PEGylated Asparaginase in Children with Acute Lymphoblastic Leukemia Treated within the AIEOP-BFM ALL 2009 Trial: Population Pharmacokinetics and Drug Exposure

. 2025 Aug 19 ; () : . [epub] 20250819

Status Publisher Jazyk angličtina Země Francie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40828424

Grantová podpora
Deutschland GmbH Servier
DJCLSR13/01 José Carreras Leukämie-Stiftung
Analysis of Anti-E.coli-ASNase Medac
anti-PEG-ASNase antibodies Medac

Odkazy

PubMed 40828424
DOI 10.1007/s13318-025-00962-3
PII: 10.1007/s13318-025-00962-3
Knihovny.cz E-zdroje

BACKGROUND AND OBJECTIVES: Focusing on pharmacokinetic-derived individual dose-intensity parameter values (DIPs), we modeled the pharmacokinetics of polyethylene glycol-conjugated asparaginase (PEG-ASNase) in all treatment phases and different trial groups of AIEOP-BFM ALL 2009. METHODS: Children with acute lymphoblastic leukemia received 1-10 weekly or biweekly repetitive doses (2500 U/m2/dose intravenously). A population pharmacokinetic (popPK) model was extended to all phases to describe the pharmacokinetics and the impact of anti-PEG- and anti-asparaginase-antibodies in the German/Czech group (2535 patients, aspartic acid β-hydroxamate (AHA) assay) and validated the model in the Italian group (1603 patients, medac asparaginase activity test (MAAT) assay). DIPs, also for 279 Australian patients, were derived. Allergic reactions and silent inactivation were exclusion criteria. RESULTS: Treatment phase dependency and drug accumulation were modeled by up to -60% lower clearance and -30% lower volume of distribution compared with the first administration in induction. Apart from the impact of high preexisting anti-PEG-antibody levels on clearance in induction, no further impact of antibodies was identified. Independent modelling of the Italian data (conversion factor 1.23/1.42: ≤ 600/> 600 U/L) confirmed the model. Time above 100 U/L correlated to the time-interval between the first and last dose within a phase, whereas the area under the concentration-time curve (AUC) was linked to the cumulative dose showing higher drug accumulation after repetitive doses than expected by linear extrapolation. CONCLUSION: A popPK model was adapted to all phases and different trial groups integrating asparaginase antibodies as long as they did not lead to silent inactivation or allergic reaction. The model allows strategic development of trial schedules and the calculation of intended or realized individual DIPs. TRIAL REGISTRATION: EU clinical trails register; European Union Drug Regulating Authorities Clinical Trials Database (EudraCT) Number 2007-004270-43.

Zobrazit více v PubMed

Silverman LB, Gelber RD, Dalton VK, et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91–01. Blood. 2001;97(5):1211–8. https://doi.org/10.1182/blood.v97.5.1211 . PubMed DOI

Amylon MD, Shuster J, Pullen J, et al. Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma: a Pediatric Oncology Group study. Leukemia. 1999;13(3):335–42. https://doi.org/10.1038/sj.leu.2401310 . PubMed DOI

Müller H-J, Beier R, da Palma JC, et al. PEG-asparaginase (Oncaspar) 2500 U/m(2) BSA in reinduction and relapse treatment in the ALL/NHL-BFM protocols. Cancer Chemother Pharmacol. 2002;49(2):149–54. https://doi.org/10.1007/s00280-001-0391-5 . PubMed DOI

Lanvers-Kaminsky C. Asparaginase pharmacology: challenges still to be faced. Cancer Chemother Pharmacol. 2017;79(3):439–50. https://doi.org/10.1007/s00280-016-3236-y . PubMed DOI

Siebel C, Lanvers-Kaminsky C, Alten J, et al. Impact of antibodies against polyethylene glycol on the pharmacokinetics of PEGylated asparaginase in children with acute lymphoblastic leukaemia: a population pharmacokinetic approach. Eur J Drug Metab Pharmacokinet. 2022;47(2):187–98. https://doi.org/10.1007/s13318-021-00741-w . PubMed DOI

Würthwein G, Lanvers-Kaminsky C, Siebel C, et al. Population pharmacokinetics of PEGylated asparaginase in children with acute lymphoblastic leukemia: treatment phase dependency and predictivity in case of missing data. Eur J Drug Metab Pharmacokinet. 2021;46:289–300. https://doi.org/10.1007/s13318-021-00670-8 . PubMed DOI PMC

Würthwein G, Lanvers-Kaminsky C, Hempel G, et al. Population pharmacokinetics to model the time-varying clearance of the PEGylated Asparaginase Oncaspar® in children with acute lymphoblastic leukemia. Eur J Drug Metab Pharmacokinet. 2017;42(6):955–63. https://doi.org/10.1007/s13318-017-0410-5 . PubMed DOI

Lanvers-Kaminsky C, Rüffer A, Würthwein G, et al. Therapeutic drug monitoring of asparaginase activity-method comparison of MAAT and AHA test used in the international AIEOP-BFM ALL 2009 trial. Ther Drug Monit. 2018;40(1):93–102. https://doi.org/10.1097/FTD.0000000000000472 . PubMed DOI

Rizzari C, Möricke A, Valsecchi MG, et al. Incidence and characteristics of hypersensitivity reactions to PEG-asparaginase observed in 6136 children with acute lymphoblastic leukemia enrolled in the AIEOP-BFM ALL 2009 study protocol. Hemasphere. 2023;7(6): e893. https://doi.org/10.1097/HS9.0000000000000893 . PubMed DOI PMC

Lanvers C, Vieira Pinheiro JP, Hempel G, Wuerthwein G, Boos J. Analytical validation of a microplate reader-based method for the therapeutic drug monitoring of L-asparaginase in human serum. Anal Biochem. 2002;309(1):117–26. https://doi.org/10.1016/s0003-2697(02)00232-4 . PubMed DOI

Khalil A, Würthwein G, Golitsch J, et al. Pre-existing antibodies against polyethylene glycol reduce asparaginase activities on first administration of pegylated E. coli asparaginase in children with acute lymphocytic leukemia. Haematologica. 2022;107(1):49–57. https://doi.org/10.3324/haematol.2020.258525 . PubMed DOI

Tong WH, Pieters R, Kaspers GJ, et al. A prospective study on drug monitoring of PEGasparaginase and Erwinia asparaginase and asparaginase antibodies in pediatric acute lymphoblastic leukemia. Blood. 2014;123(13):2026–33. https://doi.org/10.1182/blood-2013-10-534347 . PubMed DOI PMC

Icon Development Solutions. NONMEM users’s guides: Ellicott City, Maryland, 2009.

Mosteller RD. Simplified calculation of body-surface area. N Engl J Med. 1987;317(17):1098. https://doi.org/10.1056/NEJM198710223171717 . PubMed DOI

Brigitha LJ, Fiocco M, Pieters R, et al. Hypersensitivity to pegylated E. coli asparaginase as first-line treatment in contemporary paediatric acute lymphoblastic leukaemia protocols: a meta-analysis of the Ponte di Legno Toxicity working group. Eur J Cancer. 2022;162:65–75. https://doi.org/10.1016/j.ejca.2021.11.016 . PubMed DOI

medac. Asparaginase-Aktivitäts-Test (MAAT). Quantitativer Enzymtest zur Bestimmung der Asparaginase-Aktivität in Serum und EDTA-Plasma. Katalog-Nr.: 550 2018:550-VPD/010418.

Kloos RQH, Pieters R, Jumelet FMV, de Groot-Kruseman HA, van den Bos C, van der Sluis IM. Individualized asparaginase dosing in childhood acute lymphoblastic leukemia. J Clin Oncol. 2020;38(7):715–24. https://doi.org/10.1200/JCO.19.02292 . PubMed DOI

Riccardi R, Holcenberg JS, Glaubiger DL, Wood JH, Poplack DG. L-asparaginase pharmacokinetics and asparagine levels in cerebrospinal fluid of rhesus monkeys and humans. Cancer Res. 1981;41(11 Pt 1):4554–8. PubMed

Mondelaers V, Ferster A, Uyttebroeck A, et al. Prospective, real-time monitoring of pegylated Escherichia coli and Erwinia asparaginase therapy in childhood acute lymphoblastic leukaemia and non-Hodgkin lymphoma in Belgium. Br J Haematol. 2020;190(1):105–14. https://doi.org/10.1111/bjh.16495 . PubMed DOI

Kloos RQH, Mathôt R, Pieters R, van der Sluis IM. Individualized dosing guidelines for PEGasparaginase and factors influencing the clearance: a population pharmacokinetic model. Haematologica. 2021;106(5):1254–61. https://doi.org/10.3324/haematol.2019.242289 . PubMed DOI

Dam M, Centanni M, Friberg LE, et al. Increase in peg-asparaginase clearance as a predictor for inactivation in patients with acute lymphoblastic leukemia. Leukemia. 2024;38(4):412–719. https://doi.org/10.1038/s41375-024-02153-6 . DOI

Hara M, Masui K, Eleveld DJ, Struys MMRF, Uchida O. Predictive performance of eleven pharmacokinetic models for propofol infusion in children for long-duration anaesthesia. Br J Anaesth. 2017;118(3):415–23. https://doi.org/10.1093/bja/aex007 . PubMed DOI

Wang YL, Guilhaumou R, Blin O, Velly L, Marsot A. External evaluation of population pharmacokinetic models for continuous administration of meropenem in critically ill adult patients. Eur J Clin Pharmacol. 2020;76(9):1281–9. https://doi.org/10.1007/s00228-020-02922-z . PubMed DOI

Vora A, Goulden N, Wade R, et al. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial. Lancet Oncol. 2013;14(3):199–209. https://doi.org/10.1016/s1470-2045(12)70600-9 . PubMed DOI

Pieters R, de Groot-Kruseman H, van der Velden V, et al. Successful therapy reduction and intensification for childhood acute lymphoblastic leukemia based on minimal residual disease monitoring: study ALL10 From the Dutch Childhood Oncology Group. J Clin Oncol. 2016;34(22):2591–601. https://doi.org/10.1200/jco.2015.64.6364 . PubMed DOI

Albertsen BK, Grell K, Abrahamsson J, et al. Intermittent versus continuous PEG-asparaginase to reduce asparaginase-associated toxicities: a NOPHO ALL2008 randomized study. J Clin Oncol. 2019;37(19):1638–46. https://doi.org/10.1200/jco.18.01877 . PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...