Utilizing PBF-LB/M AlSI10Mg alloy post-processed via KOBO-extrusion and subsequent cold drawing to obtain high-strength wire

. 2025 Aug 23 ; 15 (1) : 31025. [epub] 20250823

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40849421

Grantová podpora
2021/43/D/ST8/01946 Narodowe Centrum Nauki
2021/43/D/ST8/01946 Narodowe Centrum Nauki
2021/43/D/ST8/01946 Narodowe Centrum Nauki
CZ.02.01.01/00/23_021/0010117 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 40849421
PubMed Central PMC12375056
DOI 10.1038/s41598-025-14980-3
PII: 10.1038/s41598-025-14980-3
Knihovny.cz E-zdroje

This study investigates the efficacy of a multi-stage thermo-mechanical processing route, comprising KOBO extrusion followed by cold drawing, for enhancing the mechanical properties of AlSi10Mg alloy produced via by powder bed fusion laser beam melting (PBF-LB/M). The objective was to develop high-strength wires from this additively manufactured alloy. The microstructural evolution throughout the processing sequence was characterized using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). KOBO extrusion transformed the initial as-built microstructure into a fine-grained, composite-like structure, characterized by a refined α-Al matrix with homogeneously distributed, fragmented Si particles. This resulted in a compelling combination of mechanical properties, including an ultimate tensile strength (UTS) of 324 MPa and a total elongation of approximately 10%. Subsequent cold drawing induced significant strain hardening and further grain refinement, achieving an average grain size of - 700 nm. This raised the UTS to 401 MPa, though it was accompanied by a substantial reduction in ductility to - 0.6%. These findings demonstrate that the synergistic combination of KOBO extrusion and cold drawing is a promising pathway for fabricating high-strength AlSi10Mg wires from PBF-LB/M -processed feedstock.

Zobrazit více v PubMed

Zhang, D. et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys. PubMed

Kürnsteiner, P. et al. High-strength Damascus steel by additive manufacturing. PubMed

Panwisawas, C., Tang, Y. T. & Reed, R. C. Metal 3D printing as a disruptive technology for superalloys. PubMed PMC

Zhang, J. et al. Ultrauniform, strong, and ductile 3D-printed titanium alloy through bifunctional alloy design, Science 383 (2024) 639–645. (1979). PubMed

Martin, J. H., Yahata, B. D., Hundley, J. M., Mayer, J. A. & Schaedler, T. A. Pollock, 3D printing of high-strength aluminium alloys. PubMed

Pascual, A., Ortega, N., Plaza, S., López de Lacalle, L. N. & Ukar, E. Analysis of the influence of L-PBF porosity on the mechanical behavior of AlSi10Mg by XRCT-based FEM. DOI

Minhas, N., Sharma, V., Bhadauria, S. S., Verma, R. & Thakur, A. Evaluating the effect of heat input on residual stress, texture and corrosion resistance in friction-stir-welded L-PBF AlSi10Mg alloy. DOI

Ferro, P. et al. Defects as a root cause of fatigue weakening of additively manufactured AlSi10Mg components. DOI

Kumar, P. & Ramamurty, U. High cycle fatigue in selective laser melted Ti-6Al-4V. DOI

Wu, Z. et al. The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion. DOI

Fini, S. et al. Fatigue response of AlSi10Mg by laser powder bed fusion: influence of build orientation, heat, and surface treatments. DOI

Ke, D., Hengcheng, L., Qiumin, J. & Yun, T. Effect of hot extrusion on mechanical properties and microstructure of near eutectic Al–12.0%Si–0.2%Mg alloy. DOI

Babapour Golafshani, K., Nourouzi, S., Jamshidi, H. & Aval Hot tensile deformation and fracture behavior of friction stir processed Al-Si-Cu alloy. DOI

Santos Macías, J. G. et al. Hot isostatic pressing of laser powder bed fusion AlSi10Mg: parameter identification and mechanical properties. DOI

Wang, Y. & Shi, J. Effect of hot isostatic pressing on nanoparticles reinforced AlSi10Mg produced by selective laser melting. DOI

Giovagnoli, M. et al. Effect of different heat-treatment routes on the impact properties of an additively manufactured AlSi10Mg alloy. DOI

Uzan, N. E., Ramati, S., Shneck, R., Frage, N. & Yeheskel, O. On the effect of shot-peening on fatigue resistance of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting (AM-SLM). DOI

Zhang, H. et al. Achieving superior mechanical properties of selective laser melted AlSi10Mg via direct aging treatment. DOI

Alghamdi, F. et al. Post heat treatment of additive manufactured AlSi10Mg: on silicon morphology, texture and small-scale properties. DOI

Tradowsky, U. et al. Selective laser melting of AlSi10Mg: influence of post-processing on the microstructural and tensile properties development. DOI

Aboulkhair, N. T., Maskery, I., Tuck, C., Ashcroft, I. & Everitt, N. M. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: the effect of a conventional T6-like heat treatment. DOI

Brooks, R. & Research, A. D. Process Strategy to Maximize 3DP, New Equipment Digest (2015). https://www.newequipment.com/metal-forming/article/21923191/alcoa-details-research-process-strategy-to-maximize-3dp

Sizova, I. et al. A study on hot-working as alternative post-processing method for titanium aluminides built by laser powder bed fusion and electron beam melting. DOI

Liao, Z., Zhang, L., Huang, X. & Jensen, D. J. Microstructural and textural gradients in SLM-manufactured AlSi10Mg after low-draught cold-rolling and heat treatment. DOI

Zhang, T. et al. Effect of rolling force on tensile properties of additively manufactured inconel 718 at ambient and elevated temperatures. DOI

Chaganty, B., Maredla, T., Bobby, S. S., Sahoo, S. K. & Vanitha, C. Effect of cold rolling on texture and microstructure development in annealed incoloy 800 fabricated using selective laser melting. DOI

Le, W. et al. Study on the microstructure evolution and dynamic recrystallization mechanism of selective laser melted inconel 718 alloy during hot deformation. DOI

Huang, S. et al. Forging treatment realized the isotropic microstructure and properties of selective laser melting GH3536.

Wójcik, M. & Skrzat, A. Numerical modelling of the KOBO extrusion process using the Bodner–Partom material model. DOI

Korbel, A. et al. Nano-Dimensional elements in the structure of zinc subjected to KOBO extrusion. DOI

Gusak, A., Danielewski, M., Korbel, A., Bochniak, M. & Storozhuk, N. Elementary model of severe plastic deformation by KoBo process. DOI

Kalhor, A. et al. Microstructure, mechanical properties, and corrosion behavior of a biodegradable Zn–1.7Mg–1Ca alloy processed by KoBo extrusion. DOI

Dutkiewicz, J. et al. Effect of KOBO extrusion and following Cyclic forging on grain refinement of Mg–9Li–2Al–0.5Sc alloy. DOI

Tomaszewska, A., Bednarczyk, I., Kuc, D. & Mrugała, A. The influence of extrusion process on the microstructure and mechanical properties of magnesium alloys.

Pieła, K. et al. Zinc subjected to plastic deformation by complex loading and conventional extrusion: comparison of the microstructure and mechanical properties. DOI

Bochniak, W., Ostachowski, P., Korbel, A. & Łagoda, M. Potential of the KOBO extrusion process for nonferrous metals in the form of solids and chips. DOI

Klinger, M. More features, more tools, more CrysTBox.

Van Cauwenbergh, P. et al. Unravelling the multi-scale structure–property relationship of laser powder bed fusion processed and heat-treated AlSi10Mg. PubMed DOI PMC

Liu, M. et al. Additive manufacturing of pure Niobium by laser powder bed fusion: microstructure, mechanical behavior and oxygen assisted embrittlement. DOI

Eom, Y. S. et al. Fine-tuning of mechanical properties of additively manufactured AlSi10Mg alloys by controlling the microstructural heterogeneity. DOI

Go, J., Lee, J. U., Yu, H. & Park, S. H. Influence of Bi addition on dynamic recrystallization and precipitation behaviors during hot extrusion of pure Mg. DOI

Sahu, S., Yadav, P. C. & Shekhar, S. Use of hot rolling for generating low deviation twins and a disconnected random boundary network in inconel 600 alloy. DOI

Li, W., Deng, Y., Gu, J., Mu, W. & Li, J. Correlation of microstructure and dynamic softening mechanism of UNS S32101 duplex stainless steel during elevated temperature tensile testing. DOI

Liu, M. et al. Deformation-activated recrystallization twin: new twinning path in pure aluminum enabled by cryogenic and rapid compression. PubMed PMC

Luo, X. M., Song, Z. M., Li, M. L., Wang, Q. & Zhang, G. P. Microstructural evolution and service performance of Cold-drawn pure aluminum conductor wires. DOI

Dubey, R. et al. Energy absorption and dynamic behaviour of 6xxx series aluminium alloys: A review. DOI

He, C. G. et al. On the microstructure evolution and nanocrystalline formation of pearlitic wheel material in a rolling-sliding contact. DOI

Sabat, R. K., Muhammad, W., Mishra, R. K. & Inal, K. Effect of microstructure on fracture in age hardenable al alloys. DOI

Shen, F. et al. New insight of texture and microstructure evolution, and the connections between with tensile performance in as-annealed Al-Cu-Mg-Zr sheet. DOI

Wu, J., Wang, X. Q., Wang, W., Attallah, M. M. & Loretto, M. H. Microstructure and strength of selectively laser melted AlSi10Mg. DOI

Mackenzie, D. S. Handbook of Aluminum, (2003). 10.1201/9780203912607

Wang, P. et al. The role of cellular structure, non-equilibrium eutectic phases and precipitates on quasi-static strengthening mechanisms of as-built AlSi10Mg parts 3D printed via laser powder bed fusion. DOI

Zhang, Y. et al. Rapid forming of high-entropy alloy under extreme low temperature via ultrasonic vibration. DOI

Zhou, D. et al. Stacking faults in a mechanically strong Al(Mg)–Al3Mg2 composite. DOI

Zhang, J. et al. Deformation-induced concurrent formation of 9R phase and twins in a nanograined aluminum alloy. DOI

Cui, R. et al. Multiscale microstructure containing nanometer-scale precipitations and stacking faults yields a high-strength Al-5Cu alloy by electron beam freeform fabrication. DOI

Korbel, A. et al. Structural phenomena induced in the course of and post low-temperature KOBO extrusion of AA6013 aluminum alloy. DOI

Bacon, D. J. & Osetsky, Y. N. Dislocation—Obstacle interactions at atomic level in irradiated metals. DOI

Mousavi, G. S., Emamy, M. & Rassizadehghani, J. The effect of mischmetal and heat treatment on the microstructure and tensile properties of A357 Al–Si casting alloy. DOI

Mohamed, A. M. A., Samuel, A. M., Samuel, F. H. & Doty, H. W. Influence of additives on the microstructure and tensile properties of near-eutectic Al–10.8%Si cast alloy. DOI

Ceschini, L., Morri, A., Morri, A., Gamberini, A. & Messieri, S. Correlation between ultimate tensile strength and solidification microstructure for the sand cast A357 aluminium alloy. DOI

Ma, A. et al. Effect of severe plastic deformation on tensile properties of a cast Al–11 mass% Si alloy. DOI

Wang, Y., Liao, H., Wu, Y. & Yang, J. Effect of Si content on microstructure and mechanical properties of Al–Si–Mg alloys. DOI

Dang, B. et al. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy. PubMed DOI PMC

Bereta, L. A., Ferrarini, C. F., Kiminami, C. S., Botta, W. J. F. & Bolfarini, C. Microstructure and mechanical properties of spray deposited and extruded/heat treated hypoeutectic Al–Si alloy.

Ham, G. S., Baek, M. S., Kim, J. H., Lee, S. W. & Lee, K. A. Effect of heat treatment on tensile and fatigue deformation behavior of extruded Al-12 wt%si alloy. DOI

Noga, P., Skrzekut, T. & Wędrychowicz, M. Microstructure and mechanical properties of Al-Si alloys produced by rapid solidification and hot extrusion. PubMed PMC

Yeh, J. W., Yuan, S. Y. & Peng, C. H. A reciprocating extrusion process for producing hypereutectic Al–20wt.% Si wrought alloys. DOI

Ding, C. & Yu, P. Effect of extrusion temperatures on the microstructures, mechanical properties and thermal properties of PM Al-20Si alloy. DOI

Kempen, K., Thijs, L., Van Humbeeck, J. & Kruth, J. P. Mechanical properties of AlSi10Mg produced by selective laser melting. DOI

CHEN, J., HOU, W., WANG, X. & CHU, S. Microstructure, porosity and mechanical properties of selective laser melted AlSi10Mg. DOI

Silvestri, A. T. et al. Assessment of the mechanical properties of AlSi10Mg parts produced through selective laser melting under different conditions. DOI

Clement, C. D., Masson, J. & Kabir, A. S. Effects of heat treatment on microstructure and mechanical properties of AlSi10Mg fabricated by selective laser melting process.

Tabatabaei, N., Zarei-Hanzaki, A., Moshiri, A. & Abedi, H. R. The effect of heat treatment on the room and high temperature mechanical properties of AlSi10Mg alloy fabricated by selective laser melting. DOI

Yan, Q., Song, B. & Shi, Y. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting. DOI

Chen, X. et al. Effect of inter-pass annealing on the deformation microstructure of Ti-48Al-2Cr-2Nb alloy. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...