Structural and functional insights into the selective inhibition of mutant tau aggregation by purpurin and oleocanthal in frontotemporal dementia
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
Grant Agency of the Czech Republic: 23-06301J
LX22NPO5107
Ministry of Education, Youth and Sports of the Czech Republic (MEYS)
LM2023052
Ministry of Education, Youth and Sports of the Czech Republic (MEYS)
LM2023053
Ministry of Education, Youth and Sports of the Czech Republic (MEYS)
LM2023033
Ministry of Education, Youth and Sports of the Czech Republic (MEYS)
LM2023050
Ministry of Education, Youth and Sports of the Czech Republic (MEYS)
LM2018129
Ministry of Education, Youth and Sports of the Czech Republic (MEYS)
TN02000109
Technology Agency of the Czech Republic
IGA_LF_2024_038
Palacký University in Olomouc
PubMed
40862394
PubMed Central
PMC12381781
DOI
10.1002/pro.70240
Knihovny.cz E-zdroje
- Klíčová slova
- MAPT mutations, frontotemporal dementia, oleocanthal, purpurin, seeding competency, surface plasmon resonance, tau aggregation, tauopathies,
- MeSH
- frontotemporální demence * metabolismus genetika farmakoterapie MeSH
- katecholy * farmakologie chemie MeSH
- lidé MeSH
- mutace MeSH
- organofosfáty MeSH
- přemostěné cyklické sloučeniny MeSH
- proteinové agregáty účinky léků MeSH
- proteiny tau * genetika chemie metabolismus antagonisté a inhibitory MeSH
- simulace molekulového dockingu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CLR01 compound MeSH Prohlížeč
- katecholy * MeSH
- MAPT protein, human MeSH Prohlížeč
- organofosfáty MeSH
- přemostěné cyklické sloučeniny MeSH
- proteinové agregáty MeSH
- proteiny tau * MeSH
Tau aggregation driven by microtubule-associated protein tau (MAPT) mutations is central to frontotemporal dementia pathology, yet no disease-modifying therapies effectively target mutant tau. Here, we identify purpurin (PUR) and oleocanthal (OLC) as selective inhibitors of mutant tau aggregation using peptide models spanning the R2R3 interface. Biophysical and cellular assays demonstrated that both compounds more effectively inhibit the aggregation of mutant tau peptides compared to wild-type, with PUR preferentially targeting V287I and N279K variants, and OLC showing broader inhibitory activity. Surface plasmon resonance and docking analyses revealed more stable interactions and lower binding free energies with mutant tau, consistent with their enhanced inhibitory effects. Computational studies using monomeric and fibrillar tau structures supported the mutation-specific binding profiles of PUR and OLC. Atomic force microscopy and confocal imaging confirmed reduced fibril formation, while post-transduction treatment assays showed that both compounds significantly suppressed intracellular tau propagation. Additionally, OLC reduced tau phosphorylation and oligomerization in SY5Y-TauP301L-EGFP cells expressing mutant tau. These findings highlight the potential of PUR and OLC as structurally distinct, mutation-targeted inhibitors of tau aggregation and propagation, providing a rationale for their further development as candidate therapeutics for frontotemporal dementia.
Zobrazit více v PubMed
Al Rihani SB, Darakjian LI, Kaddoumi A. Oleocanthal‐rich extra‐virgin olive oil restores the blood–brain barrier function through NLRP3 inflammasome inhibition simultaneously with autophagy induction in TgSwDI mice. ACS Chem Neurosci. 2019;10:3543–3554. PubMed PMC
Annadurai N, Malina L, Malohlava J, Hajdúch M, Das V. Tau R2 and R3 are essential regions for tau aggregation, seeding and propagation. Biochimie. 2022;200:79–86. PubMed
Annadurai N, Malina L, Salmona M, Diomede L, Bastone A, Cagnotto A, et al. Antitumour drugs targeting tau R3 VQIVYK and Cys322 prevent seeding of endogenous tau aggregates by exogenous seeds. FEBS J. 2022;289:1929–1949. PubMed
Aoyagi H, Hasegawa M, Tamaoka A. Fibrillogenic nuclei composed of P301L mutant tau induce elongation of P301L tau but not wild‐type tau. J Biol Chem. 2007;282:20309–20318. PubMed
Bloom GS. Amyloid‐β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71:505–508. PubMed
Chen D, Bali S, Singh R, Wosztyl A, Mullapudi V, Vaquer‐Alicea J, et al. FTD‐tau S320F mutation stabilizes local structure and allosterically promotes amyloid motif‐dependent aggregation. Nat Commun. 2023;14:1625. PubMed PMC
Chen D, Drombosky KW, Hou Z, Sari L, Kashmer OM, Ryder BD, et al. Tau local structure shields an amyloid‐forming motif and controls aggregation propensity. Nat Commun. 2019;10:2493. PubMed PMC
Cino EA, Choy W‐Y, Karttunen M. Comparison of secondary structure formation using 10 different force fields in microsecond molecular dynamics simulations. J Chem Theory Comput. 2012;8:2725–2740. PubMed PMC
DeVos SL, Corjuc BT, Oakley DH, Nobuhara CK, Bannon RN, Chase A, et al. Synaptic tau seeding precedes tau pathology in human Alzheimer's disease brain. Front Neurosci. 2018;12:267. PubMed PMC
DeVos SL, Miller RL, Schoch KM, Holmes BB, Kebodeaux CS, Wegener AJ, et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Transl Med. 2017;9:eaag0481. PubMed PMC
Ekman S, Flower R, Mahler S, Gould A, Barnard RT, Hyland C, et al. In silico molecular dynamics of human glycophorin a (GPA) extracellular structure. Ann Blood. 2021;6:11.
Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J Med Chem. 2006;49:6177–6196. PubMed
Gao Y‐L, Wang N, Sun F‐R, Cao X‐P, Zhang W, Yu J‐T. Tau in neurodegenerative disease. Ann Transl Med. 2018;6:175. PubMed PMC
Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand‐binding affinities. Expert Opin Drug Discovery. 2015;10:449–461. PubMed PMC
Holmes BB, Furman JL, Mahan TE, Yamasaki TR, Mirbaha H, Eades WC, et al. Proteopathic tau seeding predicts tauopathy in vivo. Proc Natl Acad Sci U S A. 2014;111:E4376. PubMed PMC
Hong M, Zhukareva V, Vogelsberg‐Ragaglia V, Wszolek Z, Reed L, Miller BI, et al. Mutation‐specific functional impairments in distinct tau isoforms of hereditary FTDP‐17. Science. 1998;282:1914–1917. PubMed
Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, et al. Association of missense and 5′‐splice‐site mutations in tau with the inherited dementia FTDP‐17. Nature. 1998;393:702–705. PubMed
Li W, Sperry JB, Crowe A, Trojanowski JQ, Smith AB, Lee VM‐Y. Inhibition of tau fibrillization by oleocanthal via reaction with the amino groups of tau. J Neurochem. 2009;110:1339–1351. PubMed PMC
Monteiro KLC, Mendonça T, de Aquino E, da Silva‐Júnior F. Natural compounds as inhibitors of aβ peptide and tau aggregation. CNS Neurol Disord Drug Targets. 2024;23:1234–1250. PubMed
Monti MC, Margarucci L, Riccio R, Casapullo A. Modulation of tau protein fibrillization by oleocanthal. J Nat Prod. 2012;75:1584–1588. PubMed
Monti MC, Margarucci L, Tosco A, Riccio R, Casapullo A. New insights on the interaction mechanism between tau protein and oleocanthal, an extra‐virgin olive‐oil bioactive component. Food Funct. 2011;2:423–428. PubMed
Pounot K, Piersson C, Goring AK, Rosu F, Gabelica V, Weik M, et al. Mutations in tau protein promote aggregation by favoring extended conformations. JACS Au. 2024;4:92–100. PubMed PMC
Schrödinger . Schrödinger Release 2025‐1: LigPrep. New York: Schrödinger, LLC; 2025a.
Schrödinger . Schrödinger Release 2025‐1: induced fit docking protocol; Glide. New York: Schrödinger, LLC, 2024; Prime, New York: Schrödinger, LLC; 2025b.
Schrödinger . Schrödinger Release 2025‐1: Glide. New York: Schrödinger, LLC; 2025c.
Schrödinger . Schrödinger Release 2025‐1: Desmond molecular dynamics system, D. E. Shaw Research, New York, 2024. Maestro‐Desmond interoperability tools. New York: Schrödinger, LLC; 2025d.
Schrödinger . Schrödinger Release 2025‐1: Protein Preparation Wizard; Epik. New York: Schrödinger, LLC; Impact. New York: Schrödinger, LLC; Prime. New York: Schrödinger, LLC; 2025e.
Seidler PM, Boyer DR, Murray KA, Yang TP, Bentzel M, Sawaya MR, et al. Structure‐based inhibitors halt prion‐like seeding by Alzheimer's disease‐ and tauopathy‐derived brain tissue samples. J Biol Chem. 2019;294:16451–16464. PubMed PMC
Soeda Y, Saito M, Maeda S, Ishida K, Nakamura A, Kojima S, et al. Methylene blue inhibits formation of tau fibrils but not of granular tau oligomers: a plausible key to understanding failure of a clinical trial for Alzheimer's disease. J Alzheimer's Dis. 2019;68:1677–1686. PubMed
Soeda Y, Takashima A. New insights into drug discovery targeting tau protein. Front Mol Neurosci. 2020;13:590896. PubMed PMC
Spillantini MG, Goedert M. Tau pathology and neurodegeneration. Lancet Neurol. 2013;12:609–622. PubMed
Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci U S A. 1998;95:7737–7741. PubMed PMC
Spittaels K, Van den Haute C, Van Dorpe J, Bruynseels K, Vandezande K, Laenen I, et al. Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four‐repeat human tau protein. Am J Pathol. 1999;155:2153–2165. PubMed PMC
Strang KH, Golde TE, Giasson BI. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab Investig. 2019;99:912–928. PubMed PMC
Sun KT, Patel T, Kang S‐G, Yarahmady A, Srinivasan M, Julien O, et al. Disease‐associated mutations in tau encode for changes in aggregate structure conformation. ACS Chem Nerosci. 2023;14:4282–4297. PubMed PMC
Viswanathan GK, Shwartz D, Losev Y, Arad E, Shemesh C, Pichinuk E, et al. Purpurin modulates tau‐derived VQIVYK fibrillization and ameliorates Alzheimer's disease‐like symptoms in animal model. Cell Mol Life Sci. 2020;77:2795–2813. PubMed PMC
von Bergen M, Barghorn S, Li L, Marx A, Biernat J, Mandelkow E‐M, et al. Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local β‐structure. J Biol Chem. 2001;276:48165–48174. PubMed
Wang X, Friesen E, Müller I, Lemieux M, Dukart R, Maia IB, et al. Rapid generation of human neuronal cell models enabling inducible expression of proteins‐of‐interest for functional studies. Bio Protoc. 2020;10:e3615. PubMed PMC
Xia Y, Sorrentino ZA, Kim JD, Strang KH, Riffe CJ, Giasson BI. Impaired tau–microtubule interactions are prevalent among pathogenic tau variants arising from missense mutations. J Biol Chem. 2019;294:18488–18503. PubMed PMC
Yao Q‐Q, Hong L, Wu S, Perrett S. Distinct microscopic mechanisms for the accelerated aggregation of pathogenic tau mutants revealed by kinetic analysis. Phys Chem Chem Phys. 2020;22:7241–7249. PubMed
Yao T‐M, Tomoo K, Ishida T, Hasegawa H, Sasaki M, Taniguchi T. Aggregation analysis of the microtubule binding domain in tau protein by spectroscopic methods. J Biochem. 2003;134:91–99. PubMed
Young AL, Bocchetta M, Russell LL, Convery RS, Peakman G, Todd E, et al. Characterizing the clinical features and atrophy patterns of MAPT‐related frontotemporal dementia with disease progression modeling. Neurology. 2021;97:e941–e952. PubMed PMC
Zhu L, Qian Z. Recent studies of atomic‐resolution structures of tau protein and structure‐based inhibitors. Quant Biol. 2022;10:17–34.