Influence of Twist Channel Angular Pressing Process on Microhardness and Microstructural Behavior of Explosively Welded Al/Cu Plates
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
41598013
PubMed Central
PMC12843109
DOI
10.3390/ma19020302
PII: ma19020302
Knihovny.cz E-zdroje
- Klíčová slova
- Al/Cu plates, explosive welding, microhardness, microstructure, severe plastic deformation, twist channel angular pressing,
- Publikační typ
- časopisecké články MeSH
Due to their unique properties resulting from the combination of metals with different properties, bimetallic sheets are desirable in the energy, petrochemical, and shipbuilding industries. In this article, explosively welded EN AW-1050/Cu-ETP (Al/Cu) plates were used as the test material. One of the greatest advantages of Al/Cu bimetallic plates is their high deformability, which allows for easy plastic forming. The aim of this study was to determine the effect of severe plastic deformation on the microstructure and microhardness of explosively welded EN AW-1050/Cu-ETP plates. Bimetallic samples were processed using the Twist Channel Angular Pressing (TCAP) process. This process consisted of varying the number of passes and the sample orientation relative to the helical exit channel of the TCAP die. For comparative purposes, a microstructural analysis and the microhardness testing of the as-welded samples were also carried out. Microstructural analysis of TCAP-processed samples showed that the sample deformed along route Bc exhibited the most deformed weld interface profile. No cracking or delamination was observed in the Al/Cu interfacial transition layer of TCAP-processed samples. The number of passes and orientation of the bimetallic material relative to the die exit channel affected the final microhardness in the individual layers of explosively welded EN AW-1050/Cu-ETP bimetallic plate.
Zobrazit více v PubMed
Uscinowicz R. Characterization of directional elastoplastic properties of Al/Cu bimetallic sheet. J. Mater. Eng. Perform. 2019;28:1350–1359. doi: 10.1007/s11665-019-03892-9. DOI
Kim I.K., Hong S.I. Effect of heat treatment on the bending behavior of tri-layered Cu/Al/Cu composite plates. Mater. Des. 2013;47:590–598. doi: 10.1016/j.matdes.2012.12.070. DOI
Kocich R. Effects of twist channel angular pressing on structure and properties of bimetallic Al/Cu clad composites. Mater. Des. 2020;196:109255. doi: 10.1016/j.matdes.2020.109255. PubMed DOI PMC
Sun T., Liang J., Guo X., Ren M., Wang L. Optical measurement of forming limit and formability of Cu/Al clad metals. J. Mater. Eng. Perform. 2015;24:1426–1433. doi: 10.1007/s11665-015-1435-z. DOI
Żaba K., Puchlerska S., Kuczek Ł., Trzepieciński T., Maj P. Effect of step size on the Formability of Al/Cu bimetallic sheets in single point incremental sheet forming. Materials. 2023;16:367. doi: 10.3390/ma16010367. PubMed DOI PMC
Roostaei M., Darabi R. Investigation on formability of three-layer joined Al/Cu/Al sheets annealed at different temperature. Mater. Sci. Technol. 2020;36:1476–1486. doi: 10.1080/02670836.2020.1792637. DOI
Rydz D., Stradomski G., Szarek A., Kubik K., Kordas P. The Analysis of pressed cups producing possibilities from rolled bimetallic Al-1050 + Cu-M1E sheets. Materials. 2020;13:2413. doi: 10.3390/ma13102413. PubMed DOI PMC
Guo Y., Wu X., Ren G., Liu Z., Yuan R., Yang X., Dong P. Microstructure and properties of copper-steel bimetallic sheets prepared by friction stir additive manufacturing. J. Manuf. Process. 2022;82:689–699. doi: 10.1016/j.jmapro.2022.08.022. DOI
Rydz D. The optimal conditions for production of bimetallic plater in asymmetrical hot rolling; Proceedings of the 11th International Scientific Conference Achievements in Mechnical and Materials Engineering; Gliwice-Zakopane, Poland. 15–18 December 2002; pp. 467–472.
Zhang W., Hu H.J., Gan S., Zhao H., Sun Z.W., Yuan T., Li Y., Ou Z. Microstructural characterization and mechanical behavior of Mg-AZ31B/Al 6063 bimetallic sheets produced by combining continuous shear deformation with direct extrusion. Mater. Today Commun. 2023;37:107164. doi: 10.1016/j.mtcomm.2023.107164. DOI
Gonzaga R.S., Farias F.W.C., da Cruz Payão Filho J. Microstructural characterization of the transition zone between a C–Mn steel pipe and a 70%Ni30%Cu alloy cladding welded by HW-GTAW. Int. J. Press. Vessel. Pip. 2021;192:104433. doi: 10.1016/j.ijpvp.2021.104433. DOI
Tayebi P., Nasirin A.R., Akbari H., Hashemi R. Experimental and numerical investigation of forming limit diagrams during single point incremental forming for Al/Cu bimetallic sheets. Metals. 2024;14:214. doi: 10.3390/met14020214. DOI
Chu Q., Tong X., Xu S., Zhang M., Li J., Yan F.X., Yan C. Interfacial investigation of explosion-welded titanium/steel bimetallic plates. J. Mater. Eng. Perform. 2020;29:78–86. doi: 10.1007/s11665-019-04535-9. DOI
Kwiecien I., Bobrowski P., Janusz-Skuza M., Wierzbicka-Miernik A., Tarasek A., Szulc Z., Wojewoda-Budka J. Interface characterization of Ni/Al bimetallic explosively welded plate manufactured with application of exceptionally high detonation speed. J. Mater. Eng. Perform. 2020;29:6286–6294. doi: 10.1007/s11665-020-05117-w. DOI
Zhang T., Wang W., Yan Z., Zhang J. Interfacial Morphology and Bonding Mechanism of Explosive Weld Joints. Chin. J. Mech. Eng. 2021;34:8. doi: 10.1186/s10033-020-00495-7. DOI
Acarer M., Gülenç B., Findik F. Investigation of explosive welding parameters and their effects on microhardness and shear strength. Mater. Des. 2003;24:659–664. doi: 10.1016/S0261-3069(03)00066-9. DOI
Rajani H.R.Z., Mousavi S.A.A.A. The effect of explosive welding parameters on metallurgical and mechanical interfacial features of Inconel 625/plain carbon steel bimetal plate. Mater. Sci. Eng. A. 2012;556:454–464. doi: 10.1016/j.msea.2012.07.012. DOI
Bakhtiari H., Abbasi H., Sabet H., Khanzadeh M.R., Farvizi M. Investigation on the effects of explosive welding parameters on the mechanical properties and electrical conductivity of Al-Cu bimetal. J. Environ. Friendly Mater. 2022;6:31–37.
Gałka A. Application of explosive metal cladding in manufacturing new advanced layered materials on the example of titanium Ti6Al4V—Aluminum AA2519 bond. High-Energ. Mater. 2015;7:73−79.
Kuz’min E.V., Lysak V.I., Kuz’min S.V., Korolev M.P. Influence of structure formation and properties of bimetal produced by ultrasound-assisted explosive welding. J. Manuf. Process. 2021;71:734–742. doi: 10.1016/j.jmapro.2021.10.006. DOI
Sherpa B.B., Rani R. Advancements in explosive welding process for bimetallic material joining: A review. J. Alloys Metall. Syst. 2024;6:100078. doi: 10.1016/j.jalmes.2024.100078. DOI
Snopiński Ż., Appiah A., Matus K., Kuczek Ł., Żaba K., Balcerzak M., Hajdyš J. Utilizing PBF-LB/M AlSI10Mg alloy post-processed via KOBO-extrusion and subsequent cold drawing to obtain high-strength wire. Sci. Rep. 2025;15:31025. doi: 10.1038/s41598-025-14980-3. PubMed DOI PMC
Djavanroodi F., Omranpour B., Ebrahimi M., Sedighi M. Designing of ECAP parameters based on strain distribution uniformity. Prog. Nat. Sci. Mater. Int. 2012;22:452–460. doi: 10.1016/j.pnsc.2012.08.001. DOI
Dangwal S., Edalati K., Valiev R.Z., Langdon T.G. Breaks in the Hall–Petch relationship after severe plastic deformation of magnesium, aluminum, copper, and iron. Crystals. 2023;13:413. doi: 10.3390/cryst13030413. DOI
Prathyusha B., Dhal A., Panigrahi S.K. Achieving excellent bond strength and tensile strength synergy of ultrafine-grained Al/Cu bimetallic sheets developed by an innovative hybrid manufacturing process. J. Mater. Process. Technol. 2024;333:118596. doi: 10.1016/j.jmatprotec.2024.118596. DOI
Żaba K., Snopiński P., Wałach D., Kaczmarczyk G.P., Rusz S. Insight into the fracture behaviour and mechanical response of ECAP processed cast and LPBF AlSi10Mg alloy. Eng. Fract. Mech. 2025;295:109785. doi: 10.1016/j.engfracmech.2023.109785. DOI
Hosseini S.M., Roostaei M., Mashhadi M.M., Jabbari H., Faraji G. Fabrication of Al/Mg bimetallic thin-walled ultrafine-grained tube by severe plastic deformation. J. Mater. Eng. Perform. 2022;31:4098–4107. doi: 10.1007/s11665-021-06514-5. DOI
Cui L., Shao S., Wang H., Zhang G., Zhao Z., Zhao C. Recent advances in the equal channel angular pressing of metallic materials. Processes. 2022;10:2181. doi: 10.3390/pr10112181. DOI
Macháčková A. Decade of twist channel angular pressing: A review. Materials. 2020;13:1725. doi: 10.3390/ma13071725. PubMed DOI PMC
Shaeri M.H., Djavanroodi F., Sedighi M., Ahmadi S., Salehi M.T., Seyyedein S.H. Effect of copper tube casing on strain distribution and mechanical properties of Al-7075 alloy processed by equal channel angular pressing. J. Strain Anal. Eng. Des. 2013;48:512–521. doi: 10.1177/0309324713498234. DOI
Varadala A.B., Gurugubelli S.N., Bandaru S. Severe plastic deformation of AA 5083 and copper bimetallic metal. SN Appl. Sci. 2020;2:1562. doi: 10.1007/s42452-020-03384-9. DOI
Ebrahim A., Soliman E.M.S., Abdelrhman Y., Hassab-Allah I.M. Investigation of Al/Cu bimetallic tube cladding process by severe plastic deformation. J. Eng. Sci. 2023;51:1–15.
Alaie M.A., Kasaeian-Naeini M., Hashemi R., Rajabi M., Hosseini A. Fabrication of AA1050/CP-Cu Bimetallic Tubes using Parallel Tube-Shaped Channel Angular Pressing Technique and Assessing its Mechanical Properties and Microstructure. Trans. Indian Inst. Met. 2023;76:1937–1948. doi: 10.1007/s12666-023-02897-2. DOI
Shirzad S., Hashemi R., Rajabi M. Finite element simulation of the parallel tubular channel angular pressing process for Al–Cu bimetallic tube with experimental verification. Trans. Indian Inst. Met. 2022;75:91–100. doi: 10.1007/s12666-021-02398-0. DOI
32 Ghadimi S., Sedighi M., Djavanroodi F., Asgari A. Experimental and numerical investigation of a Cu–Al bimetallic tube produced by ECAP. Mater. Manuf. Process. 2015;30:1256–1261. doi: 10.1080/10426914.2014.984210. DOI
Żaba K., Puchlerska S., Rusz S., Fejkiel R. Mechanical properties of aluminium/copper bimetallic sheets subjected to cyclic bending. Adv. Mech. Mater. Eng. 2023;40:47–54. doi: 10.7862/rm.2023.6. DOI
Kocich R., Kunčická L. Development of structure and properties in bimetallic Al/Cu sandwich composite during cumulative severe plastic deformation. J. Sandw. Struct. Mater. 2021;23:4252–4275. doi: 10.1177/1099636221993886. DOI
Parimi A.K., Robi P.S., Dwivedy S.K. Severe plastic deformation of copper and Al–Cu alloy using multiple channel-die compression. Mater. Des. 2011;32:1948–1956. doi: 10.1016/j.matdes.2010.11.074. DOI
Mirzakouchakshirazi H., Eivani A.R., Kheirandis S. Effect of post-deformation annealing treatment on interface properties and shear bond strength of Al-Cu bimetallic rods produced by equal channel angular pressing. Iran. J. Mater. Sci. Eng. 2017;14:25–34.
Copper and Copper Alloys—Plate, Sheet, Strip and Circles for General Purposes. European Committee for Standardization (CEN); Brussels, Belgium: 1997.
Aluminium and Aluminium Alloys—Chemical Composition and form of Wrought Products—Part 1: Numerical Designation System. European Committee for Standardization (CEN); Brussels, Belgium: 2004.
Żaba K., Ortyl K., Hilšer O., Pastrnak M., Kuczek Ł., Różycka I., Pałka P., Gałka A., Trzepieciński T. Effects of Equal Channel Angular Pressing on the Microstructure and Mechanical Properties of Explosion-Welded Al-Cu Bimetallic Plates. Materials. 2025;18:5080. doi: 10.3390/ma18225080. PubMed DOI PMC
Mendes R., Ribeiro J.B., Loureiro A. Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration. Mater. Des. 2013;51:182–192. doi: 10.1016/j.matdes.2013.03.069. DOI
Bahrani A.S., Black T.J., Crossland B. The mechanics of wave formation in explosive welding. Proc. Royal Soc. A Math. Phys. Eng. Sci. 1967;296:123–136. doi: 10.1098/rspa.1967.0010. DOI
Carton E.P. Wave forming mechanisms in explosive welding. Mater. Sci. Forum. 2004;465–466:219–224. doi: 10.4028/www.scientific.net/MSF.465-466.219. DOI
Blazynski T.Z. Dynamically Consolidated Composites: Manufacture and Properties. Elsevier; Amsterdam, The Netherlands: 1992.
Li X., Zhang T., Dai X., Qian J., Wang Q., Yang K., Cui Y. Hazardous effects and microstructure of explosive welding under vacuum environment. Int. J. Adv. Manuf. Technol. 2024;130:3741–3754. doi: 10.1007/s00170-023-12892-y. DOI
Callister W.D., Rethwisch D.G. Fundamentals of Materials Science and Engineering: An Integrated Approach. 5th ed. Wiley; Hoboken, NJ, USA: 2016.
Paul H., Lityńska-Dobrzyńska L., Prażmowski M. Microstructure and phase constitution near the interface of explosively welded aluminum/copper plates. Metall. Mater. Trans. A. 2013;44:3836–3851. doi: 10.1007/s11661-013-1703-1. DOI
Martin P., Radek Č., Tomáš P., Stanislav R., František T., Jarosław M., Marie P. DRECE method for continuous severe plastic defromation of CuZn37 sheets. Acta Polytechnica. 2024;64:430–436.
Snopiński P., Appiah A., Hilšer O., Hajnyš J. Microstructural evolution and mechanical properties of an additively manufactured AlSi10Mg alloy post-processed by twist equal channel angular pressing. Symmetry. 2025;17:1289. doi: 10.3390/sym17081289. DOI
Muzyk M., Pakiela Z., Kurzydlowski K.J. Ab initio calculations of the generalized stacking fault energy in aluminium alloys. Scr. Mater. 2011;64:916–918. doi: 10.1016/j.scriptamat.2011.01.034. DOI
Muzyk M., Pakieła Z., Kurzydłowski K.J. Generalized stacking fault energies of aluminum alloys–density functional theory calculations. Metals. 2018;8:823. doi: 10.3390/met8100823. DOI
Yu T. Deformation Microstructure and Recovery. In: Huang K., editor. Recrystallization: Types, Techniques and Applications. Nova Science Publishers; Hauppauge, NY, USA: 2020. pp. 1–44.
Hilšer O., Pastrnak M., Rusz S., Krupova H., Snopiński P. Finite Element Analysis Of Twist Channel Angular Pressing. MM Sci. J. 2023;2023:6314–6318. doi: 10.17973/MMSJ.2023_03_2022101. DOI
El-Shenawy M., El-Garaihy W.H., El-Hadek M., Mohamed Z., Nassef A. Influence of ECAP Parameters on Electrical Conductivity and Hardness of Pure Cu. Port-Said Eng. Res. J. 2022;26:42–49. doi: 10.21608/pserj.2022.156882.1194. DOI