Self-reported Clinical Outcomes and Quality of Life in Agammaglobulinemia: the Importance of an Early Diagnosis

. 2025 Aug 25 ; 45 (1) : 125. [epub] 20250825

Jazyk angličtina Země Nizozemsko Médium electronic

Typ dokumentu časopisecké články, multicentrická studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid40853601

Grantová podpora
427002014 ZonMw - Netherlands
427002014 ZonMw - Netherlands
427002014 ZonMw - Netherlands
C.H.I.L.D.R.E.N. grant 2021 Jeffrey Modell Foundation
C.H.I.L.D.R.E.N. grant 2021 Jeffrey Modell Foundation
C.H.I.L.D.R.E.N. grant 2021 Jeffrey Modell Foundation
IISR-2021-200128 Takeda Pharmaceuticals International AG
IISR-2021-200128 Takeda Pharmaceuticals International AG
IISR-2021-200128 Takeda Pharmaceuticals International AG
IISR-2021-200128 Takeda Pharmaceuticals International AG
Fellowship European Federation of Immunological Societies
Fellowship European Academy of Allergy & Clinical Immunology
honoraria Takeda
FIS-PI21/01642 Instituto de Salud Carlos III (ISCIII)

Odkazy

PubMed 40853601
PubMed Central PMC12378137
DOI 10.1007/s10875-025-01904-z
PII: 10.1007/s10875-025-01904-z
Knihovny.cz E-zdroje

PURPOSE: Patients with (X-linked) agammaglobulinemia (XLA) suffer from severe, recurrent infections potentially leading to life-threatening complications such as sepsis, meningoencephalitis and chronic lung disease. Early diagnosis and timely treatment can prevent infections and secondary complications, emphasizing a role for early detection of XLA via newborn screening (NBS). Our international multicenter survey study aimed to evaluate self-reported outcomes and parental perspectives in XLA patients to determine whether an early diagnosis is associated with better quality of life (QoL). METHODS: QoL-questionnaires included the PedsQL for children and SF-36, CVID_QOL, PADQOL-16 for adults. A new questionnaire was specifically developed for parents about an early diagnosis of XLA. RESULTS: In total, 88 adult and 65 pediatric XLA patients, and 69 parents from 14 countries completed the survey. Patients with an early diagnosis reported less severe, recurrent infections and less hospitalization (p < 0.05). QoL was significantly lower in multiple health domains for pediatric and adult patients with a late diagnosis compared to the general population. Patients with an early diagnosis reported similar QoL outcomes compared to the general population. Parents showed immense support for NBS for XLA stating that an early diagnosis prevents emotional insecurity, health damage, unnecessary diagnostics and allows early access to medical care and informed family planning. CONCLUSION: Our study has shown supportive evidence to pursue an early diagnosis of XLA from both a self-reported clinical, health related QoL and parental perspective. The main plea from patients and parents is to achieve an early diagnosis for XLA and severe B-lymphocyte deficiencies with NBS.

Centre for Inborn Errors of Immunity Department of Pediatrics Department of Clinical Immunology and Allergology Jessenius Faculty of Medicine in Martin Comenius University in Bratislava University Hospital in Martin Martin Slovakia

Department of Children's Diseases and Pediatric Surgery 1 Horbachevsky Ternopil National Medical University Ternopil Ukraine

Department of Immunology Children's Memorial Health Institute Warsaw Poland

Department of Immunology Motol University Hospital and 2nd Faculty of Medicine Charles University Prague Czech Republic

Department of Infectious Diseases Amsterdam UMC Amsterdam the Netherlands

Department of Infectious Diseases Leiden University Medical Center Leiden the Netherlands

Department of Internal Medicine division Clinical and Experimental Immunology Maastricht University Medical Center Maastricht the Netherlands

Department of Internal Medicine division of Allergy and Clinical Immunology Department of Immunology Erasmus University Medical Center Rotterdam Rotterdam the Netherlands

Department of Maternal Infantile and Urological Sciences Sapienza University of Rome Rome Italy

Department of Molecular Medicine Sapienza University of Rome Rome Italy

Department of Paediatric Immunology Rheumatology and Infectious Diseases Emma Children's Hospital Amsterdam University Medical Centres University of Amsterdam Amsterdam the Netherlands

Department of Paediatric Infectious Diseases and Immunology Erasmus MC Sophia Children's Hospital Rotterdam the Netherlands

Department of Pediatric Immunology Ege University Faculty of Medicine Izmir Turkey

Department of Pediatric Infectious Disease and Immunology Amalia Children's Hospital Radboudumc Nijmegen the Netherlands

Department of Pediatrics and Adolescent Medicine St Josef Hospital Braunau Austria

Department of Pediatrics Division of Pediatric Immunology and Stem Cell Transplantation Willem Alexander Children's Hospital Leiden the Netherlands

Department of Pediatrics Laboratory for Pediatric Immunology Willem Alexander Children's Hospital Leiden University Medical Center Albinusdreef 2 Leiden ZA 2333 the Netherlands

Dipartimento di Neuroscienze Riabilitazione Oftalmologia Genetica e Scienze Materno Infantili Università degli Studi di Genova Genoa Italy

Division of Immunology Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden

Great North Children's Hospital Newcastle upon Tyne UK

Immunology lab Belarusian Research Center for Pediatric Oncology Hematology and Immunology Minsk Belarus

Institute of Allergology and Clinical Immunology Faculty of Medicine Charles University and University Hospital in Hradec Kralove Hradec Kralove Czech Republic

Paediatric Department Comenius University Medical Faculty in Bratislava National Institute for Childhood Diseases Bratislava Slovakia

Paediatric Rheumatology and Autoinflammatory Diseases Unit IRCCS Istituto Giannina Gaslini Genoa Italy

Pediatric Infectious Diseases and Immunodeficiencies Unit Children's Hospital Vall d'Hebron Barcelona Hospital Campus Barcelona Catalonia Spain

Primary Immunodeficiencies Unit Department of Pediatrics University Hospital 12 octubre Research Institute imas12 Complutense University School of Medicine Madrid Spain

Primary Immunodeficiency Unit Academic hospital Policlinico Umberto 1 Rome Italy

Research Center for Immunodeficiencies Children's Medical Center Tehran University of Medical Sciences Tehran Iran

Rheumatology and Clinical Immunology University Medical Center Utrecht Utrecht University Utrecht the Netherlands

Sheffield Children's NHS Foundation Trust Sheffield UK

Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK

Worcestershire Acute Hospitals NHS Trust Worcester UK

Zobrazit více v PubMed

Lackey AE, Ahmad F. X-Linked Agammaglobulinemia. 2023 Jul 3. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. PubMed

Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993;72(2):279–90. PubMed

Vetrie D, Vorechovský I, Sideras P, Holland J, Davies A, Flinter F, et al. The gene involved in X-linked agammaglobulinaemia is a member of the Src family of protein-tyrosine kinases. Nature. 1993;361(6409):226–33. PubMed

Cardenas-Morales M, Hernandez-Trujillo VP. Agammaglobulinemia: from X-linked to autosomal forms of disease. Clin Rev Allergy Immunol. 2022;63(1):22–35. PubMed PMC

Bousfiha A, Moundir A, Tangye SG, Picard C, Jeddane L, Al-Herz W, et al. The 2022 update of IUIS phenotypical classification for human inborn errors of immunity. J Clin Immunol. 2022;42(7):1508–20. PubMed

Conley ME, Rohrer J, Minegishi Y. X-linked agammaglobulinemia. Clin Rev Allergy Immunol. 2000;19(2):183–204. PubMed

Morosky S, Wells AI, Lemon K, Evans AS, Schamus S, Bakkenist CJ, et al. The neonatal Fc receptor is a pan-echovirus receptor. Proc Natl Acad Sci U S A. 2019;116(9):3758–63. PubMed PMC

Moschese V, Martire B, Soresina A, Chini L, Graziani S, Monteferrario E, et al. Anti-infective prophylaxis for primary immunodeficiencies: what is done in Italian primary immunodeficiency network centers (IPINet) and review of the literature. J Biol Regul Homeost Agents. 2013;27(4):935–46. PubMed

Shillitoe BMJ, Gennery AR. An update on X-Linked agammaglobulinaemia: clinical manifestations and management. Curr Opin Allergy Clin Immunol. 2019;19(6):571–7. PubMed

Abolhassani H, Hirbod-Mobarakeh A, Shahinpour S, Panahi M, Mohammadinejad P, Mirminachi B, et al. Mortality and morbidity in patients with X-linked agammaglobulinaemia. Allergol Immunopathol (Madr). 2015;43(1):62–6. PubMed

Lougaris V, Soresina A, Baronio M, Montin D, Martino S, Signa S, et al. Long-term follow-up of 168 patients with X-linked agammaglobulinemia reveals increased morbidity and mortality. J Allergy Clin Immunol. 2020;146(2):429–37. PubMed

El-Sayed ZA, Abramova I, Aldave JC, Al-Herz W, Bezrodnik L, Boukari R, et al. X-linked agammaglobulinemia (XLA):Phenotype, diagnosis, and therapeutic challenges around the world. World Allergy Organ J. 2019;12(3):100018. PubMed PMC

Routes J, Abinun M, Al-Herz W, Bustamante J, Condino-Neto A, De La Morena MT, et al. ICON: the early diagnosis of congenital immunodeficiencies. J Clin Immunol. 2014;34(4):398–424. PubMed

Chun JK, Lee TJ, Song JW, Linton JA, Kim DS. Analysis of clinical presentations of Bruton disease: a review of 20 years of accumulated data from pediatric patients at severance hospital. Yonsei Med J. 2008;49(1):28–36. PubMed PMC

O’Toole D, Groth D, Wright H, Bonilla FA, Fuleihan RL, Cunningham-Rundles C, et al. X-Linked agammaglobulinemia: infection frequency and infection-Related mortality in the USIDNET registry. J Clin Immunol. 2022;42(4):827–36. PubMed PMC

Plebani A, Soresina A, Rondelli R, Amato GM, Azzari C, Cardinale F, et al. Clinical, immunological, and molecular analysis in a large cohort of patients with X-linked agammaglobulinemia: an Italian multicenter study. Clin Immunol. 2002;104(3):221–30. PubMed

Winkelstein JA, Marino MC, Lederman HM, Jones SM, Sullivan K, Burks AW, et al. X-Linked agammaglobulinemia: report on a united States registry of 201 patients. Medicine. 2006;85(4):193–202. PubMed

Hernandez-Trujillo V, Zhou C, Scalchunes C, Ochs HD, Sullivan KE, Cunningham-Rundles C, et al. A registry study of 240 patients with X-Linked agammaglobulinemia living in the USA. J Clin Immunol. 2023;43(6):1468–77. PubMed PMC

Nishimura A, Uppuluri R, Raj R, Swaminathan VV, Cheng Y, Abu-Arja RF, et al. An international survey of allogeneic hematopoietic cell transplantation for X-Linked agammaglobulinemia. J Clin Immunol. 2023;43(8):1827–39. PubMed

Albert MH, Slatter MA, Gennery AR, Güngör T, Bakunina K, Markovitch B, et al. Hematopoietic stem cell transplantation for Wiskott-Aldrich syndrome: an EBMT inborn errors working party analysis. Blood. 2022;139(13):2066–79. PubMed

Lankester AC, Neven B, Mahlaoui N, von Asmuth EGJ, Courteille V, Alligon M, et al. Hematopoietic cell transplantation in severe combined immunodeficiency: the SCETIDE 2006–2014 European cohort. J Allergy Clin Immunol. 2022;149(5):1744–e548. PubMed

Chiesa R, Wang J, Blok HJ, Hazelaar S, Neven B, Moshous D, et al. Hematopoietic cell transplantation in chronic granulomatous disease: a study of 712 children and adults. Blood. 2020;136(10):1201–11. PubMed

Bryan BA, Battersby A, Shillitoe BM, Barge D, Bourne H, Flood T, et al. Respiratory health and related quality of life in patients with congenital agammaglobulinemia in the Northern region of the UK. J Clin Immunol. 2016;36(5):472–9. PubMed PMC

Altman K, Zhou C, Hernandez-Trujillo V, Scalchunes C, Rawlings DJ, de la Morena MT. Health-Related quality of life in 91 patients with X-Linked agammaglobulinemia. J Clin Immunol. 2022;42(4):811–8. PubMed

Winkelstein JA, Conley ME, James C, Howard V, Boyle J. Adults with X-linked agammaglobulinemia: impact of disease on daily lives, quality of life, educational and socioeconomic status, knowledge of inheritance, and reproductive attitudes. Med (Baltim). 2008;87(5):253–8. PubMed PMC

Howard V, Greene JM, Pahwa S, Winkelstein JA, Boyle JM, Kocak M, et al. The health status and quality of life of adults with X-linked agammaglobulinemia. Clin Immunol. 2006;118(2–3):201–8. PubMed

Borte S, von Döbeln U, Fasth A, Wang N, Janzi M, Winiarski J, et al. Neonatal screening for severe primary immunodeficiency diseases using high-throughput triplex real-time PCR. Blood. 2012;119(11):2552–5. PubMed

van Zelm MC, van der Burg M, Langerak AW, van Dongen JJ. PID comes full circle: applications of V(D)J recombination excision circles in research, diagnostics and newborn screening of primary immunodeficiency disorders. Front Immunol. 2011;2:12. PubMed PMC

Kelleher KJ, Gardner W, Kemper AR, Chavez L, Pajer K, Rosic T. Principles for primary care screening in the context of population health. Acad Pediatr. 2024. 10.1016/j.acap.2024.02.015. PubMed

Varni JW, Seid M, Kurtin PS. PedsQL 4.0: reliability and validity of the pediatric quality of life inventory version 4.0 generic core scales in healthy and patient populations. Med Care. 2001;39(8):800–12. PubMed

Quinti I, Pulvirenti F, Giannantoni P, Hajjar J, Canter DL, Milito C, et al. Development and initial validation of a questionnaire to measure Health-Related quality of life of adults with common variable immune deficiency: the cvid_qol questionnaire. J Allergy Clin Immunol Pract. 2016;4(6):1169–e794. PubMed

Andersen JB, Midttun K, Feragen KJB. Measuring quality of life of primary antibody deficiency patients using a disease-specific health-related quality of life questionnaire for common variable immunodeficiency (CVID_QoL). J Patient Rep Outcomes. 2019;3(1):15. PubMed PMC

Ballow M, Conaway MR, Sriaroon P, Rachid RA, Seeborg FO, Duff CM et al. Construction and validation of a novel disease-specific quality-of-life instrument for patients with primary antibody deficiency disease (PADQOL-16). J Allergy Clin Immunol. 2017;139(6):2007-10.e8. PubMed

Ware JE Jr., Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30(6):473–83. PubMed

Carrillo-Tapia E, García-García E, Herrera-González NE, Yamazaki-Nakashimada MA, Staines-Boone AT, Segura-Mendez NH, et al. Delayed diagnosis in X-linked agammaglobulinemia and its relationship to the occurrence of mutations in BTK non-kinase domains. Expert Rev Clin Immunol. 2018;14(1):83–93. PubMed

Chen XF, Wang WF, Zhang YD, Zhao W, Wu J, Chen TX. Clinical characteristics and genetic profiles of 174 patients with X-linked agammaglobulinemia: report from shanghai, China (2000–2015). Med (Baltim). 2016;95(32):e4544. PubMed PMC

El-Sayed ZA, Radwan N. Newborn screening for primary immunodeficiencies: the gaps, challenges, and outlook for developing countries. Front Immunol. 2019;10:2987. PubMed PMC

Titman P, Allwood Z, Gilmour C, Malcolmson C, Duran-Persson C, Cale C, et al. Quality of life in children with primary antibody deficiency. J Clin Immunol. 2014;34(7):844–52. PubMed PMC

Soresina A, Nacinovich R, Bomba M, Cassani M, Molinaro A, Sciotto A, et al. The quality of life of children and adolescents with X-linked agammaglobulinemia. J Clin Immunol. 2009;29(4):501–7. PubMed

Berg AK, Diseth TH, Abrahamsen TG, Halvorsen K, Reinfjell T, Erichsen HC. Primary antibody deficiency: the impact on the quality of life and mental health of affected children and their parents. Acta Paediatr. 2021;110(5):1645–52. PubMed

Anderson JT, Cowan J, Condino-Neto A, Levy D, Prusty S. Health-related quality of life in primary immunodeficiencies: impact of delayed diagnosis and treatment burden. Clin Immunol. 2022;236:108931. PubMed

Jones GL, Vogt KS, Chambers D, Clowes M, Shrimpton A. What is the burden of Immunoglobulin replacement therapy in adult patients with primary immunodeficiencies?? A systematic review. Front Immunol. 2018;9. 10.3389/fimmu.2018.01308. PubMed PMC

Chawla S, Jindal AK, Arora K, Tyagi R, Dhaliwal M, Rawat A. T cell abnormalities in X-Linked agammaglobulinaemia: an updated review. Clin Rev Allergy Immunol. 2023;65(1):31–42. PubMed PMC

Moreau T, Calmels B, Barlogis V, Michel G, Tonnelle C, Chabannon C. Potential application of gene therapy to X-linked agammaglobulinemia. Curr Gene Ther. 2007;7(4):284–94. PubMed

Ott de Bruin LM, Lankester AC, Staal FJT. Advances in gene therapy for inborn errors of immunity. Curr Opin Allergy Clin Immunol. 2023;23(6):467–77. PubMed PMC

Bestas B, Turunen JJ, Blomberg KEM, Wang Q, Månsson R, El Andaloussi S, et al. Splice-Correction strategies for treatment of X-Linked agammaglobulinemia. Curr Allergy Asthma Rep. 2015;15(3):4. PubMed PMC

Gray DH, Villegas I, Long J, Santos J, Keir A, Abele A, et al. Optimizing integration and expression of Transgenic bruton’s tyrosine kinase for CRISPR-Cas9-Mediated gene editing of X-Linked agammaglobulinemia. Crispr J. 2021;4(2):191–206. PubMed PMC

Seymour BJ, Singh S, Certo HM, Sommer K, Sather BD, Khim S, et al. Effective, safe, and sustained correction of murine XLA using a UCOE-BTK promoter-based lentiviral vector. Mol Ther Methods Clin Dev. 2021;20:635–51. PubMed PMC

Blom M, Bredius RGM, Jansen ME, Weijman G, Kemper EA, Vermont CL, et al. Parents’ perspectives and societal acceptance of implementation of newborn screening for SCID in the Netherlands. J Clin Immunol. 2021;41(1):99–108. PubMed PMC

Joseph G, Chen F, Harris-Wai J, Puck JM, Young C, Koenig BA. Parental views on expanded newborn screening using Whole-Genome sequencing. Pediatrics. 2016;137(Suppl 1Suppl 1):S36–46. PubMed PMC

DeLuca JM. Public attitudes toward expanded newborn screening. J Pediatr Nurs. 2018;38:e19–23. PubMed

Albuquerque de Almeida F, Al MJ, Koymans R, Riistama J, Pauws S, Severens JL. Impact of hospitalisation on health-related quality of life in patients with chronic heart failure. Health Qual Life Outcomes. 2020;18(1):262. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...