Effect of Build-Up Strategy and Selective Laser Melting Process Parameters on Microstructure and Mechanical Properties of 316L Stainless Steel
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
41515693
PubMed Central
PMC12786895
DOI
10.3390/ma19010026
PII: ma19010026
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, additive manufacturing, laser powder bed fusion, mechanical properties, microstructure, selective laser melting,
- Publikační typ
- časopisecké články MeSH
Additive manufacturing, or 3D printing, is a method for creating three-dimensional objects layer-by-layer based on a digital model. This article presents the results of research on selective laser melting (SLM) of 316L stainless steel powder. Its aim is to investigate the relation between the mechanical properties of SLM-fabricated 316L steel samples obtained from uniaxial tensile tests and the SLM process parameters including the build-up strategy. Four different configurations of 3D printing orientation relative to the build platform were considered. The variable parameters of the SLM process were laser power and laser scanning speed. The morphology of the external surfaces and the microstructure of the SLM-processed samples were examined. The results show that samples printed in the longitudinal and transverse configurations had the highest tensile strength. Samples printed in the vertical and diagonal configurations had the greatest dispersion of values of mechanical parameters. The main difference in mechanical properties after doubling the SLM process parameters was a decrease in elongation for samples printed in the longitudinal configuration and an increase in this value for samples printed in the transverse configuration. The use of higher laser powers and laser scanning speeds guarantees a more compact, non-porous microstructure of SLM-processed samples.
Zobrazit více v PubMed
Asnafi N. Metal Additive Manufacturing—State of the Art 2020. Metals. 2021;11:867. doi: 10.3390/met11060867. DOI
Obeidi M.A., Healy P., Alobaidi H., Bourke D., Brabazon D. Towards a Sustainable Laser Powder Bed Fusion Process via the Characterisation of Additively Manufactured Nitinol Parts. Designs. 2024;8:45. doi: 10.3390/designs8030045. DOI
Kuo C.C., Li M.R. A cost-effective method for rapid manufacturing sheet metal forming dies. Int. J. Adv. Manuf. Technol. 2015;85:2651–2656. doi: 10.1007/s00170-015-8139-2. DOI
Guan J., Wang Q. Laser Powder Bed Fusion of Dissimilar Metal Materials: A Review. Materials. 2023;16:2757. doi: 10.3390/ma16072757. PubMed DOI PMC
Sefene E.M. State-of-the-art of selective laser melting process: A comprehensive review. J. Manuf. Syst. 2022;63:250–274. doi: 10.1016/j.jmsy.2022.04.002. DOI
Kanishka K., Acherjee B. A systematic review of additive manufacturing-based remanufacturing techniques for component repair and restoration. J. Manuf. Process. 2023;89:220–283. doi: 10.1016/j.jmapro.2023.01.034. DOI
Gao B., Zhao H., Peng L., Sun Z. A Review of Research Progress in Selective Laser Melting (SLM) Micromachines. 2023;14:57. doi: 10.3390/mi14010057. PubMed DOI PMC
Żaba K., Balcerzak M., Kuczek Ł., Wiewióra M., Różycka I., Trzepieciński T., Mizera J. Application of Powder-Bed Fusion of Metals Using a Laser for Manufacturing of M300 Maraging Steel Tools Intended for Sheet Metal Bending. Materials. 2024;17:6185. doi: 10.3390/ma17246185. PubMed DOI PMC
Gunasekaran J., Sevvel P., Somomon I.J. Metallic materials fabrication by selective laser melting: A review. Mater. Today Proc. 2021;37:252–256. doi: 10.1016/j.matpr.2020.05.162. DOI
Olakanmi E.O., Cochrane R., Dalgarno K. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Prog. Mater. Sci. 2015;74:401–477. doi: 10.1016/j.pmatsci.2015.03.002. DOI
Żaba K., Szczepańska M., Balcerzak M., Kac S., Żabinski P. Assessment of the Corrosion Rate of Maraging Steel M350 Produced by Additive Manufacturing Using the Laser Powder-Bed Fusion Method and Surface Finishing Techniques. Materials. 2025;18:4098. doi: 10.3390/ma18174098. PubMed DOI PMC
Yap C.Y., Chua C.K., Dong Z.L., Liu Z.H., Zhang D.Q., Loh L.E., Sing S.L. Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2015;2:041101. doi: 10.1063/1.4935926. DOI
Asnafi N. Application of Laser-Based Powder Bed Fusion for Direct Metal Tooling. Metals. 2021;11:458. doi: 10.3390/met11030458. DOI
Shahriari A., Khaksar L., Nasiri A., Hadadzadeh A., Shalchi Amirkhiz B., Mohammadi M. Microstructure and corrosion behavior of a novel additively manufactured maraging stainless steel. Electrochim. Acta. 2020;339:135925. doi: 10.1016/j.electacta.2020.135925. DOI
Krakhmalev P., Yadroitsava I., Fredriksson G., Yadroitsev I. In situ heat treatment in selective laser melted martensitic AISI 420 stainless steels. Mater. Des. 2015;87:380–385. doi: 10.1016/j.matdes.2015.08.045. DOI
Cobbinah P.V., Nzeukou R.A., Onawale O.T., Matizamhuka W.R. Laser Powder Bed Fusion of Potential Superalloys: A Review. Metals. 2021;11:58. doi: 10.3390/met11010058. DOI
Rahmani R., Karimi J., Resende P.R., Abrantes J.C.C., Lopes S.I. Overview of Selective Laser Melting for Industry 5.0: Toward Customizable, Sustainable, and Human-Centric Technologies. Machines. 2023;11:522. doi: 10.3390/machines11050522. DOI
Rahmani R., Lopes S.I., Prashanth K.G. Selective Laser Melting and Spark Plasma Sintering: A Perspective on Functional Biomaterials. J. Funct. Biomater. 2023;14:521. doi: 10.3390/jfb14100521. PubMed DOI PMC
Gracheva A., Polozov I., Popovich A. Additive Manufacturing of Biodegradable Metallic Implants by Selective Laser Melting: Current Research Status and Application Perspectives. Metals. 2025;15:754. doi: 10.3390/met15070754. DOI
Snopiński P., Appiah A., Matus K., Kuczek Ł., Żaba K., Balcerzak M., Hajnyš J. Utilizing PBF-LB/M AlSI10Mg alloy post-processed via KOBO-extrusion and subsequent cold drawing to obtain high-strength wire. Sci. Rep. 2025;15:31025. doi: 10.1038/s41598-025-14980-3. PubMed DOI PMC
Ansari P., Rehman A.U., Pitir F., Veziroglu S., Mishra Y.K., Aktas O.C., Salamci M.U. Selective Laser Melting of 316L Austenitic Stainless Steel: Detailed Process Understanding Using Multiphysics Simulation and Experimentation. Metals. 2021;11:1076. doi: 10.3390/met11071076. DOI
Păcurar R., Păcurar A. Finite Element Analysis to Improve the Accuracy of Parts Made by Stainless Steel 316L Material Using Selective Laser Melting Technology. Appl. Mech. Mater. 2014;657:236–240. doi: 10.4028/www.scientific.net/AMM.657.236. DOI
Wang Z., Yang S., Huang Y., Fan C., Peng Z., Gao Z. Microstructure and Fatigue Damage of 316L Stainless Steel Manufactured by Selective Laser Melting (SLM) Materials. 2021;14:7544. doi: 10.3390/ma14247544. PubMed DOI PMC
Zhou X., Zhong Y., Shen Z., Liu W. The surface-tension-driven Benard conventions and unique sub-grain cellular microstructures in 316L steel selective laser melting. arXiv. 2018 doi: 10.48550/arXiv.1801.01408. DOI
Li H., Ramezani M., Li M., Ma C., Wang J. Tribological performance of selective laser melted 316L stainless steel. Tribol. Int. 2018;128:121–129. doi: 10.1016/j.triboint.2018.07.021. DOI
Mohyla P., Hajnys J., Gembalová L., Zapletalová A., Krpec P. Influence of Heat Treatment of Steel AISI316L Produced by the Selective Laser Melting Method on the Properties of Welded Joint. Materials. 2022;15:1690. doi: 10.3390/ma15051690. PubMed DOI PMC
Aziz U., McAfee M., Manolakis I., Timmons N., Tormey D. A Review of Optimization of Additively Manufactured 316/316L Stainless Steel Process Parameters, Post-Processing Strategies, and Defect Mitigation. Materials. 2025;18:2870. doi: 10.3390/ma18122870. PubMed DOI PMC
Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications. ASTM International; West Conshohocken, PA, USA: 2022.
Designation Systems for Steels—Part 2: Numerical System. European Committee for Standardization; Brussels, Belgium: 2015.
Material Data Sheet—Austenitic Stainless Steel 316L—Xact Metal. [(accessed on 23 December 2023)]. Available online: https://xactmetal.com/wp-content/uploads/2025/03/Carpenter-Additive-316L-Technical-Datasheet-250313.pdf.
EOS Stainless Steels. [(accessed on 8 November 2025)]. Available online: https://drukarki3d.pl/oferta/eos-stainless-steels-stale-nierdzewne/
Lai B.-L., Li Y.-R., Zhao J.-H., Kong Z.-Y., Fan S.-G. Experimental study on the interfacial bond behavior of UHPC filled circular stainless steel tubes. J. Constr. Steel Res. 2025;224:109172. doi: 10.1016/j.jcsr.2024.109172. DOI
Materials Data Sheet. Austenitic Stainless Steel 316L. [(accessed on 3 November 2025)]. Available online: https://xactmetal.com/wp-content/uploads/2025/03/PraxAir-Linde-316-Technical-Datasheet-250313.pdf.
Standard Test Method for Particle Size Distribution of Metal Powders and Related Compounds by Light Scattering. ASTM International; West Conshohocken, PA, USA: 2020.
Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. International Organization for Standardization; Geneva, Switzerland: 2020.
Verna E., Genta G., Galetto M., Franceschini F. Designing offline inspection strategies for Selective Laser Melting Additive Manufacturing processes; Proceedings of the XIV Convegno dell’Associazione Italiana Tecnologie Manifatturiere; Padova, Italy. 9–11 September 2019; pp. 1–10.
37, Calignano F., Minetola P. Influence of Process Parameters on the Porosity, Accuracy, Roughness, and Support Structures of Hastelloy X Produced by Laser Powder Bed Fusion. Materials. 2019;12:3178. doi: 10.3390/ma12193178. PubMed DOI PMC
Lackey A.D. Master’s Thesis. Western Carolina University; Cullowhee, NC, USA: Apr, 2016. Comparative Study of Mechanical Properties of 316l Stainless Steel Between Traditional Production Methods and Selective Laser Melting.
Sazgar A., Gholizadeh V., Sherafati J. Mechanical properties of 316L stainless steel samples fabricated by selective laser melting and comparison with other manufacturing methods. J. Nucl. Res. Appl. 2022;2:8–17. doi: 10.24200/jon.2022.1009. DOI
Braun M., Mayer E., Kryukov I., Wolf C., Böhm S., Taghipour A., Wu R.E., Ehlers S., Sheikhi S. Fatigue strength of PBF-LB/M and wrought 316L stainless steel: Effect of post-treatment and cyclic mean stress. Fatigue Fract. Eng. Mater. Struct. 2021;44:3077e93. doi: 10.1111/ffe.13552. DOI
Čapek J., Machová M., Fousová M., Kubásek J., Vojtěch D., Fojt J., Jablonská E., Lipov J., Ruml T. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting. Mater. Sci. Eng. C. 2016;69:631–639. doi: 10.1016/j.msec.2016.07.027. PubMed DOI
Losertová M., Štamborská M., Lapin J., Mareš V. Comparison of deformation behavior of 316l stainless steel and Ti6Al4V alloy applied in traumatology. Metalurgija. 2016;55:667–670.
Novak J.S., Pelegatti M., Kamenar E., Zelenika S., De Bona F. Experimental investigation of mechanical properties of the AISI 316L stainless steel: Macro- and microscale; Proceedings of the 23rd International Conference & Exhibition; Copenhagen, Denmark. 12–16 June 2023; pp. 1–4.
Calignano F., Iuliano L., Galati M., Minetola P., Marchiandi G. Accuracy of down-facing surfaces in complex internal channels produced by laser powder bed fusion (L-PBF) Procedia CIRP. 2020;88:423–426. doi: 10.1016/j.procir.2020.05.073. DOI
Bogachev I.A., Rogalev A.M., Kaplanskiy Y.Y., Sevalnyov G.S., Kolmakov A.G., Martnenkova E.V. Use of Selective Laser Melting for Production of Bimetallic Compounds Made of Steels of Various Classes. Inorg. Mater. Appl. Res. 2025;16:33–41. doi: 10.1134/S2075113324701314. DOI
Bogachev I.A., Sul’anova E.A., Sukhov D.I., Mazalov P.B. Microstructure and properties investigations of Fe–Cr–Ni stainless steel obtained by selective laser melting. Proc. VIAM. 2019;3:3–13. doi: 10.18577/2307-6046-2019-0-3-3-13. DOI
Prashanth K.G. Selective Laser Melting: Materials and Applications. J. Manuf. Mater. Process. 2020;4:13. doi: 10.3390/jmmp4010013. DOI
Zou S., Xiao H., Ye F., Li Z., Tang W., Zhu F., Chen C., Zhu C. Numerical analysis of the effect of the scan strategy on the residual stress in the multi-laser selective laser melting. Results Phys. 2020;16:103005. doi: 10.1016/j.rinp.2020.103005. DOI
Yadroitsev I., Yadroitsava I. Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting. Virtual Phys. Prototyp. 2015;10:67–76. doi: 10.1080/17452759.2015.1026045. DOI
Gordon J.V., Narra S.P., Cunningham R.W., Liu H., Chen H., Suter R.M., Beuth J.L., Rollett A.D. Defect structure process maps for laser powder bed fusion additive manufacturing. Addit. Manuf. 2020;36:101552. doi: 10.1016/j.addma.2020.101552. DOI
Bian P., Jammal A., Xu K., Ye F., Zhao N., Song Y. A Review of the Evolution of Residual Stresses in Additive Manufacturing During Selective Laser Melting Technology. Materials. 2025;18:1707. doi: 10.3390/ma18081707. PubMed DOI PMC
Li C., Liu Z.Y., Fang X.Y., Guo Y.B. Residual Stress in Metal Additive Manufacturing. Procedia CIRP. 2018;71:348–353. doi: 10.1016/j.procir.2018.05.039. DOI
Zhao J., Wang B., Liu T., Luo L., Wang Y., Zheng X., Wang L., Su Y., Guo J., Fu H., et al. A study on overlapping effect of melt pools in powder bed fusion based on a novel prediction method. Addit. Manuf. 2022;59:103151. doi: 10.1016/j.addma.2022.103151. DOI
Liu C., Huang W., Wang H., Lin Z., Lai Z. Simulation study on the impact of melt track overlap rate on the forming result during the selective laser melting of Ti-6Al-4V alloy. Materials. 2025;18:2314. doi: 10.3390/ma18102314. PubMed DOI PMC