Transforming sepsis management: AI-driven innovations in early detection and tailored therapies

. 2025 Aug 19 ; 29 (1) : 366. [epub] 20250819

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40830514
Odkazy

PubMed 40830514
PubMed Central PMC12366378
DOI 10.1186/s13054-025-05588-0
PII: 10.1186/s13054-025-05588-0
Knihovny.cz E-zdroje

Sepsis remains a leading cause of mortality worldwide, driven by its clinical complexity and delayed recognition. Artificial intelligence (AI) offers promising solutions to improve sepsis care through earlier detection, risk stratification, and personalized treatment strategies. Key applications include AI-driven early warning systems, subphenotyping based on clinical and biological data, and decision support tools that adapt to real-time patient information. The integration of diverse data types, such as structured clinical data, unstructured notes, waveform signals, and molecular biomarkers, enhances the precision and timeliness of interventions. However, challenges such as algorithmic bias, limited external validation, data quality issues, and ethical considerations continue to hinder clinical implementation. Future directions focus on real-time model adaptation, multi-omics integration, and the development of generalist medical AI capable of personalized recommendations. Successfully addressing these barriers is essential for AI to deliver on its potential to transform sepsis management and support the transition toward precision-driven critical care.

Zobrazit více v PubMed

Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369(9):840–51. PubMed

Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi DT, Kievlan DR, Colombara DV, Ikuta KS, Kisson N, Finfer S, et al. Global, regional, and National sepsis incidence and mortality, 1990–2017: analysis for the global burden of disease study. Lancet. 2020;395(10219):200–11. PubMed PMC

Stevenson EK, Rubenstein AR, Radin GT, Wiener RS, Walkey AJ. Two decades of mortality trends among patients with severe sepsis: a comparative meta-analysis. Crit Care Med. 2014;42(3):625–31. PubMed PMC

Seymour CW, Gesten F, Prescott HC, Friedrich ME, Iwashyna TJ, Phillips GS, Lemeshow S, Osborn T, Terry KM, Levy MM. Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med. 2017;376(23):2235–44. PubMed PMC

Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turnbull IR, Vincent JL. Sepsis and septic shock. Nat Reviews Disease Primers. 2016;2:16045. PubMed PMC

Jentzer JC, Lawler PR, Van Houten HK, Yao X, Kashani KB, Dunlay SM. Cardiovascular events among survivors of sepsis hospitalization: A retrospective cohort analysis. J Am Heart Assoc. 2023;12(3):e027813. PubMed PMC

Nedeva C. Inflammation and cell death of the innate and adaptive immune system during sepsis. Biomolecules 2021, 11(7). 10.3390/biom11071011 PubMed PMC

Iba T, Umemura Y, Wada H, Levy JH. Roles of coagulation abnormalities and microthrombosis in sepsis: pathophysiology, diagnosis, and treatment. Arch Med Res. 2021;52(8):788–97. PubMed

Cajander S, Kox M, Scicluna BP, Weigand MA, Mora RA, Flohe SB, Martin-Loeches I, Lachmann G, Girardis M, Garcia-Salido A, et al. Profiling the dysregulated immune response in sepsis: overcoming challenges to achieve the goal of precision medicine. Lancet Respir Med. 2024;12(4):305–22. PubMed

Im Y, Kang D, Ko RE, Lee YJ, Lim SY, Park S, Na SJ, Chung CR, Park MH, Oh DK, et al. Time-to-antibiotics and clinical outcomes in patients with sepsis and septic shock: a prospective nationwide multicenter cohort study. Crit Care. 2022;26(1):19. PubMed PMC

Meyer NJ, Prescott HC. Sepsis and septic shock. N Engl J Med. 2024;391(22):2133–46. PubMed

Collaborators GBDAR. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet. 2024;404(10459):1199–226. PubMed PMC

Vincent JL, van der Poll T, Marshall JC. The end of one size fits all sepsis therapies: toward an individualized approach. Biomedicines 2022, 10(9). 10.3390/biomedicines10092260 PubMed PMC

Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, Machado FR, McIntyre L, Ostermann M, Prescott HC, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Crit Care Med. 2021;49(11):e1063–143. PubMed

Ward PA. New approaches to the study of sepsis. EMBO Mol Med. 2012;4(12):1234–43. PubMed PMC

Im Y, Kang D, Ko RE, Lee YJ, Lim SY, Park S, Na SJ, Chung CR, Park MH, Oh DK et al. Time-to-antibiotics and clinical outcomes in patients with sepsis and septic shock: a prospective nationwide multicenter cohort study. Crit Care 2022, 26(1). 10.1186/s13054-021-03883-0 PubMed PMC

McMullan RR, McAuley DF, O’Kane CM, Silversides JA. Vascular leak in sepsis: physiological basis and potential therapeutic advances. Crit Care. 2024;28(1):97. PubMed PMC

Williams B, Zou L, Pittet JF, Chao W. Sepsis-Induced coagulopathy: A comprehensive narrative review of pathophysiology, clinical presentation, diagnosis, and management strategies. Anesth Analg. 2024;138(4):696–711. PubMed PMC

Gorecki GP, Tomescu DR, Ples L, Panaitescu AM, Dragosloveanu S, Scheau C, Sima RM, Coman IS, Grigorean VT, Cochior D. Implications of using artificial intelligence in the diagnosis of sepsis/sepsis shock. Germs. 2024;14(1):77–84. PubMed PMC

Giamarellos-Bourboulis EJ, Aschenbrenner AC, Bauer M, Bock C, Calandra T, Gat-Viks I, Kyriazopoulou E, Lupse M, Monneret G, Pickkers P, et al. The pathophysiology of sepsis and precision-medicine-based immunotherapy. Nat Immunol. 2024;25(1):19–28. PubMed

Li F, Wang S, Gao Z, Qing M, Pan S, Liu Y, Hu C. Harnessing artificial intelligence in sepsis care: advances in early detection, personalized treatment, and real-time monitoring. Front Med (Lausanne). 2024;11:1510792. PubMed PMC

Stylianides C, Nicolaou A, Sulaiman WA, Alexandropoulou CA, Panagiotopoulos I, Karathanasopoulou K, Dimitrakopoulos G, Kleanthous S, Politi E, Ntalaperas D et al. AI advances in ICU with an emphasis on sepsis prediction: an overview. Mach Learn Know Extr 2025, 7(1). 10.3390/make7010006

Agnello L, Vidali M, Padoan A, Lucis R, Mancini A, Guerranti R, Plebani M, Ciaccio M, Carobene A. Machine learning algorithms in sepsis. Clin Chim Acta. 2024;553:117738. PubMed

Gao YL, Wang CL, Shen JX, Wang ZY, Liu YC, Chai YF. Systematic review and network meta-analysis of machine learning algorithms in sepsis prediction. Expert Syst Appl 2024, 245. 10.1016/j.eswa.2023.122982

Wang D, Li J, Sun Y, Ding X, Zhang X, Liu S, Han B, Wang H, Duan X, Sun T. A machine learning model for accurate prediction of sepsis in ICU patients. Front Public Health. 2021;9:754348. PubMed PMC

Calvert JS, Price DA, Chettipally UK, Barton CW, Feldman MD, Hoffman JL, Jay M, Das R. A computational approach to early sepsis detection. Comput Biol Med. 2016;74:69–73. PubMed

Shimabukuro DW, Barton CW, Feldman MD, Mataraso SJ, Das R. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial. BMJ Open Respir Res. 2017;4(1):e000234. PubMed PMC

Tekdos Seker Y, Cukurova Z, Ozel Bilgi D, Hergunsel O. Prognostic impact of early versus late initiation of renal replacement therapy based on early warning algorithm in critical care patients with acute kidney injury. Ther Apher Dial. 2020;24(4):445–52. PubMed

Prasad V, Aydemir B, Kehoe IE, Kotturesh C, O’Connell A, Biebelberg B, Wang Y, Lynch JC, Pepino JA, Filbin MR, et al. Diagnostic suspicion bias and machine learning: breaking the awareness deadlock for sepsis detection. PLOS Digit Health. 2023;2(11):e0000365. PubMed PMC

Goh KH, Wang L, Yeow AYK, Poh H, Li K, Yeow JJL, Tan GYH. Artificial intelligence in sepsis early prediction and diagnosis using unstructured data in healthcare. Nat Commun 2021, 12(1). 10.1038/s41467-021-20910-4 PubMed PMC

Schinkel M, van der Poll T, Wiersinga WJ. Artificial intelligence for early sepsis detection A word of caution. Am J Resp Crit Care. 2023;207(7):853–4. PubMed PMC

Nemati S, Shashikumar SP, Holder AL, Wardi G, OR L. Randomized clinical trials or convenient controls: TREWS or FALSE? MedRxiv Preprint. 2022. 10.1038/s41591-41022-01894-41590.

Goh KH, Wang L, Yeow AYK, Poh H, Li K, Yeow JJL, Tan GYH. Artificial intelligence in sepsis early prediction and diagnosis using unstructured data in healthcare. Nat Commun. 2021;12(1):711. PubMed PMC

Adams R, Henry KE, Sridharan A, Soleimani H, Zhan A, Rawat N, Johnson L, Hager DN, Cosgrove SE, Markowski A, et al. Prospective, multi-site study of patient outcomes after implementation of the TREWS machine learning-based early warning system for sepsis. Nat Med. 2022;28(7):1455–60. PubMed

Schinkel M, van der Poll T, Wiersinga WJ. Artificial intelligence for early sepsis detection: A word of caution. Am J Respir Crit Care Med. 2023;207(7):853–4. PubMed PMC

Zhang Z, Chen L, Xu P, Wang Q, Zhang J, Chen K, Clements CM, Celi LA, Herasevich V, Hong Y. Effectiveness of automated alerting system compared to usual care for the management of sepsis. NPJ Digit Med. 2022;5(1):101. PubMed PMC

van Calster B, Collins G, Vickers A, Wynants L, Kerr K, Barreñada L, Varoquaux G, Singh K, Moons K, Hernandez-Boussard T, et al. Performance evaluation of predictive AI models to support medical decisions: overview and guidance. ArXiv. 2024. 10.48550/ArXiv.42412.10288.

Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA. The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med. 2018;24(11):1716–20. PubMed

Wong A, Otles E, Donnelly JP, Krumm A, McCullough J, DeTroyer-Cooley O, Pestrue J, Phillips M, Konye J, Penoza C, et al. External validation of a widely implemented proprietary sepsis prediction model in hospitalized patients. JAMA Intern Med. 2021;181(8):1065–70. PubMed PMC

Boussina A, Shashikumar SP, Malhotra A, Owens RL, El-Kareh R, Longhurst CA, Quintero K, Donahue A, Chan TC, Nemati S, et al. Impact of a deep learning sepsis prediction model on quality of care and survival. NPJ Digit Med. 2024;7(1):14. PubMed PMC

Yang J, Hao S, Huang J, Chen T, Liu R, Zhang P, Feng M, He Y, Xiao W, Hong Y, et al. The application of artificial intelligence in the management of sepsis. Med Rev (2021). 2023;3(5):369–80. PubMed PMC

Seymour CW, Kennedy JN, Wang S, Chang CH, Elliott CF, Xu Z, Berry S, Clermont G, Cooper G, Gomez H, et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA. 2019;321(20):2003–17. PubMed PMC

Bhavani SV, Semler M, Qian ET, Verhoef PA, Robichaux C, Churpek MM, Coopersmith CM. Development and validation of novel sepsis subphenotypes using trajectories of vital signs. Intens Care Med. 2022;48(11):1582–92. PubMed PMC

Zhang Z, Chen L, Sun B, Ruan Z, Pan P, Zhang W, Jiang X, Zheng S, Cheng S, Xian L, et al. Identifying septic shock subgroups to tailor fluid strategies through multi-omics integration. Nat Commun. 2024;15(1):9028. PubMed PMC

Komorowski M, Green A, Tatham KC, Seymour C, Antcliffe D. Sepsis biomarkers and diagnostic tools with a focus on machine learning. Ebiomedicine 2022, 86. 10.1016/j.ebiom.2022.104394 PubMed PMC

Festor P, Jia Y, Gordon AC, Faisal AA, Habli I, Komorowski M. Assuring the safety of AI-based clinical decision support systems: a case study of the AI clinician for sepsis treatment. BMJ Health Care Inf 2022, 29(1). 10.1136/bmjhci-2022-100549 PubMed PMC

Komorowski M, Celi L, Badawi O, Gordon AC, Faisal AA. The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med. 2018;24(11):1716–. PubMed

Kalimouttou A, Kennedy JN, Feng J, Singh H, Saria S, Angus DC, Seymour CW, Pirracchio R. Optimal vasopressin initiation in septic shock: the OVISS reinforcement learning study. JAMA. 2025;333(19):1688–98. PubMed PMC

Gupta A, Liu T, Shepherd S. Clinical decision support system to assess the risk of sepsis using tree augmented bayesian networks and electronic medical record data. Health Inf J. 2020;26(2):841–61. PubMed

Jeon E, Choi JH, Suk HI. ADT(2)R: adaptive decision transformer for dynamic treatment regimes in sepsis. IEEE Trans Neural Netw Learn Syst 2024, PP. 10.1109/TNNLS.2024.3442243 PubMed

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10. PubMed PMC

Rhee C, Zhang ZL, Wang R, Kadri S, Fram D, Schaaf R, Klompas M. Sepsis surveillance using sofa versus Esofa criteria based on routine Ehr data. Crit Care Med. 2018;46(1):689–689.

Fixler A, Oliaro B, Frieden M, Girardo C, Winterbottom FA, Fort LB, Hill J. Alert to action: implementing artificial Intelligence-Driven clinical decision support tools for sepsis. Ochsner J. 2023;23(3):222–31. PubMed PMC

van der Vegt AH, Scott IA, Dermawan K, Schnetler RJ, Kalke VR, Lane PJ. Deployment of machine learning algorithms to predict sepsis: systematic review and application of the SALIENT clinical AI implementation framework. J Am Med Inf Assoc. 2023;30(7):1349–61. PubMed PMC

Schinkel M, Nanayakkara PWB, Wiersinga WJ. Sepsis performance improvement programs: from evidence toward clinical implementation. Crit Care. 2022;26(1):77. PubMed PMC

Moor M, Bennett N, Plecko D, Horn M, Rieck B, Meinshausen N, Bühlmann P, Borgwardt K. Predicting sepsis using deep learning across international sites: a and validation. Eclinicalmedicine 2023, 62. 10.1016/j.eclinm.2023.102124 PubMed PMC

Boussina A, Shashikumar SP, Malhotra A, Owens RL, El-Kareh R, Longhurst CA, Quintero K, Donahue A, Chan TC, Nemati S et al. Impact of a deep learning sepsis prediction model on quality of care and survival. Npj Digit Med 2024, 7(1). 10.1038/s41746-023-00986-6 PubMed PMC

Adams R, Henry KE, Sridharan A, Soleimani H, Zhan AD, Rawat N, Johnson L, Hager DN, Cosgrove SE, Markowski A, et al. Prospective, multi-site study of patient outcomes after implementation of the TREWS machine learning-based early warning system for sepsis. Nat Med. 2022;28(7):1455–. PubMed

Kheterpal S, Singh K, Topol EJ. Digital medicine digitising the prediction and management of sepsis. Lancet. 2022;399(10334):1459–1459. PubMed

Wong A, Otles E, Donnelly JP. External validation of a widely implemented proprietary sepsis prediction model in hospitalized patients (181, Pg 1065, 2021). Jama Intern Med. 2021;181(8):1144–1144. PubMed PMC

Joshi G, Jain A, Araveeti SR, Adhikari S, Garg H, Bhandari M. FDA-Approved artificial intelligence and machine learning (AI/ML)-Enabled medical devices: an updated landscape. Electronics-Switz 2024, 13(3). 10.3390/electronics13030498

Doutreligne M, Struja T, Abecassis J, Morgand C, Celi LA, Varoquaux G. Step-by-step causal analysis of EHRs to ground decision-making. PLOS Digit Health. 2025;4(2):e0000721. PubMed PMC

Van Vogt E, Gordon AC, Diaz-Ordaz K, Cro S. Application of causal forests to randomised controlled trial data to identify heterogeneous treatment effects: a case study. BMC Med Res Methodol. 2025;25(1):50. PubMed PMC

Lam TYT, Cheung MFK, Munro YL, Lim KM, Shung D, Sung JJY. Randomized controlled trials of artificial intelligence in clinical practice: systematic review. J Med Internet Res. 2022;24(8):e37188. PubMed PMC

Bhargava A, López-Espina C, Schmalz L, Khan S, Watson GL, Urdiales D, Updike L, Kurtzman N, Dagan A, Doodlesack A et al. FDA-Authorized AI/ML tool for sepsis prediction: development and validation. NEJM AI 2024:10.1056/AIoa2400867

Muralidharan V, Adewale BA, Huang CJ, Nta MT, Ademiju PO, Pathmarajah P, Hang MK, Adesanya O, Abdullateef RO, Babatunde AO, et al. A scoping review of reporting gaps in FDA-approved AI medical devices. NPJ Digit Med. 2024;7(1):273. PubMed PMC

Persson I, Macura A, Becedas D, Sjovall F. Early prediction of sepsis in intensive care patients using the machine learning algorithm NAVOY(R) sepsis, a prospective randomized clinical validation study. J Crit Care. 2024;80:154400. PubMed

Shashikumar SP, Mohammadi S, Krishnamoorthy R, Patel A, Wardi G, Ahn JC, Singh K, Aronoff-Spencer E, Nemati S. Development and prospective implementation of a large Language model based system for early sepsis prediction. NPJ Digit Med. 2025;8(1):290. PubMed PMC

Valan B, Prakash A, Ratliff W, Gao M, Muthya S, Thomas A, Eaton JL, Gardner M, Nichols M, Revoir M, et al. Evaluating sepsis watch generalizability through multisite external validation of a sepsis machine learning model. NPJ Digit Med. 2025;8(1):350. PubMed PMC

Gichoya JW, Thomas K, Celi LA, Safdar N, Banerjee I, Banja JD, Seyyed-Kalantari L, Trivedi H, Purkayastha S. AI pitfalls and what not to do: mitigating bias in AI. Br J Radiol. 2023;96(1150):20230023. PubMed PMC

Yesil MR, Talli I, Pelloso M, Cosma C, Pangrazzi E, Plebani M, Ustundag Y, Padoan A. Impact of analytical bias on machine learning models for sepsis prediction using laboratory data. Clin Chem Lab Med 2025. 10.1515/cclm-2025-0491 PubMed

Wagner P, Mehari T, Haverkamp W, Strodthoff N. Explaining deep learning for ECG analysis: Building blocks for auditing and knowledge discovery. Comput Biol Med. 2024;176:108525. PubMed

Ghassemi M, Oakden-Rayner L, Beam AL. The false hope of current approaches to explainable artificial intelligence in health care. Lancet Digit Health. 2021;3(11):e745–50. PubMed

Goncalves LS, Amaro MLM, Romero ALM, Schamne FK, Fressatto JL, Bezerra CW. Implementation of an artificial intelligence algorithm for sepsis detection. Rev Bras Enferm. 2020;73(3):e20180421. PubMed

Hassan N, Slight R, Weiand D, Vellinga A, Morgan G, Aboushareb F, Slight SP. Preventing sepsis; how can artificial intelligence inform the clinical decision-making process? A systematic review. Int J Med Inf. 2021;150:104457. PubMed

Aslan AT, Permana B, Harris PNA, Naidoo KD, Pienaar MA, Irwin AD. The opportunities and challenges for artificial intelligence to improve sepsis outcomes in the paediatric intensive care unit. Curr Infect Dis Rep. 2023;25(11):243–53.

Dusing C, Cimiano P, Rehberg S, Scherer C, Kaup O, Koster C, Hellmich S, Herrmann D, Meier KL, Classen S, et al. Integrating federated learning for improved counterfactual explanations in clinical decision support systems for sepsis therapy. Artif Intell Med. 2024;157:102982. PubMed

Sullivan BA, Beam K, Vesoulis ZA, Aziz KB, Husain AN, Knake LA, Moreira AG, Hooven TA, Weiss EM, Carr NR, et al. Transforming neonatal care with artificial intelligence: challenges, ethical consideration, and opportunities. J Perinatol. 2024;44(1):1–11. PubMed PMC

Banja JD, Xie Y, Smith JR, Rana S, Holder AL: Mitigating bias in machine learning models with Ethics-Based initiatives: the case of sepsis. Am J Bioeth 2025:1–14. 10.1080/15265161.2025.2497971 PubMed PMC

Struja T, Matos J, Lam B, Cao Y, Liu X, Chan Z, Jia Y, Sauer CM, D’Couto H, Dankwa-Mullan I, et al. Evaluating equitable care in the icu:creating a causal inference template to assess the impact of life-sustaining interventions across Racial and ethnic groups. Heart Lung. 2025;72:48–56. PubMed

Lam JY, Boussina A, Shashikumar SP, Owens RL, Nemati S, Josef CS. The impact of laboratory data missingness on sepsis diagnosis timeliness. Jamia Open 2024, 7(3). 10.1093/jamiaopen/ooae085 PubMed PMC

Iqbal F, Chandra P, Khan AA, Lewis LES, Acharya D, Vandana KE, Jayashree P, Shenoy PA. Prediction of mortality among neonates with sepsis in the neonatal intensive care unit: A machine learning approach. Clin Epidemiol Glob 2023, 24. 10.1016/j.cegh.2023.101414

Bomrah S, Uddin M, Upadhyay U, Komorowski M, Priya J, Dhar E, Hsu SC, Syed-Abdul S. A scoping review of machine learning for sepsis prediction- feature engineering strategies and model performance: a step towards explainability. Crit Care 2024, 28(1). 10.1186/s13054-024-04948-6 PubMed PMC

Eisenberg MA, Balamuth F. Pediatric sepsis screening in US hospitals. Pediatr Res. 2022;91(2):351–8. PubMed PMC

Lamproudis A, Henriksson A, Valik JK, Naucler P. Improving the timeliness of early prediction models for sepsis through utility optimization. Proc Int C Tools Art 2022:1062–9. 10.1109/ICTAI56018.2022.00162

Acosta JN, Falcone GJ, Rajpurkar P, Topol EJ. Multimodal biomedical AI. Nat Med. 2022;28(9):1773–84. PubMed

van den Berg M, van Beuningen FE, Ter Maaten JC, Bouma HR. Hospital-related costs of sepsis around the world: A systematic review exploring the economic burden of sepsis. J Crit Care. 2022;71:154096. PubMed

Ramesh K, Boussina A, Shashikumar SP, Malhotra A, Longhurst CA, Josef CS, Quintero K, Del Rosso J, Nemati S, Wardi G. Quantifying healthcare provider perceptions of a novel deep learning algorithm to predict sepsis: electronic survey. Crit Care Explor. 2025;7(6):e1276. PubMed PMC

Zhang S, Yu J, Xu X, Yin C, Lu Y, Yao B, Tory M, Padilla LM, Caterino J, Zhang P et al. Rethinking Human-AI Collaboration in Complex Medical Decision Making: A Case Study in Sepsis Diagnosis. PubMed PMC

Rogers P, Boussina AE, Shashikumar SP, Wardi G, Longhurst CA, Nemati S. Optimizing the implementation of clinical predictive models to minimize National costs: sepsis case study. J Med Internet Res. 2023;25:e43486. PubMed PMC

Zwerwer LR, van der Pol S, Zacharowski K, Postma MJ, Kloka J, Friedrichson B, van Asselt ADI. The value of artificial intelligence for the treatment of mechanically ventilated intensive care unit patients: an early health technology assessment. J Crit Care. 2024;82:154802. PubMed

Saeed U, Insaf RA, Piracha ZZ, Tariq MN, Sohail A, Abbasi UA, Fida Rana MS, Gilani SS, Noor S, Noor E, et al. Crisis averted: a world united against the menace of multiple drug-resistant superbugs -pioneering anti-AMR vaccines, RNA interference, nanomedicine, CRISPR-based antimicrobials, bacteriophage therapies, and clinical artificial intelligence strategies to safeguard global antimicrobial arsenal. Front Microbiol. 2023;14:1270018. PubMed PMC

Denecke K, Baudoin CR. A review of artificial intelligence and robotics in transformed health ecosystems. Front Med-Lausanne 2022, 9. 10.3389/fmed.2022.795957 PubMed PMC

Choi YB, Capitan KE, Krause JS, Streeper MM. Challenges associated with privacy in health care industry: implementation of HIPAA and the security rules. J Med Syst. 2006;30(1):57–64. PubMed

Peregrin T. Managing HIPAA compliance includes legal and ethical considerations. J Acad Nutr Diet. 2021;121(2):327–9. PubMed

Pan W, Xu Z, Rajendran S, Wang F. An adaptive federated learning framework for clinical risk prediction with electronic health records from multiple hospitals. Patterns (N Y). 2024;5(1):100898. PubMed PMC

Mandl KD, Perakslis ED. HIPAA and the leak of deidentified EHR data. N Engl J Med. 2021;384(23):2171–3. PubMed

Petersson L, Vincent K, Svedberg P, Nygren JM, Larsson I. Ethical considerations in implementing AI for mortality prediction in the emergency department: linking theory and practice. Digit Health 2023, 9. 10.1177/20552076231206588 PubMed PMC

Santacroce E, D’Angerio M, Ciobanu AL, Masini L, Lo Tartaro D, Coloretti I, Busani S, Rubio I, Meschiari M, Franceschini E et al.: advances and challenges in sepsis management: modern tools and future directions. Cells 2024, 13(5). 10.3390/cells13050439 PubMed PMC

Boussina A, Wardi G, Shashikumar SP, Malhotra A, Zheng K, Nemati S. Representation learning and spectral clustering for the development and external validation of dynamic sepsis phenotypes: observational cohort study. J Med Internet Res 2023, 25. 10.2196/45614 PubMed PMC

Fleuren LM, Klausch TLT, Zwager CL, Schoonmade LJ, Guo TJ, Roggeveen LF, Swart EL, Girbes ARJ, Thoral P, Ercole A, et al. Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy. Intens Care Med. 2020;46(3):383–400. PubMed PMC

Yadgarov MY, Landoni G, Berikashvili LB, Polyakov PA, Kadantseva KK, Smirnova AV, Kuznetsov IV, Shemetova MM, Yakovlev AA, Likhvantsev VV. Early detection of sepsis using machine learning algorithms: a systematic review and network meta-analysis. Front Med-Lausanne 2024, 11. 10.3389/fmed.2024.1491358 PubMed PMC

Chen E, Kansal A, Chen J, Jin BT, Reisler JR, Kim DA, Rajpurkar P. Multimodal clinical benchmark for emergency care (MC-BEC): A comprehensive benchmark for evaluating foundation models in emergency medicine. Adv Neur

Yan MY, Gustad LT, Nytro O. Sepsis prediction, early detection, and identification using clinical text for machine learning: a systematic review. J Am Med Inf Assn. 2022;29(3):559–75. PubMed PMC

Li Q, Ma HB, Song D, Bai YP, Zhao LN, Xie KL. Early prediction of sepsis using chatGPT-generated summaries and structured data. Multimed Tools Appl 2024. 10.1007/s11042-024-18378-7

Aityan SK, Mosaddegh A, Herrero R, Inchingolo F, Nguyen KCD, Balzanelli M, Lazzaro R, Iacovazzo N, Cefalo A, Carriero L et al. Integrated AI Medical Emergency Diagnostics Advising System.

Hager P, Jungmann F, Holland R, Bhagat K, Hubrecht I, Knauer M, Vielhauer J, Makowski M, Braren R, Kaissis G et al. Evaluation and mitigation of the limitations of large Language models in clinical decision-making. Nat Med 2024, 30(9). 10.1038/s41591-024-03097-1 PubMed PMC

Komorowski M, Green A, Tatham KC, Seymour C, Antcliffe D. Sepsis biomarkers and diagnostic tools with a focus on machine learning. EBioMedicine. 2022;86:104394. PubMed PMC

Huang PF, Liu YQ, Li Y, Xin Y, Nan CC, Luo YH, Feng YT, Jin NN, Peng YH, Wang DW et al. Metabolomics- and proteomics-based multi-omics integration reveals early metabolite alterations in sepsis-associated acute kidney injury. Bmc Med 2025, 23(1). 10.1186/s12916-025-03920-7 PubMed PMC

Mi YX, Burnham KL, Charles PD, Heilig R, Vendrell I, Whalley J, Torrance HD, Antcliffe DB, May SM, Neville MJ et al. High-throughput mass spectrometry maps the sepsis plasma proteome and differences in patient response. Sci Transl Med 2024, 16(750). 10.1126/scitranslmed.adh0185 PubMed

Shankar-Hari M, Calandra T, Soares MP, Bauer M, Wiersinga WJ, Prescott HC, Knight JC, Baillie KJ, Bos LDJ, Derde LPG, et al. Reframing sepsis immunobiology for translation: towards informative subtyping andtargeted Immunomodulatory therapies. Lancet Resp Med. 2024;12(4):323–36. PubMed PMC

Boussina A, Wardi G, Shashikumar SP, Malhotra A, Zheng K, Nemati S. Representation learning and spectral clustering for the development and external validation of dynamic sepsis phenotypes: observational cohort study. J Med Internet Res. 2023;25:e45614. PubMed PMC

Sendak MP, Ratliff W, Sarro D, Alderton E, Futoma J, Gao M, Nichols M, Revoir M, Yashar F, Miller C, et al. Real-World integration of a sepsis deep learning technology into routine clinical care: implementation study. JMIR Med Inf. 2020;8(7):e15182. PubMed PMC

Sheini A. A point-of-care testing sensor based on fluorescent nanoclusters for rapid detection of septicemia in children. Sens Actuat B-Chem 2021, 328. 10.1016/j.snb.2020.129029

Goyal M, Mascarenhas D, Prashanth RR, Haribalakrishna A. Diagnostic accuracy of Point-of-Care testing of C-Reactive protein, Interleukin-6, and procalcitonin in neonates with clinically suspected sepsis: A prospective observational study. Med Prin Pract. 2024;33(3):291–8. PubMed PMC

Spaeth B, Taylor S, Shephard M, Reed RL, Omond R, Karnon J, Bonevski B, Rissel C, Ullah S, Noutsos T, et al. Point-of-care testing for sepsis in remote Australia and for first nations peoples. Nat Med. 2024;30(8):2105–6. PubMed

Soliman MM, Marshall C, Kimball JP, Choudhary T, Clermont G, Pinsky MR, Buchman TG, Coopersmith CM, Inan OT, Kamaleswaran R. Parsimonious Waveform-derived features consisting of pulse arrival time and heart rate variability predicts the onset of septic shock. Biomed Signal Process Control 2024, 92. 10.1016/j.bspc.2024.105974 PubMed PMC

Apalak M, Kiasaleh K. Advancing early detection of sepsis with Temporal convolutional networks using ECG signals. Ieee Access. 2024;12:3417–27.

Alge OP, Pickard J, Zhang W, Cheng S, Derksen H, Omenn GS, Gryak J, VanEpps JS, Najarian K. Continuous sepsis trajectory prediction using tensor-reduced physiological signals. Sci Rep. 2024;14(1):18155. PubMed PMC

Strodthoff N, Alcaraz JML, Haverkamp W. Prospects for artificial intelligence-enhanced electrocardiogram as a unified screening tool for cardiac and non-cardiac conditions: an explorative study in emergency care. Eur Heart J-Digit Hl. 2024;5(4):454–60. PubMed PMC

Mataraso SJ, Espinosa CA, Seong D, Reincke SM, Berson E, Reiss JD, Kim Y, Ghanem M, Shu CH, James T, et al. A machine learning approach to leveraging electronic health records for enhanced omics analysis. Nat Mach Intell. 2025;7(2):293–306. PubMed PMC

Alcaraz JML, Bouma H, Strodthoff N. Enhancing clinical decision support with physiological waveforms - A multimodal benchmark in emergency care. Comput Biol Med. 2025;192(Pt A):110196. PubMed

Sundrani S, Chen J, Jin BT, Abad ZSH, Rajpurkar P, Kim D. Predicting patient decompensation from continuous physiologic monitoring in the emergency department. NPJ Digit Med. 2023;6(1):60. PubMed PMC

Soenksen LR, Ma Y, Zeng C, Boussioux L, Carballo KV, Na LY, Wiberg HM, Li ML, Fuentes I, Bertsimas D. Integrated multimodal artificial intelligence framework for healthcare applications. Npj Digit Med 2022, 5(1). 10.1038/s41746-022-00689-4 PubMed PMC

Sundrani S, Chen JL, Jin BT, Abad ZSH, Rajpurkar P, Kim D. Predicting patient decompensation from continuous physiologic monitoring in the emergency department. Npj Digit Med 2023, 6(1). 10.1038/s41746-023-00803-0 PubMed PMC

Mataraso SJ, Espinosa CA, Seong D, Reincke SM, Berson E, Reiss JD, Kim Y, Ghanem M, Shu CH, James T et al. A machine learning approach to leveraging electronic health records for enhanced omics analysis. Nat Mach Intell 2025, 7(2). 10.1038/s42256-024-00974-9 PubMed PMC

Zhao TY, Liu JX, Zeng X, Wang W, Li S, Zang TY, Peng JJ, Yang Y. Prediction and collection of protein-metabolite interactions. Brief Bioinform 2021, 22(5). 10.1093/bib/bbab014 PubMed

Moor M, Banerjee O, Abad ZSH, Krumholz HM, Leskovec J, Topol EJ, Rajpurkar P. Foundation models for generalist medical artificial intelligence. Nature. 2023;616(7956):259–65. PubMed

AlGain S, Marra AR, Kobayashi T, Marra PS, Celeghini PD, Hsieh MK, Shatari MA, Althagafi S, Alayed M, Ranavaya JI, et al. Can we rely on artificial intelligence to guide antimicrobial therapy? A systematic literature review. Antimicrob Steward Healthc Epidemiol. 2025;5(1):e90. PubMed PMC

Gupta CB, Basu D, Williams TK, Neff LP, Johnson MA, Patel NT, Ganapathy AS, Lane MR, Radaei F, Chuah CN, et al. Improving the precision of shock resuscitation by predicting fluid responsiveness with machine learning and arterial blood pressure waveform data. Sci Rep. 2024;14(1):2227. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...