Influence of Twist Channel Angular Pressing Process on Microhardness and Microstructural Behavior of Explosively Welded Al/Cu Plates

. 2026 Jan 12 ; 19 (2) : . [epub] 20260112

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41598013

Due to their unique properties resulting from the combination of metals with different properties, bimetallic sheets are desirable in the energy, petrochemical, and shipbuilding industries. In this article, explosively welded EN AW-1050/Cu-ETP (Al/Cu) plates were used as the test material. One of the greatest advantages of Al/Cu bimetallic plates is their high deformability, which allows for easy plastic forming. The aim of this study was to determine the effect of severe plastic deformation on the microstructure and microhardness of explosively welded EN AW-1050/Cu-ETP plates. Bimetallic samples were processed using the Twist Channel Angular Pressing (TCAP) process. This process consisted of varying the number of passes and the sample orientation relative to the helical exit channel of the TCAP die. For comparative purposes, a microstructural analysis and the microhardness testing of the as-welded samples were also carried out. Microstructural analysis of TCAP-processed samples showed that the sample deformed along route Bc exhibited the most deformed weld interface profile. No cracking or delamination was observed in the Al/Cu interfacial transition layer of TCAP-processed samples. The number of passes and orientation of the bimetallic material relative to the die exit channel affected the final microhardness in the individual layers of explosively welded EN AW-1050/Cu-ETP bimetallic plate.

Zobrazit více v PubMed

Uscinowicz R. Characterization of directional elastoplastic properties of Al/Cu bimetallic sheet. J. Mater. Eng. Perform. 2019;28:1350–1359. doi: 10.1007/s11665-019-03892-9. DOI

Kim I.K., Hong S.I. Effect of heat treatment on the bending behavior of tri-layered Cu/Al/Cu composite plates. Mater. Des. 2013;47:590–598. doi: 10.1016/j.matdes.2012.12.070. DOI

Kocich R. Effects of twist channel angular pressing on structure and properties of bimetallic Al/Cu clad composites. Mater. Des. 2020;196:109255. doi: 10.1016/j.matdes.2020.109255. PubMed DOI PMC

Sun T., Liang J., Guo X., Ren M., Wang L. Optical measurement of forming limit and formability of Cu/Al clad metals. J. Mater. Eng. Perform. 2015;24:1426–1433. doi: 10.1007/s11665-015-1435-z. DOI

Żaba K., Puchlerska S., Kuczek Ł., Trzepieciński T., Maj P. Effect of step size on the Formability of Al/Cu bimetallic sheets in single point incremental sheet forming. Materials. 2023;16:367. doi: 10.3390/ma16010367. PubMed DOI PMC

Roostaei M., Darabi R. Investigation on formability of three-layer joined Al/Cu/Al sheets annealed at different temperature. Mater. Sci. Technol. 2020;36:1476–1486. doi: 10.1080/02670836.2020.1792637. DOI

Rydz D., Stradomski G., Szarek A., Kubik K., Kordas P. The Analysis of pressed cups producing possibilities from rolled bimetallic Al-1050 + Cu-M1E sheets. Materials. 2020;13:2413. doi: 10.3390/ma13102413. PubMed DOI PMC

Guo Y., Wu X., Ren G., Liu Z., Yuan R., Yang X., Dong P. Microstructure and properties of copper-steel bimetallic sheets prepared by friction stir additive manufacturing. J. Manuf. Process. 2022;82:689–699. doi: 10.1016/j.jmapro.2022.08.022. DOI

Rydz D. The optimal conditions for production of bimetallic plater in asymmetrical hot rolling; Proceedings of the 11th International Scientific Conference Achievements in Mechnical and Materials Engineering; Gliwice-Zakopane, Poland. 15–18 December 2002; pp. 467–472.

Zhang W., Hu H.J., Gan S., Zhao H., Sun Z.W., Yuan T., Li Y., Ou Z. Microstructural characterization and mechanical behavior of Mg-AZ31B/Al 6063 bimetallic sheets produced by combining continuous shear deformation with direct extrusion. Mater. Today Commun. 2023;37:107164. doi: 10.1016/j.mtcomm.2023.107164. DOI

Gonzaga R.S., Farias F.W.C., da Cruz Payão Filho J. Microstructural characterization of the transition zone between a C–Mn steel pipe and a 70%Ni30%Cu alloy cladding welded by HW-GTAW. Int. J. Press. Vessel. Pip. 2021;192:104433. doi: 10.1016/j.ijpvp.2021.104433. DOI

Tayebi P., Nasirin A.R., Akbari H., Hashemi R. Experimental and numerical investigation of forming limit diagrams during single point incremental forming for Al/Cu bimetallic sheets. Metals. 2024;14:214. doi: 10.3390/met14020214. DOI

Chu Q., Tong X., Xu S., Zhang M., Li J., Yan F.X., Yan C. Interfacial investigation of explosion-welded titanium/steel bimetallic plates. J. Mater. Eng. Perform. 2020;29:78–86. doi: 10.1007/s11665-019-04535-9. DOI

Kwiecien I., Bobrowski P., Janusz-Skuza M., Wierzbicka-Miernik A., Tarasek A., Szulc Z., Wojewoda-Budka J. Interface characterization of Ni/Al bimetallic explosively welded plate manufactured with application of exceptionally high detonation speed. J. Mater. Eng. Perform. 2020;29:6286–6294. doi: 10.1007/s11665-020-05117-w. DOI

Zhang T., Wang W., Yan Z., Zhang J. Interfacial Morphology and Bonding Mechanism of Explosive Weld Joints. Chin. J. Mech. Eng. 2021;34:8. doi: 10.1186/s10033-020-00495-7. DOI

Acarer M., Gülenç B., Findik F. Investigation of explosive welding parameters and their effects on microhardness and shear strength. Mater. Des. 2003;24:659–664. doi: 10.1016/S0261-3069(03)00066-9. DOI

Rajani H.R.Z., Mousavi S.A.A.A. The effect of explosive welding parameters on metallurgical and mechanical interfacial features of Inconel 625/plain carbon steel bimetal plate. Mater. Sci. Eng. A. 2012;556:454–464. doi: 10.1016/j.msea.2012.07.012. DOI

Bakhtiari H., Abbasi H., Sabet H., Khanzadeh M.R., Farvizi M. Investigation on the effects of explosive welding parameters on the mechanical properties and electrical conductivity of Al-Cu bimetal. J. Environ. Friendly Mater. 2022;6:31–37.

Gałka A. Application of explosive metal cladding in manufacturing new advanced layered materials on the example of titanium Ti6Al4V—Aluminum AA2519 bond. High-Energ. Mater. 2015;7:73−79.

Kuz’min E.V., Lysak V.I., Kuz’min S.V., Korolev M.P. Influence of structure formation and properties of bimetal produced by ultrasound-assisted explosive welding. J. Manuf. Process. 2021;71:734–742. doi: 10.1016/j.jmapro.2021.10.006. DOI

Sherpa B.B., Rani R. Advancements in explosive welding process for bimetallic material joining: A review. J. Alloys Metall. Syst. 2024;6:100078. doi: 10.1016/j.jalmes.2024.100078. DOI

Snopiński Ż., Appiah A., Matus K., Kuczek Ł., Żaba K., Balcerzak M., Hajdyš J. Utilizing PBF-LB/M AlSI10Mg alloy post-processed via KOBO-extrusion and subsequent cold drawing to obtain high-strength wire. Sci. Rep. 2025;15:31025. doi: 10.1038/s41598-025-14980-3. PubMed DOI PMC

Djavanroodi F., Omranpour B., Ebrahimi M., Sedighi M. Designing of ECAP parameters based on strain distribution uniformity. Prog. Nat. Sci. Mater. Int. 2012;22:452–460. doi: 10.1016/j.pnsc.2012.08.001. DOI

Dangwal S., Edalati K., Valiev R.Z., Langdon T.G. Breaks in the Hall–Petch relationship after severe plastic deformation of magnesium, aluminum, copper, and iron. Crystals. 2023;13:413. doi: 10.3390/cryst13030413. DOI

Prathyusha B., Dhal A., Panigrahi S.K. Achieving excellent bond strength and tensile strength synergy of ultrafine-grained Al/Cu bimetallic sheets developed by an innovative hybrid manufacturing process. J. Mater. Process. Technol. 2024;333:118596. doi: 10.1016/j.jmatprotec.2024.118596. DOI

Żaba K., Snopiński P., Wałach D., Kaczmarczyk G.P., Rusz S. Insight into the fracture behaviour and mechanical response of ECAP processed cast and LPBF AlSi10Mg alloy. Eng. Fract. Mech. 2025;295:109785. doi: 10.1016/j.engfracmech.2023.109785. DOI

Hosseini S.M., Roostaei M., Mashhadi M.M., Jabbari H., Faraji G. Fabrication of Al/Mg bimetallic thin-walled ultrafine-grained tube by severe plastic deformation. J. Mater. Eng. Perform. 2022;31:4098–4107. doi: 10.1007/s11665-021-06514-5. DOI

Cui L., Shao S., Wang H., Zhang G., Zhao Z., Zhao C. Recent advances in the equal channel angular pressing of metallic materials. Processes. 2022;10:2181. doi: 10.3390/pr10112181. DOI

Macháčková A. Decade of twist channel angular pressing: A review. Materials. 2020;13:1725. doi: 10.3390/ma13071725. PubMed DOI PMC

Shaeri M.H., Djavanroodi F., Sedighi M., Ahmadi S., Salehi M.T., Seyyedein S.H. Effect of copper tube casing on strain distribution and mechanical properties of Al-7075 alloy processed by equal channel angular pressing. J. Strain Anal. Eng. Des. 2013;48:512–521. doi: 10.1177/0309324713498234. DOI

Varadala A.B., Gurugubelli S.N., Bandaru S. Severe plastic deformation of AA 5083 and copper bimetallic metal. SN Appl. Sci. 2020;2:1562. doi: 10.1007/s42452-020-03384-9. DOI

Ebrahim A., Soliman E.M.S., Abdelrhman Y., Hassab-Allah I.M. Investigation of Al/Cu bimetallic tube cladding process by severe plastic deformation. J. Eng. Sci. 2023;51:1–15.

Alaie M.A., Kasaeian-Naeini M., Hashemi R., Rajabi M., Hosseini A. Fabrication of AA1050/CP-Cu Bimetallic Tubes using Parallel Tube-Shaped Channel Angular Pressing Technique and Assessing its Mechanical Properties and Microstructure. Trans. Indian Inst. Met. 2023;76:1937–1948. doi: 10.1007/s12666-023-02897-2. DOI

Shirzad S., Hashemi R., Rajabi M. Finite element simulation of the parallel tubular channel angular pressing process for Al–Cu bimetallic tube with experimental verification. Trans. Indian Inst. Met. 2022;75:91–100. doi: 10.1007/s12666-021-02398-0. DOI

32 Ghadimi S., Sedighi M., Djavanroodi F., Asgari A. Experimental and numerical investigation of a Cu–Al bimetallic tube produced by ECAP. Mater. Manuf. Process. 2015;30:1256–1261. doi: 10.1080/10426914.2014.984210. DOI

Żaba K., Puchlerska S., Rusz S., Fejkiel R. Mechanical properties of aluminium/copper bimetallic sheets subjected to cyclic bending. Adv. Mech. Mater. Eng. 2023;40:47–54. doi: 10.7862/rm.2023.6. DOI

Kocich R., Kunčická L. Development of structure and properties in bimetallic Al/Cu sandwich composite during cumulative severe plastic deformation. J. Sandw. Struct. Mater. 2021;23:4252–4275. doi: 10.1177/1099636221993886. DOI

Parimi A.K., Robi P.S., Dwivedy S.K. Severe plastic deformation of copper and Al–Cu alloy using multiple channel-die compression. Mater. Des. 2011;32:1948–1956. doi: 10.1016/j.matdes.2010.11.074. DOI

Mirzakouchakshirazi H., Eivani A.R., Kheirandis S. Effect of post-deformation annealing treatment on interface properties and shear bond strength of Al-Cu bimetallic rods produced by equal channel angular pressing. Iran. J. Mater. Sci. Eng. 2017;14:25–34.

Copper and Copper Alloys—Plate, Sheet, Strip and Circles for General Purposes. European Committee for Standardization (CEN); Brussels, Belgium: 1997.

Aluminium and Aluminium Alloys—Chemical Composition and form of Wrought Products—Part 1: Numerical Designation System. European Committee for Standardization (CEN); Brussels, Belgium: 2004.

Żaba K., Ortyl K., Hilšer O., Pastrnak M., Kuczek Ł., Różycka I., Pałka P., Gałka A., Trzepieciński T. Effects of Equal Channel Angular Pressing on the Microstructure and Mechanical Properties of Explosion-Welded Al-Cu Bimetallic Plates. Materials. 2025;18:5080. doi: 10.3390/ma18225080. PubMed DOI PMC

Mendes R., Ribeiro J.B., Loureiro A. Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration. Mater. Des. 2013;51:182–192. doi: 10.1016/j.matdes.2013.03.069. DOI

Bahrani A.S., Black T.J., Crossland B. The mechanics of wave formation in explosive welding. Proc. Royal Soc. A Math. Phys. Eng. Sci. 1967;296:123–136. doi: 10.1098/rspa.1967.0010. DOI

Carton E.P. Wave forming mechanisms in explosive welding. Mater. Sci. Forum. 2004;465–466:219–224. doi: 10.4028/www.scientific.net/MSF.465-466.219. DOI

Blazynski T.Z. Dynamically Consolidated Composites: Manufacture and Properties. Elsevier; Amsterdam, The Netherlands: 1992.

Li X., Zhang T., Dai X., Qian J., Wang Q., Yang K., Cui Y. Hazardous effects and microstructure of explosive welding under vacuum environment. Int. J. Adv. Manuf. Technol. 2024;130:3741–3754. doi: 10.1007/s00170-023-12892-y. DOI

Callister W.D., Rethwisch D.G. Fundamentals of Materials Science and Engineering: An Integrated Approach. 5th ed. Wiley; Hoboken, NJ, USA: 2016.

Paul H., Lityńska-Dobrzyńska L., Prażmowski M. Microstructure and phase constitution near the interface of explosively welded aluminum/copper plates. Metall. Mater. Trans. A. 2013;44:3836–3851. doi: 10.1007/s11661-013-1703-1. DOI

Martin P., Radek Č., Tomáš P., Stanislav R., František T., Jarosław M., Marie P. DRECE method for continuous severe plastic defromation of CuZn37 sheets. Acta Polytechnica. 2024;64:430–436.

Snopiński P., Appiah A., Hilšer O., Hajnyš J. Microstructural evolution and mechanical properties of an additively manufactured AlSi10Mg alloy post-processed by twist equal channel angular pressing. Symmetry. 2025;17:1289. doi: 10.3390/sym17081289. DOI

Muzyk M., Pakiela Z., Kurzydlowski K.J. Ab initio calculations of the generalized stacking fault energy in aluminium alloys. Scr. Mater. 2011;64:916–918. doi: 10.1016/j.scriptamat.2011.01.034. DOI

Muzyk M., Pakieła Z., Kurzydłowski K.J. Generalized stacking fault energies of aluminum alloys–density functional theory calculations. Metals. 2018;8:823. doi: 10.3390/met8100823. DOI

Yu T. Deformation Microstructure and Recovery. In: Huang K., editor. Recrystallization: Types, Techniques and Applications. Nova Science Publishers; Hauppauge, NY, USA: 2020. pp. 1–44.

Hilšer O., Pastrnak M., Rusz S., Krupova H., Snopiński P. Finite Element Analysis Of Twist Channel Angular Pressing. MM Sci. J. 2023;2023:6314–6318. doi: 10.17973/MMSJ.2023_03_2022101. DOI

El-Shenawy M., El-Garaihy W.H., El-Hadek M., Mohamed Z., Nassef A. Influence of ECAP Parameters on Electrical Conductivity and Hardness of Pure Cu. Port-Said Eng. Res. J. 2022;26:42–49. doi: 10.21608/pserj.2022.156882.1194. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...