Nanodiamond mediated delivery of pyridinium oxime antidotes to central nervous system for potential treatment of exposure to nerve agents
Jazyk angličtina Země Irsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R15 EY029813
NEI NIH HHS - United States
PubMed
40825460
PubMed Central
PMC12777654
DOI
10.1016/j.cbi.2025.111711
PII: S0009-2797(25)00341-2
Knihovny.cz E-zdroje
- Klíčová slova
- Acetylcholinesterase reactivators, Blood-brain barrier, Central nervous system, Nanodiamonds, Organophosphorus toxicants, Oximes,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- antidota * chemie farmakologie MeSH
- buňky MDCK MeSH
- centrální nervový systém * účinky léků metabolismus MeSH
- cholinesterasové inhibitory toxicita MeSH
- endoteliální buňky pupečníkové žíly (lidské) MeSH
- hematoencefalická bariéra metabolismus účinky léků MeSH
- lidé MeSH
- nanodiamanty * chemie MeSH
- nervová bojová látka * toxicita MeSH
- oximy * chemie farmakologie MeSH
- psi MeSH
- pyridinové sloučeniny * chemie farmakologie MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- antidota * MeSH
- cholinesterasové inhibitory MeSH
- nanodiamanty * MeSH
- nervová bojová látka * MeSH
- oximy * MeSH
- pyridinové sloučeniny * MeSH
Currently available antidotes against toxic organophosphorus compounds suffer from poor permeability across the blood-brain barrier (BBB) and due to this, are limited in their ability to restore the inhibited acetylcholinesterase (AChE) in the central nervous system (CNS). We designed functionalized detonation nanodiamond nanocarrier platforms to transport quaternary oxime antidotes into CNS. We showed that the nanodiamonds with covalently attached 4-oximinopyridinium moiety, cross the layer of Madin-Darby Canine Kidney (MDCK) cells, the surrogate BBB model, and demonstrate a dose-independent reactivation in vitro towards human AChE inhibited by nerve agents GB and VX, and pesticide paraoxon. Confocal microscopy visualization of tight junctions and actin cytoskeleton in MDCK and Human Umbilical Vein Endothelial Cells (HUVEC) revealed temporary disruption of tight junctions at higher nanoparticle concentrations without compromising cell viability or cytoskeletal integrity. Although reactivation was modest, the nanodiamond platform showed promise for delivering quaternary oxime to the central nervous system (CNS) in vitro. The results reveal the potential of detonation nanodiamonds as a promising delivery platform for charged therapeutic agents to CNS aimed to enhance treatment outcomes in organophosphorus poisoning.
Zobrazit více v PubMed
Worek F, Wille T, Koller M, Thiermann H Toxicology of Organophosphorus Compounds in View of an Increasing Terrorist Threat. Arch. Toxicol. 90, 2131–2145 (2016). PubMed
Sharon M Nanotechnology to Aid Biological and Chemical Warfare Defense. In Nanotechnology in The Defense Industry; 10.1002/9781119460503.Ch6 (2019). DOI
Hotchkiss PJ The World’s Chemical-Weapons Stockpiles Are Gone — But A New Challenge Looms. Nature 623, 459 (2023). PubMed
Tucker JB The Role of The Chemical Weapons Convention in Countering Chemical Terrorism. Terror. Political Violence 24, 105–119 (2012).
Walker PF A Century of Chemical Warfare: Building A World Free of Chemical Weapons. One Hundred Years of Chemical Warfare: Research, Deployment, Consequences, 379–400; 10.1007/978-3-319-51664-6_20 (2017). DOI
Urbina F, Lentzos F, Invernizzi C, Ekins S Dual Use of Artificial-Intelligence-Powered Drug Discovery. Nat. Mach. Intell. 4, 189–191 (2022). PubMed PMC
Evison D, Hinsley D, Rice P Chemical Weapons. BMJ 324, 332–335 (2002). PubMed PMC
Castelvecchi D Novichok Nerve Agents Banned by Chemical-Weapons Treaty. Nature; 10.1038/D41586-019-03686-Y (2019). PubMed DOI
Hrabinova M et al. A-Series Agent A-234: Initial In Vitro And In Vivo Characterization. Arch. Toxicol. 98, 1135–1149 (2024). PubMed PMC
Bertolote J, Fleischmann A, Eddleston M, Gunnell D Deaths from Pesticide Poisoning: A Global Response. Br. J. Psychiatry 189, 201–203 (2006). PubMed PMC
Mohan MK et al. Oxime-Functionalized Anti-Insecticide Fabric Reduces Insecticide Exposure Through Dermal and Nasal Routes, and Prevents Insecticide-Induced Neuromuscular-Dysfunction and Mortality. Nat. Commun. 15, 4844 (2024). PubMed PMC
Sharma R et al. Development and Structural Modifications of Cholinesterase Reactivators Against Chemical Warfare Agents in Last Decade: A Review. Mini-Rev. Med. Chem. 15, 58–72 (2014). PubMed
Thiermann H, Aurbek N, Worek F Treatment of Nerve Agent Poisoning. Issues In Toxicology 27, 1–42 (2016).
Durodié B, Wessely S Resilience or Panic? The Public and Terrorist Attack. Lancet 360, 1901–1902 (2002). PubMed
Pulkrabkova L et al. Neurotoxicity Evoked by Organophosphates and Available Countermeasures. Arch. Toxicol. 97, 39–72 (2023). PubMed
Wilson I, Ginsburg B A Powerful Reactivator of Alkylphosphate-Inhibited Acetylcholinesterase. Biochim. Biophys. Acta 18, 168–170 (1955). PubMed
Singh N, Karpichev Y, Tiwari AK, Kuca K, Ghosh KK Oxime Functionality in Surfactant Self-Assembly: An Overview on Combating Toxicity of Organophosphates. J. Mol. Liq. 208, 237–252 (2015).
Dhuguru J, Zviagin E, Skouta R FDA-Approved Oximes and Their Significance in Medicinal Chemistry. Pharmaceuticals 15, 66 (2022). PubMed PMC
Kovalevsky A, Blumenthal DK, Cheng X, Taylor P, Radić Z Limitations in Current Acetylcholinesterase Structure–Based Design of Oxime Antidotes for Organophosphate Poisoning. Ann. N. Y. Acad. Sci. 1378, 41–49 (2016). PubMed PMC
Worek F, Thiermann H, Wille T Oximes in Organophosphate Poisoning: 60 Years of Hope and Despair. Chem.-Biol. Interact. 259, 93–98 (2016). PubMed
Gorecki L, Soukup O, Korabecny J Countermeasures in Organophosphorus Intoxication: Pitfalls and Prospects. Trends Pharmacol. Sci. 43, 593–606 (2022). PubMed
Amitai G et al. Non-Quaternary Oximes Detoxify Nerve Agents and Reactivate Nerve Agent-Inhibited Human Butyrylcholinesterase. Commun. Biol. 4, 573 (2021). PubMed PMC
Gorecki L, Korabecny J, Musilek K, Malinak D, Nepovimova E, Dolezal R, Jun D, Soukup O, Kuca K SAR Study to Find Optimal Cholinesterase Reactivator Against Organophosphorous Nerve Agents and Pesticides. Arch. Toxicol. 90, 2831–2859 (2016). PubMed
Handbook of Toxicology of Chemical Warfare Agents (Elsevier, 2020). 10.1016/C2018-0-04837-9. DOI
Gorecki L et al. Rational Design, Synthesis, And Evaluation of Uncharged, “Smart” Bis-Oxime Antidotes of Organophosphate-Inhibited Human Acetylcholinesterase. J. Biol. Chem. 295, 4079–4092 (2020). PubMed PMC
Jun D, Musilova L, Musilek K, Kuca K PubMed PMC
Bennion BJ et al. Development of A CNS-Permeable Reactivator for Nerve Agent Exposure: An Iterative, Multi-Disciplinary Approach. Sci. Rep. 11, 15567 (2021). PubMed PMC
Eddleston M, Chowdhury FR Pharmacological Treatment of Organophosphorus Insecticide Poisoning: The Old and the (Possible) New. Br. J. Clin. Pharmacol. 81, 462–470 (2016). PubMed PMC
Renou J et al. Syntheses And In Vitro Evaluations of Uncharged Reactivators for Human Acetylcholinesterase Inhibited By Organophosphorus Nerve Agents. Chem.-Biol. Interact. 203, 81–84 (2013). PubMed
Mercey G et al. Reactivators of Acetylcholinesterase Inhibited by Organophosphorus Nerve Agents. Acc. Chem. Res. 45, 756–766 (2012). PubMed
Franjesevic AJ et al. Resurrection and Reactivation of Acetylcholinesterase and Butyrylcholinesterase. Chem. Eur. J. 25, 5337–5371 (2019). PubMed PMC
Sakurada K, Ohta H No Promising Antidote 25 Years After the Tokyo Subway Sarin Attack: A Review. Leg. Med. 47, 101761 (2020). PubMed
Barbu E, Molnàr É, Tsibouklis J, Górecki DC The Potential for Nanoparticle-Based Drug Delivery to The Brain: Overcoming the Blood-Brain Barrier. Expert Opin. Drug Deliv. 6, 553–565 (2009). PubMed
Grabrucker AM et al. Nanoparticle Transport Across the Blood Brain Barrier. Tissue Barriers 4, E1153568 (2016). PubMed PMC
Kobrlova T, Korabecny J, Soukup O Current Approaches to Enhancing Oxime Reactivator Delivery into The Brain. Toxicology 423, 75–83 (2019). PubMed
Ding S et al. Overcoming Blood–Brain Barrier Transport: Advances in Nanoparticle-Based Drug Delivery Strategies. Mater. Today 37, 112–125 (2020). PubMed PMC
Turcheniuk K, Mochalin VN Biomedical Applications of Nanodiamond (Review). Nanotechnology 28, 252001 (2017). PubMed
Chang SLY, Reineck P, Krueger A, Mochalin VN Ultrasmall Nanodiamonds: Perspectives and Questions. ACS Nano 16, 8513–8524 (2022). PubMed
Mochalin VN, Shenderova O, Ho D, Gogotsi Y The Properties and Applications Of Nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2012). PubMed
Mochalin VN et al. Covalent Incorporation of Aminated Nanodiamond into An Epoxy Polymer Network. ACS Nano 5, 7494–7502 (2011). PubMed
Costa GCC, Shenderova O, Mochalin V, Gogotsi Y, Navrotsky A Thermochemistry of Nanodiamond Terminated by Oxygen Containing Functional Groups. Carbon 80, 544–550 (2014).
Zhang X, Hu W, Li J, Tao L, Wei Y A Comparative Study of Cellular Uptake and Cytotoxicity Of Multi-Walled Carbon Nanotubes, Graphene Oxide, And Nanodiamond. Toxicol. Res. 1, 62–68 (2012).
Kharisov BI, Kharissova OV, Chávez-Guerrero LS Synthesis Techniques, Properties, and Applications of Nanodiamonds. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry 40, 84–101 (2010).
Danilenko VV On the History of The Discovery of Nanodiamond Synthesis. Phys. Solid State 46, 581–584 (2004).
Osswald S, Yushin G, Mochalin V, Kucheyev SO, Gogotsi Y Control of Sp PubMed
Kume A, Mochalin VN Sonication-Assisted Hydrolysis of Ozone Oxidized Detonation Nanodiamond. Diam. Relat. Mater. 103, 107705 (2020).
Zheng W-W et al. Organic Functionalization of Ultradispersed Nanodiamond: Synthesis and Applications. J. Mater. Chem. 19, 8432–8441 (2009).
Krueger A, Lang D Functionality Is Key: Recent Progress in The Surface Modification of Nanodiamond. Adv. Funct. Mater. 22, 890–906 (2012).
Vaijayanthimala V et al. Nanodiamond-Mediated Drug Delivery and Imaging: Challenges and Opportunities. Expert. Opin. Drug. Deliv. 12, 735–749 (2015). PubMed
Giammarco JM, Mochalin VN, Haeckel J, Gogotsi Y The Adsorption of Tetracycline and Vancomycin onto Nanodiamond With Controlled Release. J. Colloid Interface Sci. 468, 253–261 (2016). PubMed
Huang Y-A et al. The Effect of Fluorescent Nanodiamonds On Neuronal Survival and Morphogenesis. Sci. Rep. 4, 6702 (2014). PubMed PMC
Beltz J et al. Effect of Nanodiamond Surface Chemistry on Adsorption and Release of Tiopronin. Diam. Relat. Mater. 100, 107590 (2019). PubMed PMC
Mochalin VN et al. Adsorption of Drugs on Nanodiamond: Toward Development of a Drug Delivery Platform. Mol. Pharm. 10, 3728–3735 (2013). PubMed
An FF, Zhang XH Strategies for Preparing Albumin-Based Nanoparticles for Multifunctional Bioimaging And Drug Delivery. Theranostics 7, 3667–3689 (2017). PubMed PMC
Lin T et al. Blood-Brain-Barrier-Penetrating Albumin Nanoparticles for Biomimetic Drug Delivery Via Albumin-Binding Protein Pathways for Antiglioma Therapy. ACS Nano 10, 9999–10012 (2016). PubMed
Banks WA From Blood-Brain Barrier to Blood-Brain Interface: New Opportunities for CNS Drug Delivery. Nat. Rev. Drug Discov. 15, 275–292 (2016). PubMed
Liu KK et al. Covalent Linkage of Nanodiamond-Paclitaxel for Drug Delivery and Cancer Therapy. Nanotechnology 21, 315103 (2010). PubMed
Li X et al. TAT-Conjugated Nanodiamond For the Enhanced Delivery of Doxorubicin. J. Mater. Chem. 21, 7966–7973 (2011).
Moscariello P et al. Unraveling In Vivo Brain Transport of Protein-Coated Fluorescent Nanodiamonds. Small 15, 1902992 (2019). PubMed
Roy U et al. Characterization of Nanodiamond-Based Anti-HIV Drug Delivery to The Brain. Sci. Rep. 8, 16003 (2018). PubMed PMC
Setyawati MI, Mochalin VN, Leong DT Tuning Endothelial Permeability with Functionalized Nanodiamonds. ACS Nano 10, 1170–1181 (2016). PubMed
Kim J et al. A Systematic Study on The Use of Multifunctional Nanodiamonds For Neuritogenesis And Super-Resolution Imaging. Biomater. Res. 27, 37 (2023). PubMed PMC
Nance E, Pun SH, Saigal R, Sellers DL Drug Delivery to The Central Nervous System. Nat. Rev. Mater. 7, 314–331 (2022). PubMed PMC
Helmbrecht H, Joseph A, Mckenna M, Zhang M, Nance E Governing Transport Principles for Nanotherapeutic Application in The Brain. Curr. Opin. Chem. Eng. 30, 112–119 (2020). PubMed PMC
Woodman EK, Chaffey JGK, Hopes PA, Hose DRJ, Gilday JPN,
Usachova N, Leitis G, Jirgensons A, Kalvinsh I Synthesis of Hydroxamic Acids by Activation of Carboxylic Acids With
Cui J-F, Fang X-W, Schmidt-Rohr K Quantification Of C═C And C═O Surface Carbons in Detonation Nanodiamond by NMR. J. Phys. Chem. C 118, 9621–9627 (2014).
Panich AM Nuclear Magnetic Resonance Studies of Nanodiamond Surface Modification. Diam. Relat. Mater. 79, 21–31 (2017).
Presti C et al. NMR And EPR Characterization of Functionalized Nanodiamonds. J. Phys. Chem. C 119, 12408–12422 (2015).
Shenderova O et al. Hydroxylated Detonation Nanodiamond: FTIR, XPS, And NMR Studies. J. Phys. Chem. C 115, 19005–19011 (2011).
Wang Q et al. Evaluation of the MDR-MDCK Cell Line as A Permeability Screen for The Blood–Brain Barrier. Int. J. Pharm. 288, 349–359 (2005). PubMed
Rankovic Z CNS Drug Design: Balancing Physicochemical Properties for Optimal Brain Exposure. J. Med. Chem. 58, 2584–2608 (2015). PubMed
Soukup O et al. A Resurrection Of 7-MEOTA: A Comparison with Tacrine. Curr. Alzheimer Res. 10, 893–906 (2013). PubMed
Desai C, Chen K, Mitra S Aggregation Behavior of Nanodiamonds and Their Functionalized Analogs in An Aqueous Environment. Environ. Sci., Processes Impacts 16, 518–523 (2014). PubMed
Krüger A et al. Unusually Tight Aggregation in Detonation Nanodiamond: Identification and Disintegration. Carbon 43, 1722–1730 (2005).
Chang SLY, Williams D, Gutierrez MR, Dwyer C, Barnard AS Aggregation Behavior of Detonation Nanodiamond In Solution. Microsc. Microanal. 25, 1740–1741 (2019).
Fox K et al. Nanodiamond-Polycaprolactone Composite: A New Material for Tissue Engineering With Sub-Dermal Imaging Capabilities. Mater. Lett. 185, 185–188 (2016).
Schrand AM et al. Are Diamond Nanoparticles Cytotoxic? J. Phys. Chem. B 111, 2–7 (2007). PubMed
Kümmerer K, Menz J, Schubert T, Thielemans W Biodegradability of Organic Nanoparticles in The Aqueous Environment. Chemosphere 82, 1387–1392 (2011). PubMed
Daval D, Xu D Biodegradation of Materials: Building Bridges Between Scientific Disciplines. Npj Mater. Degrad. 7, 36 (2023).
Mokhtari-Farsani A, Hasany M, Lynch I, Mehrali M Biodegradation of Carbon-Based Nanomaterials: The Importance Of “Biomolecular Corona” Consideration. Adv. Funct. Mater. 32, 2105649 (2022).
Mochalin VN, Gogotsi Y Wet Chemistry Route to Hydrophobic Blue Fluorescent Nanodiamond. J. Am. Chem. Soc. 131, 4594–4595 (2009). PubMed
Turcheniuk K, Trecazzi C, Deeleepojananan C, Mochalin VN Salt-Assisted Ultrasonic Deaggregation Of Nanodiamond. ACS Appl. Mater. Interfaces 8, 25461–25468 (2016). PubMed
Mochalin VN, Osswald S, Gogotsi Y Contribution of Functional Groups To The Raman Spectrum Of Nanodiamond Powders. Chem. Mater. 21, 273–279 (2009).
Pentecost A, Gour S, Mochalin VN, Knoke I, Gogotsi Y Deaggregation Of Nanodiamond Powders Using Salt- And Sugar-Assisted Milling. ACS Appl. Mater. Interfaces 2, 3289–3294 (2010). PubMed
Okaru AO et al. Application Of PubMed PMC
Gorecki L et al. Structure-Activity Relationships of Dually-Acting Acetylcholinesterase Inhibitors Derived from Tacrine on PubMed
Schindelin J et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods. 9, 676–682 (2012). PubMed PMC
Ellman GL, Courtney KD, Andres V, Featherstone RM A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 7, 88–95 (1961). PubMed
Jun D et al. Reactivation of Human Acetylcholinesterase and Butyrylcholinesterase Inhibited by Leptophos-Oxon With Different Oxime Reactivators PubMed PMC
Jun D, Musilova L, Musilek K, Kuca K PubMed PMC
Hrabinova M, Pejchal J, Hepnarova V, Muckova L, Junova L, Opravil J, et al. A-series agent A-234: initial in vitro and in vivo characterization. Arch Toxicol. 98, 1135–1149 (2024). PubMed PMC
Spilovska K et al. Novel Tacrine-Scutellarin Hybrids as Multipotent Anti-Alzheimer’s Agents: Design, Synthesis and Biological Evaluation. Molecules 22, 1006 (2017). PubMed PMC