 2015;49:577–601. doi: 10.1146/annurev-genet-112414-055018 PubMed DOI PMC
Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev. 2014;38(5):865–91. doi: 10.1111/1574-6976.12067 PubMed DOI PMC
Nzabarushimana E, Tang H. Insertion sequence elements-mediated structural variations in bacterial genomes. Mob DNA. 2018;9:29. doi: 10.1186/s13100-018-0134-3 PubMed DOI PMC
Harmer CJ, Pong CH, Hall RM. Structures bounded by directly-oriented members of the IS26 family are pseudo-compound transposons. Plasmid. 2020;111:102530. doi: 10.1016/j.plasmid.2020.102530 PubMed DOI
Haniford DB, Ellis MJ. Transposons Tn10 and Tn5. Microbiol Spectr. 2015;3(1):631–45. doi: 10.1128/microbiolspec.MDNA3-0002-2014 PubMed DOI
Hansson K, Sundström L, Pelletier A, Roy PH. IntI2 integron integrase in Tn7. J Bacteriol. 2002;184(6):1712–21. doi: 10.1128/JB.184.6.1712-1721.2002 PubMed DOI PMC
Santos C, Caetano T, Ferreira S, Mendo S. Tn5090-like class 1 integron carrying bla(VIM-2) in a Pseudomonas putida strain from Portugal. Clin Microbiol Infect. 2010;16(10):1558–61. doi: 10.1111/j.1469-0691.2010.03165.x PubMed DOI
Fonseca ÉL, Vicente AC. Integron Functionality and Genome Innovation: An Update on the Subtle and Smart Strategy of Integrase and Gene Cassette Expression Regulation. Microorganisms. 2022;10(2):224. doi: 10.3390/microorganisms10020224 PubMed DOI PMC
Lu M, Gong T, Zhang A, Tang B, Chen J, Zhang Z, et al. Mobile Genetic Elements in Streptococci. Curr Issues Mol Biol. 2019;32:123–66. doi: 10.21775/cimb.032.123 PubMed DOI
Noel HR, Petrey JR, Palmer LD. Mobile genetic elements in Acinetobacter antibiotic‐resistance acquisition and dissemination. Annals of the New York Academy of Sciences. 2022;1518(1):166–82. doi: 10.1111/nyas.14918 PubMed DOI PMC
Malachowa N, DeLeo FR. Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci. 2010;67(18):3057–71. doi: 10.1007/s00018-010-0389-4 PubMed DOI PMC
Horne T, Orr VT, Hall JP. How do interactions between mobile genetic elements affect horizontal gene transfer?. Curr Opin Microbiol. 2023;73:102282. doi: 10.1016/j.mib.2023.102282 PubMed DOI
Frost LS, Leplae R, Summers AO, Toussaint A. Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol. 2005;3(9):722–32. doi: 10.1038/nrmicro1235 PubMed DOI
Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17(3):261–72. doi: 10.1038/s41592-019-0686-2 PubMed DOI PMC
Wein T, Hülter NF, Mizrahi I, Dagan T. Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nat Commun. 2019;10(1):2595. doi: 10.1038/s41467-019-10600-7 PubMed DOI PMC
Sidsel N, Gunhild L, Judit S, Laura B, Gábor G, Wojchiech C, et al. Whole genomes from bacteria collected at diagnostic units around the world 2020. 2022. 10.11583/DTU.21758456 DOI
Center for Genomic Epidemiology. FoodQCPipeline. [cited 4 May 2024]. Available from: https://bitbucket.org/genomicepidemiology/foodqcpipeline/src/master/.
Andrews S. FastQC A Quality Control tool for High Throughput Sequence Data. Babraham Bioinformatics; 2010 [cited 3 Jun 2015]. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77. doi: 10.1089/cmb.2012.0021 PubMed DOI PMC
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072–5. doi: 10.1093/bioinformatics/btt086 PubMed DOI PMC
Hasman H, Saputra D, Sicheritz-Ponten T, Lund O, Svendsen CA, Frimodt-Møller N, et al. Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples. J Clin Microbiol. 2014;52(1):139–46. doi: 10.1128/JCM.02452-13 PubMed DOI PMC
Silva M, Machado MP, Silva DN, Rossi M, Moran-Gilad J, Santos S, et al. chewBBACA: A complete suite for gene-by-gene schema creation and strain identification. Microb Genom. 2018;4(3):e000166. doi: 10.1099/mgen.0.000166 PubMed DOI PMC
Leopold SR, Goering RV, Witten A, Harmsen D, Mellmann A. Bacterial whole-genome sequencing revisited: portable, scalable, and standardized analysis for typing and detection of virulence and antibiotic resistance genes. J Clin Microbiol. 2014;52(7):2365–70. doi: 10.1128/JCM.00262-14 PubMed DOI PMC
Zhou Z, Alikhan N-F, Mohamed K, Fan Y, Agama Study Group, Achtman M. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 2020;30(1):138–52. doi: 10.1101/gr.251678.119 PubMed DOI PMC
Toorop MMA, Kraakman MEM, Hoogendijk IV, van Prehn J, Claas ECJ, Wessels E, et al. A core-genome multilocus sequence typing scheme for the detection of genetically related Streptococcus pyogenes clusters. J Clin Microbiol. 2023;61(11):e0055823. doi: 10.1128/jcm.00558-23 PubMed DOI PMC
Seemann T. mlst. [cited 24 May 2024]. Available from: https://github.com/tseemann/mlst
Jolley KA, Maiden MCJ. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics. 2010;11:595. doi: 10.1186/1471-2105-11-595 PubMed DOI PMC
Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75(12):3491–500. doi: 10.1093/jac/dkaa345 PubMed DOI PMC
Johansson MHK, Bortolaia V, Tansirichaiya S, Aarestrup FM, Roberts AP, Petersen TN. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J Antimicrob Chemother. 2021;76(1):101–9. doi: 10.1093/jac/dkaa390 PubMed DOI PMC
Pellow D, Mizrahi I, Shamir R. PlasClass improves plasmid sequence classification. PLoS Comput Biol. 2020;16(4):e1007781. doi: 10.1371/journal.pcbi.1007781 PubMed DOI PMC
Schwengers O, Barth P, Falgenhauer L, Hain T, Chakraborty T, Goesmann A. Platon: identification and characterization of bacterial plasmid contigs in short-read draft assemblies exploiting protein sequence-based replicon distribution scores. Microb Genom. 2020;6(10):mgen000398. doi: 10.1099/mgen.0.000398 PubMed DOI PMC
Hunter JD. Matplotlib: A 2D Graphics Environment. Comput Sci Eng. 2007;9(3):90–5. doi: 10.1109/mcse.2007.55 DOI
Waskom M. seaborn: statistical data visualization. J Open Source Softw. 2021;6(60):3021. doi: 10.21105/joss.03021 DOI
Titus Brown C, Irber L. sourmash: a library for MinHash sketching of DNA. JOSS. 2016;1(5):27. doi: 10.21105/joss.00027 DOI
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. doi: 10.1186/1471-2105-10-421 PubMed DOI PMC
Hagberg AA, Schult DA, Swart PJ. Exploring Network Structure, Dynamics, and Function using NetworkX. In: Varoquaux G, Vaught T, Millman J, editors. Proceedings of the 7th Python in Science Conference. Pasadena; 2008. p. 11–15.
Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech. 2008;2008(10):P10008. doi: 10.1088/1742-5468/2008/10/p10008 DOI
Nag S, Larsen G, Szarvas J, Gulyàs GM, Ciok W, Lagermann TMR, et al. Global collection of clinically relevant bacterial genomes from project TWIW 2020. 2023.
Hollenbeck BL, Rice LB. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence. 2012;3(5):421–33. doi: 10.4161/viru.21282 PubMed DOI PMC
Pishtiwan AH, Khadija KM. Prevalence of blaTEM, blaSHV, and blaCTX-M Genes among ESBL-Producing Klebsiella pneumoniae and Escherichia coli Isolated from Thalassemia Patients in Erbil, Iraq. Mediterr J Hematol Infect Dis. 2019;11(1):e2019041. doi: 10.4084/MJHID.2019.041 PubMed DOI PMC
Husna A, Rahman MM, Badruzzaman ATM, Sikder MH, Islam MR, Rahman MT, et al. Extended-Spectrum β-Lactamases (ESBL): Challenges and Opportunities. Biomedicines. 2023;11(11):2937. doi: 10.3390/biomedicines11112937 PubMed DOI PMC
Liakopoulos A, Mevius D, Ceccarelli D. A Review of SHV Extended-Spectrum β-Lactamases: Neglected Yet Ubiquitous. Front Microbiol. 2016;7:1374. doi: 10.3389/fmicb.2016.01374 PubMed DOI PMC
Bonardi S, Cabassi CS, Fiaccadori E, Cavirani S, Parisi A, Bacci C, et al. Detection of carbapenemase- and ESBL-producing Klebsiella pneumoniae from bovine bulk milk and comparison with clinical human isolates in Italy. Int J Food Microbiol. 2023;387:110049. doi: 10.1016/j.ijfoodmicro.2022.110049 PubMed DOI
Surleac M, Czobor Barbu I, Paraschiv S, Popa LI, Gheorghe I, Marutescu L, et al. Whole genome sequencing snapshot of multi-drug resistant Klebsiella pneumoniae strains from hospitals and receiving wastewater treatment plants in Southern Romania. PLoS One. 2020;15(1):e0228079. doi: 10.1371/journal.pone.0228079 PubMed DOI PMC
Zhao H, He Z, Li Y, Sun B. Epidemiology of carbapenem-resistant Klebsiella pneumoniae ST15 of producing KPC-2, SHV-106 and CTX-M-15 in Anhui, China. BMC Microbiol. 2022;22(1):262. doi: 10.1186/s12866-022-02672-1 PubMed DOI PMC
García-Solache M, Rice LB. The Enterococcus: a Model of Adaptability to Its Environment. Clin Microbiol Rev. 2019;32(2):e00058-18. doi: 10.1128/CMR.00058-18 PubMed DOI PMC
Nagata Y, Endo R, Ito M, Ohtsubo Y, Tsuda M. Aerobic degradation of lindane (gamma-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol. 2007;76(4):741–52. doi: 10.1007/s00253-007-1066-x PubMed DOI
Targant H, Doublet B, Aarestrup FM, Cloeckaert A, Madec J-Y. IS6100-mediated genetic rearrangement within the complex class 1 integron In104 of the Salmonella genomic island 1. J Antimicrob Chemother. 2010;65(7):1543–5. doi: 10.1093/jac/dkq163 PubMed DOI
Liu N, Tang B, Wang H, Chen X, Wen P, Wang Z, et al. Coexistence of a novel NDM-1-encoding MDR plasmid and an IMP-4-encoding IncN-IncU hybrid plasmid in a clinical isolate of Citrobacter freundii BC73. Front Microbiol. 2024;15:1388651. doi: 10.3389/fmicb.2024.1388651 PubMed DOI PMC
Rossolini GM, D’Andrea MM, Mugnaioli C. The spread of CTX-M-type extended-spectrum beta-lactamases. Clin Microbiol Infect. 2008;14:33–41. doi: 10.1111/j.1469-0691.2007.01867.x PubMed DOI
Botts RT, Page DM, Bravo JA, Brown ML, Castilleja CC, Guzman VL, et al. Polluted wetlands contain multidrug-resistance plasmids encoding CTX-M-type extended-spectrum β-lactamases. Plasmid. 2023;126:102682. doi: 10.1016/j.plasmid.2023.102682 PubMed DOI PMC
Nakayama T, Yamaguchi T, Jinnai M, Kumeda Y, Hase A. ESBL-producing Vibrio vulnificus and V. alginolyticus harbour a plasmid encoding ISEc9 upstream of blaCTX-M-55 and qnrS2 isolated from imported seafood. Arch Microbiol. 2023;205(6):241. doi: 10.1007/s00203-023-03569-x PubMed DOI
Domingues S, Lima T, Escobar C, Plantade J, Charpentier X, da Silva GJ. Large DNA fragment ISEc9-mediated transposition during natural transformation allows interspecies dissemination of antimicrobial resistance genes. Eur J Clin Microbiol Infect Dis. 2025;44(6):1417–24. doi: 10.1007/s10096-025-05113-9 PubMed DOI PMC
Dobrindt U, Chowdary MG, Krumbholz G, Hacker J. Genome dynamics and its impact on evolution of Escherichia coli. Med Microbiol Immunol. 2010;199(3):145–54. doi: 10.1007/s00430-010-0161-2 PubMed DOI
Johansson MH, Aarestrup FM, Petersen T. Importance of mobile genetic elements for dissemination of antimicrobial resistance in metagenomic sewage samples across the world. PLoS One. 2023. PubMed PMC
Hu Y, Yang X, Li J, Lv N, Liu F, Wu J, et al. The Bacterial Mobile Resistome Transfer Network Connecting the Animal and Human Microbiomes. Appl Environ Microbiol. 2016;82(22):6672–81. doi: 10.1128/AEM.01802-16 PubMed DOI PMC
Ellabaan MMH, Munck C, Porse A, Imamovic L, Sommer MOA. Forecasting the dissemination of antibiotic resistance genes across bacterial genomes. Nat Commun. 2021;12(1):2435. doi: 10.1038/s41467-021-22757-1 PubMed DOI PMC
Rahiminejad S, Maurya MR, Subramaniam S. Topological and functional comparison of community detection algorithms in biological networks. BMC Bioinformatics. 2019;20(1):212. doi: 10.1186/s12859-019-2746-0 PubMed DOI PMC
Mlynarczyk-Bonikowska B, Kowalewski C, Krolak-Ulinska A, Marusza W. Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. Int J Mol Sci. 2022;23(15):8088. doi: 10.3390/ijms23158088 PubMed DOI PMC
Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001;14(4):933–51, table of contents. doi: 10.1128/CMR.14.4.933-951.2001 PubMed DOI PMC
D’Andrea MM, Arena F, Pallecchi L, Rossolini GM. CTX-M-type β-lactamases: a successful story of antibiotic resistance. Int J Med Microbiol. 2013;303(6–7):305–17. doi: 10.1016/j.ijmm.2013.02.008 PubMed DOI
Evans BA, Amyes SGB. OXA β-lactamases. Clin Microbiol Rev. 2014;27(2):241–63. doi: 10.1128/CMR.00117-13 PubMed DOI PMC