Extraction Methods of Emerging Pollutants in Sewage Sludge: A Comprehensive Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
QK21010207
Ministry of Agriculture of the Czech Republic
project NUTRISK no. CZ.02.1.01/0.0/0.0/16_019/ 0000845
European Regional Development Fund
GA ČR 24-10238L
Czech Science Foundation
PubMed
40863937
PubMed Central
PMC12390028
DOI
10.3390/toxics13080661
PII: toxics13080661
Knihovny.cz E-zdroje
- Klíčová slova
- clean-up, detection techniques, emerging pollutants, extraction methods, separation techniques, sewage sludge,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Sewage sludge (SS) is commonly applied as a soil amendment. This practice has raised concern about the dissemination of emerging pollutants (EPs). EPs include compounds such as flame retardants, plasticizers, pharmaceuticals, and personal care products, among others, which may pose risks to human health and ecosystems. The complexity of the SS matrix, combined to the absence of an international legislation framework, makes it necessary to evaluate the techniques available for detecting these contaminants. Detection is typically performed using sensitive analytical techniques; however, the extraction strategy selected remains a crucial step. This review aims to compile different methodologies for the determination of EPs in SS, focusing on extraction strategies reported between 2010 and 2025. Ultrasound-assisted extraction (UAE), pressurized liquid extraction (PLE), and microwave-assisted extraction (MAE) are the most widely used strategies for EPs. UAE is considered the most preferable option, as it enables the extraction of a wide range of compounds without the need for expensive equipment. Among novel techniques, the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method is especially promising, as it is applicable to multiple target compounds. This review provides up-to-date information that can support the development of routine and standardized methodologies for the characterization of EPs in SS.
Zobrazit více v PubMed
Tijani J.O., Fatoba O.O., Babajide O.O., Petrik L.F. Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: A review. Environ. Chem. Lett. 2016;14:27–49. doi: 10.1007/s10311-015-0537-z. DOI
Caliman F.A., Gavrilescu M. Pharmaceuticals, personal care products and endocrine disrupting agents in the environment–a review. CLEAN–Soil Air Water. 2009;37:277–303. doi: 10.1002/clen.200900038. DOI
Giulivo M., Lopez de Alda M., Capri E., Barceló D. Human exposure to endocrine disrupting compounds: Their role in reproductive systems, metabolic syndrome and breast cancer. A review. Environ. Res. 2016;151:251–264. doi: 10.1016/j.envres.2016.07.011. PubMed DOI
Sharma T., Singh A., Kumar N., Chauhan G., Singh D.P., Singh A., Rana B.B. Emerging Pollutants in the Environment and Ecological Risks. In: George N., Dwibedi V., Rath S.K., Chauhan P.S., editors. Management and Mitigation of Emerging Pollutants. Springer International Publishing; Cham, Switzerland: 2023. pp. 1–20.
Emerging Substances | NORMAN. 2009. [(accessed on 5 November 2021)]. Available online: https://www.norman-network.net/?q=node/19.
Dubey M., Mohapatra S., Tyagi V.K., Suthar S., Kazmi A.A. Occurrence, fate, and persistence of emerging micropollutants in sewage sludge treatment. Environ. Pollut. 2021;273:116515. doi: 10.1016/j.envpol.2021.116515. PubMed DOI
Fijalkowski K., Rorat A., Grobelak A., Kacprzak M.J. The presence of contaminations in sewage sludge—The current situation. J. Environ. Manag. 2017;203:1126–1136. doi: 10.1016/j.jenvman.2017.05.068. PubMed DOI PMC
Govind R., Shrestha A., Govind R., Shrestha A. Sorption—From Fundamentals to Applications. IntechOpen; London, UK: 2022. Sorption of Pollutants in Wastewater Solids. DOI
Mejías C., Santos J.L., Martín J., Aparicio I., Alonso E. Multiresidue Method for the Determination of Critically and Highly Important Classes of Antibiotics and Their Metabolites in Agricultural Soils and Sewage Sludge. Anal. Bioanal. Chem. 2023;415:7161–7173. doi: 10.1007/s00216-023-04982-3. PubMed DOI PMC
Zhou T., Li X., Liu H., Dong S., Zhang Z., Wang Z., Li J., Nghiem L.D., Khan S.J., Wang Q. Occurrence, fate, and remediation for per-and polyfluoroalkyl substances (PFAS) in sewage sludge: A comprehensive review. J. Hazard. Mater. 2024;466:133637. doi: 10.1016/j.jhazmat.2024.133637. PubMed DOI
Kacprzak M., Neczaj E., Fijałkowski K., Grobelak A., Grosser A., Worwag M., Rorat A., Brattebo H., Almås Å., Singh B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017;156:39–46. doi: 10.1016/j.envres.2017.03.010. PubMed DOI
Hudcová H., Vymazal J., Rozkošný M. Present restrictions of sewage sludge application in agriculture within the European Union. Soil Water Res. 2019;14:104–120. doi: 10.17221/36/2018-SWR. DOI
Buta M., Hubeny J., Zieliński W., Harnisz M., Korzeniewska E. Sewage sludge in agriculture—The effects of selected chemical pollutants and emerging genetic resistance determinants on the quality of soil and crops—A review. Ecotoxicol. Environ. Saf. 2021;214:112070. doi: 10.1016/j.ecoenv.2021.112070. PubMed DOI
Decision (EU) 2018/840 Decision (EU) 2018/840 of 5 June 2018 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council and Repealing Commission Implementing Decision (EU) 2015/495 (Notified Under Document C(2018) 3362) [(accessed on 22 February 2024)]. Available online: https://eur-lex.europa.eu/eli/dec_impl/2018/840/oj.
Lindholm-Lehto P.C., Ahkola H.S.J., Knuutinen J.S. Procedures of determining organic trace compounds in municipal sewage sludge—A review. Environ. Sci. Pollut. Res. 2017;24:4383–4412. doi: 10.1007/s11356-016-8202-z. PubMed DOI
Wilkinson J.L., Hooda P.S., Swinden J., Barker J., Barton S. Spatial distribution of organic contaminants in three rivers of Southern England bound to suspended particulate material and dissolved in water. Sci. Total Environ. 2017;593–594:487–497. doi: 10.1016/j.scitotenv.2017.03.167. PubMed DOI
Chen Q., Shi J., Wu W., Liu X., Zhang H. A new pretreatment and improved method for determination of selected estrogens in high matrix solid sewage samples by liquid chromatography mass spectrometry. Microchem. J. 2012;104:49–55. doi: 10.1016/j.microc.2012.04.008. DOI
Lee H.-B., Lewina Svoboda M., Peart T.E., Smyth S.A. Optimization of a microwave-assisted extraction procedure for the determination of selected alkyl, aryl, and halogenated phenols in sewage sludge and biosolids. Water Qual. Res. J. 2016;51:344–356. doi: 10.2166/wqrjc.2016.002. DOI
Gabet-Giraud V., Miege C., Herbreteau B., Hernandez-Raquet G., Coquery M. Development and validation of an analytical method by LC-MS/MS for the quantification of estrogens in sewage sludge. Anal. Bioanal. Chem. 2010;396:1841–1851. doi: 10.1007/s00216-009-3428-y. PubMed DOI
Yu Y., Huang Q., Cui J., Zhang K., Tang C., Peng X. Determination of pharmaceuticals, steroid hormones, and endocrine-disrupting personal care products in sewage sludge by ultra-high-performance liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2011;399:891–902. doi: 10.1007/s00216-010-4295-2. PubMed DOI
Demirtepe H., Imamoglu I. Levels of polybrominated diphenyl ethers and hexabromocyclododecane in treatment plant sludge: Implications on sludge management. Chemosphere. 2019;221:606–615. doi: 10.1016/j.chemosphere.2019.01.060. PubMed DOI
Liu S., Ying G.-G., Zhao J.-L., Chen F., Yang B., Zhou L.-J., Lai H. Trace analysis of 28 steroids in surface water, wastewater and sludge samples by rapid resolution liquid chromatography–electrospray ionization tandem mass spectrometry. J. Chromatogr. A. 2011;1218:1367–1378. doi: 10.1016/j.chroma.2011.01.014. PubMed DOI
Lindholm-Lehto P.C., Ahkola H.S.J., Knuutinen J.S. Pharmaceuticals in processing of municipal sewage sludge studied by grab and passive sampling. Water Qual. Res. J. 2018;53:14–23. doi: 10.2166/wqrj.2018.022. DOI
Banihashemi B., Droste R.L. Trace level determination of bisphenol-A in wastewater and sewage sludge by high-performance liquid chromatography and UV detection. Water Qual. Res. J. 2013;48:133–144. doi: 10.2166/wqrjc.2013.037. DOI
Liu S.-S., Ying G.-G., Liu S., Lai H.-J., Chen Z.-F., Pan C.-G., Zhao J.-L., Chen J. Analysis of 21 progestagens in various matrices by ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) with diverse sample pretreatment. Anal. Bioanal. Chem. 2014;406:7299–7311. doi: 10.1007/s00216-014-8146-4. PubMed DOI
Zuliani T., Milačič R., Ščančar J. Preparation of a sewage sludge laboratory quality control material for butyltin compounds and their determination by isotope-dilution mass spectrometry. Anal. Bioanal. Chem. 2012;403:857–865. doi: 10.1007/s00216-012-5897-7. PubMed DOI
Llop A., Borrull F., Pocurull E. Pressurised hot water extraction followed by simultaneous derivatization and headspace solid-phase microextraction and gas chromatography-tandem mass spectrometry for the determination of aliphatic primary amines in sewage sludge. Anal. Chim. Acta. 2010;665:231–236. doi: 10.1016/j.aca.2010.03.042. PubMed DOI
Vallecillos L., Borrull F., Pocurull E. Determination of musk fragrances in sewage sludge by pressurized liquid extraction coupled to automated ionic liquid-based headspace single-drop microextraction followed by GC-MS/MS. J. Sep. Sci. 2012;35:2735–2742. doi: 10.1002/jssc.201200326. PubMed DOI
Herrero P., Borrull F., Pocurull E., Marcé R.M. A quick, easy, cheap, effective, rugged and safe extraction method followed by liquid chromatography-(Orbitrap) high resolution mass spectrometry to determine benzotriazole, benzothiazole and benzenesulfonamide derivates in sewage sludge. J. Chromatogr. A. 2014;1339:34–41. doi: 10.1016/j.chroma.2014.02.081. PubMed DOI
Bergé A., Buleté A., Fildier A., Vulliet E. High-Resolution Mass Spectrometry as a Tool To Evaluate the Sample Preparation of Sludge. Anal. Chem. 2017;89:9685–9694. doi: 10.1021/acs.analchem.7b01081. PubMed DOI
Ferhi S., Bourdat-Deschamps M., Daudin J.-J., Houot S., Nélieu S. Factors influencing the extraction of pharmaceuticals from sewage sludge and soil: An experimental design approach. Anal. Bioanal. Chem. 2016;408:6153–6168. doi: 10.1007/s00216-016-9725-3. PubMed DOI
Soares K.L., Cerqueira M.B.R., Caldas S.S., Primel E.G. Evaluation of alternative environmentally friendly matrix solid phase dispersion solid supports for the simultaneous extraction of 15 pesticides of different chemical classes from drinking water treatment sludge. Chemosphere. 2017;182:547–554. doi: 10.1016/j.chemosphere.2017.05.062. PubMed DOI
Navarro I., Sanz P., Martínez M.Á. Analysis of perfluorinated alkyl substances in Spanish sewage sludge by liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 2011;400:1277–1286. doi: 10.1007/s00216-011-4655-6. PubMed DOI
Saleh A., Larsson E., Yamini Y., Jönsson J.Å. Hollow fiber liquid phase microextraction as a preconcentration and clean-up step after pressurized hot water extraction for the determination of non-steroidal anti-inflammatory drugs in sewage sludge. J. Chromatogr. A. 2011;1218:1331–1339. doi: 10.1016/j.chroma.2011.01.011. PubMed DOI
Samaras V.G., Thomaidis N.S., Stasinakis A.S., Lekkas T.D. An analytical method for the simultaneous trace determination of acidic pharmaceuticals and phenolic endocrine disrupting chemicals in wastewater and sewage sludge by gas chromatography-mass spectrometry. Anal. Bioanal. Chem. 2011;399:2549–2561. doi: 10.1007/s00216-010-4607-6. PubMed DOI
Dorival-García N., Zafra-Gómez A., Camino-Sánchez F.J., Navalón A., Vílchez J.L. Analysis of quinolone antibiotic derivatives in sewage sludge samples by liquid chromatography–tandem mass spectrometry: Comparison of the efficiency of three extraction techniques. Talanta. 2013;106:104–118. doi: 10.1016/j.talanta.2012.11.080. PubMed DOI
Yu Y., Wu L. Analysis of endocrine disrupting compounds, pharmaceuticals and personal care products in sewage sludge by gas chromatography–mass spectrometry. Talanta. 2012;89:258–263. doi: 10.1016/j.talanta.2011.12.023. PubMed DOI
Manso J., Larsson E., Jönsson J.Å. Determination of 4′-isobutylacetophenone and other transformation products of anti-inflammatory drugs in water and sludge from five wastewater treatment plants in Sweden by hollow fiber liquid phase microextraction and gas chromatography–mass spectrometry. Talanta. 2014;125:87–93. doi: 10.1016/j.talanta.2014.02.056. PubMed DOI
Sagristà E., Larsson E., Ezoddin M., Hidalgo M., Salvadó V., Jönsson J.Å. Determination of non-steroidal anti-inflammatory drugs in sewage sludge by direct hollow fiber supported liquid membrane extraction and liquid chromatography–mass spectrometry. J. Chromatogr. A. 2010;1217:6153–6158. doi: 10.1016/j.chroma.2010.08.005. PubMed DOI
Martínez-Moral M.P., Tena M.T. Use of microextraction by packed sorbents following selective pressurised liquid extraction for the determination of brominated diphenyl ethers in sewage sludge by gas chromatography–mass spectrometry. J. Chromatogr. A. 2014;1364:28–35. doi: 10.1016/j.chroma.2014.08.075. PubMed DOI
Viglino L., Prévost M., Sauvé S. High throughput analysis of solid-bound endocrine disruptors by LDTD-APCI-MS/MS. J. Environ. Monit. 2011;13:583–590. doi: 10.1039/c0em00550a. PubMed DOI
Zhao M., Yao Y., Dong X., Fang B., Wang Z., Chen H., Sun H. Identification of emerging PFAS in industrial sludge from North China: Release risk assessment by the TOP assay. Water Res. 2025;268:122667. doi: 10.1016/j.watres.2024.122667. PubMed DOI
Angeles-de Paz G., León-Morcillo R., Guzmán S., Robledo-Mahón T., Pozo C., Calvo C., Aranda E. Pharmaceutical active compounds in sewage sludge: Degradation improvement and conversion into an organic amendment by bioaugmentation-composting processes. Waste Manag. 2023;168:167–178. doi: 10.1016/j.wasman.2023.05.055. PubMed DOI
Angeles-De Paz G., Cubero-Cardoso J., Pozo C., Calvo C., Aranda E., Robledo-Mahón T. Optimizing Bioaugmentation for Pharmaceutical Stabilization of Sewage Sludge: A Study on Short-Term Composting Under Real Conditions. J. Fungi. 2025;11:67. doi: 10.3390/jof11010067. PubMed DOI PMC
Wilschnack K., Homer B., Cartmell E., Yates K., Petrie B. Targeted multi-analyte UHPLC-MS/MS methodology for emerging contaminants in septic tank wastewater, sludge and receiving surface water. Anal. Methods. 2024;16:709–720. doi: 10.1039/D3AY01201H. PubMed DOI
Miserli K., Kosma C., Konstantinou I. Determination of pharmaceuticals and metabolites in sludge and hydrochar after hydrothermal carbonization using sonication—QuEChERS extraction method and UHPLC LTQ/Orbitrap MS. Environ. Sci. Pollut. Res. 2023;30:1686–1703. doi: 10.1007/s11356-022-22215-5. PubMed DOI
Zhang Y., Zhao B., Chen Q., Zhu F., Wang J., Fu X., Zhou T. Fate of organophosphate flame retardants (OPFRs) in the “Cambi® TH + AAD” of sludge in a WWTP in Beijing, China. Waste Manag. 2023;169:363–373. doi: 10.1016/j.wasman.2023.07.030. PubMed DOI
Zuloaga O., Navarro P., Bizkarguenaga E., Iparraguirre A., Vallejo A., Olivares M., Prieto A. Overview of extraction, clean-up and detection techniques for the determination of organic pollutants in sewage sludge: A review. Anal. Chim. Acta. 2012;736:7–29. doi: 10.1016/j.aca.2012.05.016. PubMed DOI
Luque de Castro M.D., Priego-Capote F. Soxhlet extraction: Past and present panacea. J. Chromatogr. A. 2010;1217:2383–2389. doi: 10.1016/j.chroma.2009.11.027. PubMed DOI
Veenaas C., Haglund P. Methodology for non-target screening of sewage sludge using comprehensive two-dimensional gas chromatography coupled to high-resolution mass spectrometry. Anal. Bioanal. Chem. 2017;409:4867–4883. doi: 10.1007/s00216-017-0429-0. PubMed DOI PMC
Pérez-Lemus N., López-Serna R., Pérez-Elvira S.I., Barrado E. Analytical methodologies for the determination of pharmaceuticals and personal care products (PPCPs) in sewage sludge: A critical review. Anal. Chim. Acta. 2019;1083:19–40. doi: 10.1016/j.aca.2019.06.044. PubMed DOI
Chen Y., Cao Q., Deng S., Huang J., Wang B., Yu G. Determination of pharmaceuticals from various therapeutic classes in dewatered sludge by pressurized liquid extraction and high performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS) Int. J. Environ. Anal. Chem. 2013;93:1159–1173. doi: 10.1080/03067319.2012.717271. DOI
Castro G., Carpinteiro I., Rodríguez I., Cela R. Determination of cardiovascular drugs in sewage sludge by matrix solid-phase dispersion and ultra-performance liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2018;410:6807–6817. doi: 10.1007/s00216-018-1268-3. PubMed DOI
Novak P., Zuliani T., Milačič R., Ščančar J. Development of an analytical method for the determination of polybrominated diphenyl ethers in sewage sludge by the use of gas chromatography coupled to inductively coupled plasma mass spectrometry. Anal. Chim. Acta. 2016;915:27–35. doi: 10.1016/j.aca.2016.02.022. PubMed DOI
Abril C., Santos J.L., Malvar J.L., Martín J., Aparicio I., Alonso E. Determination of perfluorinated compounds, bisphenol A, anionic surfactants and personal care products in digested sludge, compost and soil by liquid-chromatography-tandem mass spectrometry. J. Chromatogr. A. 2018;1576:34–41. doi: 10.1016/j.chroma.2018.09.028. PubMed DOI
Yang Y., Lu L., Zhang J., Yang Y., Wu Y., Shao B. Simultaneous determination of seven bisphenols in environmental water and solid samples by liquid chromatography–electrospray tandem mass spectrometry. J. Chromatogr. A. 2014;1328:26–34. doi: 10.1016/j.chroma.2013.12.074. PubMed DOI
Huang Q., Yu Y., Tang C., Peng X. Determination of commonly used azole antifungals in various waters and sewage sludge using ultra-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 2010;1217:3481–3488. doi: 10.1016/j.chroma.2010.03.022. PubMed DOI
Garcia-Rodríguez A., Sagristà E., Matamoros V., Fontàs C., Hidalgo M., Salvadó V. Determination of pharmaceutical compounds in sewage sludge using a standard addition method approach. Int. J. Environ. Anal. Chem. 2014;94:1199–1209. doi: 10.1080/03067319.2014.921292. DOI
Ohoro C.R., Adeniji A.O., Okoh A.I., Okoh A.O.O. Distribution and Chemical Analysis of Pharmaceuticals and Personal Care Products (PPCPs) in the Environmental Systems: A Review. Int J Environ. Res Public Health. 2019;16:3026. doi: 10.3390/ijerph16173026. PubMed DOI PMC
Martín-Pozo L., de Alarcón-Gómez B., Rodríguez-Gómez R., García-Córcoles M.T., Çipa M., Zafra-Gómez A. Analytical methods for the determination of emerging contaminants in sewage sludge samples. A review. Talanta. 2019;192:508–533. doi: 10.1016/j.talanta.2018.09.056. PubMed DOI
López-Serna R., Marín-de-Jesús D., Irusta-Mata R., García-Encina P.A., Lebrero R., Fdez-Polanco M., Muñoz R. Multiresidue analytical method for pharmaceuticals and personal care products in sewage and sewage sludge by online direct immersion SPME on-fiber derivatization–GCMS. Talanta. 2018;186:506–512. doi: 10.1016/j.talanta.2018.04.099. PubMed DOI
Llop A., Borrull F., Pocurull E. Pressurised hot water extraction followed by headspace solid-phase microextraction and gas chromatography-tandem mass spectrometry for the determination of N-nitrosamines in sewage sludge. Talanta. 2012;88:284–289. doi: 10.1016/j.talanta.2011.10.042. PubMed DOI
Gao D., Li Z., Wen Z., Ren N. Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China. Chemosphere. 2014;95:24–32. doi: 10.1016/j.chemosphere.2013.08.009. PubMed DOI
Gani K.M., Kazmi A.A. Comparative assessment of phthalate removal and risk in biological wastewater treatment systems of developing countries and small communities. Sci. Total Environ. 2016;569–570:661–671. doi: 10.1016/j.scitotenv.2016.06.182. PubMed DOI
Gani K.M., Bux F., Kazmi A.A. Diethylhexyl phthalate removal in full scale activated sludge plants: Effect of operational parameters. Chemosphere. 2019;234:885–892. doi: 10.1016/j.chemosphere.2019.06.130. PubMed DOI
Zhang Z., Ren N., Li Y.-F., Kunisue T., Gao D., Kannan K. Determination of benzotriazole and benzophenone UV filters in sediment and sewage sludge. Environ. Sci. Technol. 2011;45:3909–3916. doi: 10.1021/es2004057. PubMed DOI
Gani K.M., Kazmi A.A. Ecotoxicological risk evaluation and regulatory compliance of endocrine disruptor phthalates in a sustainable wastewater treatment scheme. Enviorn. Sci. Pollut. Res. 2020;27:7785–7794. doi: 10.1007/s11356-019-07418-7. PubMed DOI
Qian Y., Jia X., Ding T., Yang M., Yang B., Li J. Occurrence and removal of bisphenol analogues in wastewater treatment plants and activated sludge bioreactor. Sci. Total Environ. 2021;758:143606. doi: 10.1016/j.scitotenv.2020.143606. PubMed DOI
Eljarrat E., Barceló D. Priority lists for persistent organic pollutants and emerging contaminants based on their relative toxic potency in environmental samples. TrAC Trends Anal. Chem. 2003;22:655–665. doi: 10.1016/S0165-9936(03)01001-X. DOI
Gao S., Tian B., Zeng X., Yu Z. Enantiomeric analysis of polycyclic musks AHTN and HHCB and HHCB-lactone in sewage sludge by gas chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2019;33:607–612. doi: 10.1002/rcm.8390. PubMed DOI
Vrkoslavová J., Demnerová K., Macková M., Zemanová T., Macek T., Hajšlová J., Pulkrabová J., Hrádková P., Stiborová H. Absorption and translocation of polybrominated diphenyl ethers (PBDEs) by plants from contaminated sewage sludge. Chemosphere. 2010;81:381–386. doi: 10.1016/j.chemosphere.2010.07.010. PubMed DOI
Cincinelli A., Martellini T., Misuri L., Lanciotti E., Sweetman A., Laschi S., Palchetti I. PBDEs in Italian sewage sludge and environmental risk of using sewage sludge for land application. Environ. Pollut. 2012;161:229–234. doi: 10.1016/j.envpol.2011.11.001. PubMed DOI
Zeng X.-Y., Cao S.-X., Zhang D.-L., Gao S.-T., Yu Z.-Q., Li H.-R., Sheng G.-Y., Fu J.-M. Levels and distribution of synthetic musks and polycyclic aromatic hydrocarbons in sludge collected from Guangdong Province. J. Environ. Sci Health A. 2012;47:389–397. doi: 10.1080/10934529.2012.646099. PubMed DOI
Luque-García J.L., Luque de Castro M.D. Ultrasound: A powerful tool for leaching. TrAC Trends Anal. Chem. 2003;22:41–47. doi: 10.1016/S0165-9936(03)00102-X. DOI
Tadeo J.L., Sánchez-Brunete C., Albero B., García-Valcárcel A.I. Application of ultrasound-assisted extraction to the determination of contaminants in food and soil samples. J. Chromatogr. A. 2010;1217:2415–2440. doi: 10.1016/j.chroma.2009.11.066. PubMed DOI
Albero B., Sánchez-Brunete C., García-Valcárcel A.I., Pérez R.A., Tadeo J.L. Ultrasound-assisted extraction of emerging contaminants from environmental samples. TrAC Trends Anal. Chem. 2015;71:110–118. doi: 10.1016/j.trac.2015.03.015. DOI
Guerra P., Eljarrat E., Barceló D. Simultaneous determination of hexabromocyclododecane, tetrabromobisphenol A, and related compounds in sewage sludge and sediment samples from Ebro River basin (Spain) Anal. Bioanal. Chem. 2010;397:2817–2824. doi: 10.1007/s00216-010-3670-3. PubMed DOI
Cheriyan B.V., Karunakar K.K., Anandakumar R., Murugathirumal A., Kumar A.S. Eco-friendly extraction technologies: A comprehensive review of modern green analytical methods. Sustain. Chem. Clim. Action. 2025;6:100054. doi: 10.1016/j.scca.2024.100054. DOI
Gago-Ferrero P., Borova V., Dasenaki M.E., Τhomaidis Ν.S. Simultaneous determination of 148 pharmaceuticals and illicit drugs in sewage sludge based on ultrasound-assisted extraction and liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 2015;407:4287–4297. doi: 10.1007/s00216-015-8540-6. PubMed DOI
Zhang M., Mao Q., Feng J., Yuan S., Wang Q., Huang D., Zhang J. Validation and application of an analytical method for the determination of selected acidic pharmaceuticals and estrogenic hormones in wastewater and sludge. J. Environ. Sci. Health Part A. 2016;51:914–920. doi: 10.1080/10934529.2016.1191304. PubMed DOI
Chen Z.-F., Ying G.-G., Lai H.-J., Chen F., Su H.-C., Liu Y.-S., Peng F.-Q., Zhao J.-L. Determination of biocides in different environmental matrices by use of ultra-high-performance liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 2012;404:3175–3188. doi: 10.1007/s00216-012-6444-2. PubMed DOI
Huang Q., Zhang K., Wang Z., Wang C., Peng X. Enantiomeric determination of azole antifungals in wastewater and sludge by liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 2012;403:1751–1760. doi: 10.1007/s00216-012-5976-9. PubMed DOI
Martínez-Moral M.P., Tena M.T. Focused ultrasound solid–liquid extraction and selective pressurised liquid extraction to determine bisphenol A and alkylphenols in sewage sludge by gas chromatography–mass spectrometry. J. Sep. Sci. 2011;34:2513–2522. doi: 10.1002/jssc.201100159. PubMed DOI
Martínez-Moral M.P., Tena M.T. Focused ultrasound solid–liquid extraction of perfluorinated compounds from sewage sludge. Talanta. 2013;109:197–202. doi: 10.1016/j.talanta.2013.02.020. PubMed DOI
Cristale J., Lacorte S. Development and validation of a multiresidue method for the analysis of polybrominated diphenyl ethers, new brominated and organophosphorus flame retardants in sediment, sludge and dust. J. Chromatogr. A. 2013;1305:267–275. doi: 10.1016/j.chroma.2013.07.028. PubMed DOI
Fernández-Sanjuan M., Lacorte S., Rigol A., Sahuquillo A. New quality-control materials for the determination of alkylphenols and alkylphenol ethoxylates in sewage sludge. Anal. Bioanal. Chem. 2012;404:2499–2505. doi: 10.1007/s00216-012-6342-7. PubMed DOI
Koumaki E., Noutsopoulos C., Mamais D., Fragkiskatos G., Andreadakis A. Fate of Emerging Contaminants in High-Rate Activated Sludge Systems. Int. J. Environ. Res. Public Health. 2021;18:400. doi: 10.3390/ijerph18020400. PubMed DOI PMC
Golovko O., Örn S., Sörengård M., Frieberg K., Nassazzi W., Lai F.Y., Ahrens L. Occurrence and removal of chemicals of emerging concern in wastewater treatment plants and their impact on receiving water systems. Sci. Total Environ. 2021;754:142122. doi: 10.1016/j.scitotenv.2020.142122. PubMed DOI
Meng Y., Liu W., Fiedler H., Zhang J., Wei X., Liu X., Peng M., Zhang T. Fate and risk assessment of emerging contaminants in reclaimed water production processes. Front. Environ. Sci. Eng. 2021;15:104. doi: 10.1007/s11783-021-1392-8. DOI
Santana J.M., Fraga S.V.B., Zanatta M.C.K., Martins M.R., Pires M.S.G. Characterization of organic compounds and drugs in sewage sludge aiming for agricultural recycling. Heliyon. 2021;7:e06771. doi: 10.1016/j.heliyon.2021.e06771. PubMed DOI PMC
Álvarez-Ruiz R., Andrés-Costa M.J., Andreu V., Picó Y. Simultaneous determination of traditional and emerging illicit drugs in sediments, sludges and particulate matter. J. Chromatogr. A. 2015;1405:103–115. doi: 10.1016/j.chroma.2015.05.062. PubMed DOI
Košnář Z., Mercl F., Pierdonà L., Chane A.D., Míchal P., Tlustoš P. Concentration of the main persistent organic pollutants in sewage sludge in relation to wastewater treatment plant parameters and sludge stabilisation. Environ. Pollut. 2023;333:122060. doi: 10.1016/j.envpol.2023.122060. PubMed DOI
Liu R., Ruan T., Wang T., Song S., Yu M., Gao Y., Shao J., Jiang G. Trace analysis of mono-, di-, tri-substituted polyfluoroalkyl phosphates and perfluorinated phosphonic acids in sewage sludge by high performance liquid chromatography tandem mass spectrometry. Talanta. 2013;111:170–177. doi: 10.1016/j.talanta.2013.02.063. PubMed DOI
Chokwe T.B., Okonkwo J.O., Sibali L.L., Ncube E.J. An integrated method for the simultaneous determination of alkylphenol ethoxylates and brominated flame retardants in sewage sludge samples by ultrasonic-assisted extraction, solid phase clean-up, and GC-MS analysis. Microchem. J. 2015;123:230–236. doi: 10.1016/j.microc.2015.07.001. DOI
Zacs D., Bartkevics V. Trace determination of perfluorooctane sulfonate and perfluorooctanoic acid in environmental samples (surface water, wastewater, biota, sediments, and sewage sludge) using liquid chromatography–Orbitrap mass spectrometry. J. Chromatogr. A. 2016;1473:109–121. doi: 10.1016/j.chroma.2016.10.060. PubMed DOI
Clara M., Gans O., Windhofer G., Krenn U., Hartl W., Braun K., Scharf S., Scheffknecht C. Occurrence of polycyclic musks in wastewater and receiving water bodies and fate during wastewater treatment. Chemosphere. 2011;82:1116–1123. doi: 10.1016/j.chemosphere.2010.11.041. PubMed DOI
Healy M.G., Fenton O., Cormican M., Peyton D.P., Ordsmith N., Kimber K., Morrison L. Antimicrobial compounds (triclosan and triclocarban) in sewage sludges, and their presence in runoff following land application. Ecotoxicol. Environ. Saf. 2017;142:448–453. doi: 10.1016/j.ecoenv.2017.04.046. PubMed DOI
Zhou G.-J., Li X.-Y., Leung K.M.Y. Retinoids and oestrogenic endocrine disrupting chemicals in saline sewage treatment plants: Removal efficiencies and ecological risks to marine organisms. Environ. Int. 2019;127:103–113. doi: 10.1016/j.envint.2019.03.030. PubMed DOI
Zhou G.-J., Lin L., Li X.-Y., Leung K.M.Y. Removal of emerging contaminants from wastewater during chemically enhanced primary sedimentation and acidogenic sludge fermentation. Water Res. 2020;175:115646. doi: 10.1016/j.watres.2020.115646. PubMed DOI
Kor-Bicakci G., Abbott T., Ubay-Cokgor E., Eskicioglu C. Occurrence of the Persistent Antimicrobial Triclosan in Microwave Pretreated and Anaerobically Digested Municipal Sludges under Various Process Conditions. Molecules. 2020;25:310. doi: 10.3390/molecules25020310. PubMed DOI PMC
Tasselli S., Guzzella L. Polycyclic musk fragrances (PMFs) in wastewater and activated sludge: Analytical protocol and application to a real case study. Environ. Sci. Pollut. Res. 2020;27:30977–30986. doi: 10.1007/s11356-019-06767-7. PubMed DOI
Wang Y., Teng Y., Wang D., Han K., Wang H., Kang L. The fate of triclocarban in activated sludge and its influence on biological wastewater treatment system. J. Environ. Manag. 2020;276:111237. doi: 10.1016/j.jenvman.2020.111237. PubMed DOI
Abbott T., Eskicioglu C. Comparison of anaerobic, cycling aerobic/anoxic, and sequential anaerobic/aerobic/anoxic digestion to remove triclosan and triclosan metabolites from municipal biosolids. Sci. Total Environ. 2020;745:140953. doi: 10.1016/j.scitotenv.2020.140953. PubMed DOI
Košnář Z., Mercl F., Chane A.D., Pierdonà L., Míchal P., Tlustoš P. Occurrence of synthetic polycyclic and nitro musk compounds in sewage sludge from municipal wastewater treatment plants. Sci. Total Environ. 2021;801:149777. doi: 10.1016/j.scitotenv.2021.149777. PubMed DOI
Martín J., Santos J.L., Aparicio I., Alonso E. Multi-residue method for the analysis of pharmaceutical compounds in sewage sludge, compost and sediments by sonication-assisted extraction and LC determination. J. Sep. Sci. 2010;33:1760–1766. doi: 10.1002/jssc.200900873. PubMed DOI
Lajeunesse A., Smyth S.A., Barclay K., Sauvé S., Gagnon C. Distribution of antidepressant residues in wastewater and biosolids following different treatment processes by municipal wastewater treatment plants in Canada. Water Res. 2012;46:5600–5612. doi: 10.1016/j.watres.2012.07.042. PubMed DOI
Shafrir M., Avisar D. Development Method for Extracting and Analyzing Antibiotic and Hormone Residues from Treated Wastewater Sludge and Composted Biosolids. Water Air Soil Pollut. 2012;223:2571–2587. doi: 10.1007/s11270-011-1049-5. DOI
Zhou L.-J., Ying G.-G., Liu S., Zhao J.-L., Chen F., Zhang R.-Q., Peng F.-Q., Zhang Q.-Q. Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography–electrospray ionization tandem mass spectrometry. J. Chromatogr. A. 2012;1244:123–138. doi: 10.1016/j.chroma.2012.04.076. PubMed DOI
Yuan X., Qiang Z., Ben W., Zhu B., Liu J. Rapid detection of multiple class pharmaceuticals in both municipal wastewater and sludge with ultra high performance liquid chromatography tandem mass spectrometry. J. Environ. Sci. 2014;26:1949–1959. doi: 10.1016/j.jes.2014.06.022. PubMed DOI
Boix C., Ibáñez M., Fabregat-Safont D., Morales E., Pastor L., Sancho J.V., Sánchez-Ramírez J.E., Hernández F. Behaviour of emerging contaminants in sewage sludge after anaerobic digestion. Chemosphere. 2016;163:296–304. doi: 10.1016/j.chemosphere.2016.07.098. PubMed DOI
Boix C., Ibáñez M., Fabregat-Safont D., Morales E., Pastor L., Sancho J.V., Sánchez-Ramírez J.E., Hernández F. Analytical methodologies based on LC–MS/MS for monitoring selected emerging compounds in liquid and solid phases of the sewage sludge. MethodsX. 2016;3:333–342. doi: 10.1016/j.mex.2016.04.010. PubMed DOI PMC
Martínez-Alcalá I., Guillén-Navarro J.M., Fernández-López C. Pharmaceutical biological degradation, sorption and mass balance determination in a conventional activated-sludge wastewater treatment plant from Murcia, Spain. Chem. Eng. J. 2017;316:332–340. doi: 10.1016/j.cej.2017.01.048. DOI
Abbott T., Kor-Bicakci G., Eskicioglu C. Examination of single-stage anaerobic and anoxic/aerobic and dual-stage anaerobic-anoxic/aerobic digestion to remove pharmaceuticals from municipal biosolids. Sci. Total Environ. 2021;791:148237. doi: 10.1016/j.scitotenv.2021.148237. PubMed DOI
Martínez-Alcalá I., Guillén-Navarro J.M., Lahora A. Occurrence and fate of pharmaceuticals in a wastewater treatment plant from southeast of Spain and risk assessment. J. Environ. Manag. 2021;279:111565. doi: 10.1016/j.jenvman.2020.111565. PubMed DOI
Mercl F., Košnář Z., Maršík P., Vojtíšek M., Dušek J., Száková J., Tlustoš P. Pyrolysis of biosolids as an effective tool to reduce the uptake of pharmaceuticals by plants. J. Hazard. Mater. 2021;405:124278. doi: 10.1016/j.jhazmat.2020.124278. PubMed DOI
Ömeroğlu S., Kara Murdoch F., Dilek Sanin F. Investigation of nonylphenol and nonylphenol ethoxylates in sewage sludge samples from a metropolitan wastewater treatment plant in Turkey. Talanta. 2015;131:650–655. doi: 10.1016/j.talanta.2014.08.014. PubMed DOI
Sun X., Peng J., Wang M., Wang J., Tang C., Yang L., Lei H., Li F., Wang X., Chen J. Determination of nine bisphenols in sewage and sludge using dummy molecularly imprinted solid-phase extraction coupled with liquid chromatography tandem mass spectrometry. J. Chromatogr. A. 2018;1552:10–16. doi: 10.1016/j.chroma.2018.04.004. PubMed DOI
García-Valcárcel A.I., Tadeo J.L. Determination of azoles in sewage sludge from Spanish wastewater treatment plants by liquid chromatography-tandem mass spectrometry. J. Sep. Sci. 2011;34:1228–1235. doi: 10.1002/jssc.201000814. PubMed DOI
Tang C., Yu Y., Huang Q., Peng X. Simultaneous determination of fluoroquinolone and tetracycline antibacterials in sewage sludge using ultrasonic-assisted extraction and HPLC-MS/MS. Int. J. Environ. Anal. Chem. 2012;92:1389–1402. doi: 10.1080/03067319.2010.535124. DOI
Hajj-Mohamad M., Aboulfadl K., Darwano H., Madoux-Humery A.-S., Guérineau H., Sauvé S., Prévost M., Dorner S. Wastewater micropollutants as tracers of sewage contamination: Analysis of combined sewer overflow and stream sediments. Environ. Sci. Process. Impacts. 2014;16:2442–2450. doi: 10.1039/C4EM00314D. PubMed DOI
Malvar J.L., Santos J.L., Martín J., Aparicio I., Alonso E. Comparison of ultrasound-assisted extraction, QuEChERS and selective pressurized liquid extraction for the determination of metabolites of parabens and pharmaceuticals in sludge. Microchem. J. 2020;157:104987. doi: 10.1016/j.microc.2020.104987. DOI
Method 1694: Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS. 2007, 77. [(accessed on 14 August 2024)]; Available online: https://www.epa.gov/sites/default/files/2015-10/documents/method_1694_2007.pdf.
US EPA . Method 3550C–Ultrasonic Extraction. Environmental Protection Agency of United States EPA; Washington, VA, USA: 2000.
Azzouz A., Ballesteros E. Determination of 13 endocrine disrupting chemicals in environmental solid samples using microwave-assisted solvent extraction and continuous solid-phase extraction followed by gas chromatography–mass spectrometry. Anal. Bioanal. Chem. 2016;408:231–241. doi: 10.1007/s00216-015-9096-1. PubMed DOI
Guedes-Alonso R., Santana-Viera S., Montesdeoca-Esponda S., Afonso-Olivares C., Sosa-Ferrera Z., Santana-Rodríguez J.J. Application of microwave-assisted extraction and ultra-high performance liquid chromatography–tandem mass spectrometry for the analysis of sex hormones and corticosteroids in sewage sludge samples. Anal. Bioanal. Chem. 2016;408:6833–6844. doi: 10.1007/s00216-016-9810-7. PubMed DOI
Petrie B., Youdan J., Barden R., Kasprzyk-Hordern B. Multi-residue analysis of 90 emerging contaminants in liquid and solid environmental matrices by ultra-high-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A. 2016;1431:64–78. doi: 10.1016/j.chroma.2015.12.036. PubMed DOI
Vega-Morales T., Sosa-Ferrera Z., Santana-Rodríguez J.J. Determination of various estradiol mimicking-compounds in sewage sludge by the combination of microwave-assisted extraction and LC–MS/MS. Talanta. 2011;85:1825–1834. doi: 10.1016/j.talanta.2011.07.051. PubMed DOI
Cantarero S., Zafra-Gómez A., Ballesteros O., Navalón A., Vílchez J.L., Verge C., De Ferrer J.A. Matrix effect study in the determination of linear alkylbenzene sulfonates in sewage sludge samples. Environ. Toxicol. Chem. 2011;30:813–818. doi: 10.1002/etc.447. PubMed DOI
Dobor J., Varga M., Yao J., Chen H., Palkó G., Záray G. A new sample preparation method for determination of acidic drugs in sewage sludge applying microwave assisted solvent extraction followed by gas chromatography–mass spectrometry. Microchem. J. 2010;94:36–41. doi: 10.1016/j.microc.2009.08.007. DOI
Montesdeoca-Esponda S., Sosa-Ferrera Z., Santana-Rodríguez J.J. Combination of microwave-assisted micellar extraction with liquid chromatography tandem mass spectrometry for the determination of fluoroquinolone antibiotics in coastal marine sediments and sewage sludges samples. Biomed. Chromatogr. 2012;26:33–40. doi: 10.1002/bmc.1621. PubMed DOI
Devault D.A., Amalric L., Bristeau S., Cruz J., Tapie N., Karolak S., Budzinski H., Lévi Y. Removal efficiency of emerging micropollutants in biofilter wastewater treatment plants in tropical areas. Environ. Sci. Pollut. Res. Int. 2021;28:10940–10966. doi: 10.1007/s11356-020-10868-z. PubMed DOI
Evans S.E., Davies P., Lubben A., Kasprzyk-Hordern B. Determination of chiral pharmaceuticals and illicit drugs in wastewater and sludge using microwave assisted extraction, solid-phase extraction and chiral liquid chromatography coupled with tandem mass spectrometry. Anal. Chim. Acta. 2015;882:112–126. doi: 10.1016/j.aca.2015.03.039. PubMed DOI
Junior I.L.C., Machado C.S., Pletsch A.L., Torres Y.R. Simultaneous HPLC-PDA determination of commonly prescribed antidepressants and caffeine in sludge from sewage treatment plants and river sediments in the Itaipu reservoir region, Paraná, Brazil. Int. J. Environ. Anal. Chem. 2020;100:1004–1020. doi: 10.1080/03067319.2019.1646738. DOI
Junior I.L.C., Machado C.S., Ramalho A.N., Pletsch A.L., Torres Y.R. Optimisation of caffeine and antidepressants extraction from sediments and sewage sludge using experimental designs. Int. J. Environ. Anal. Chem. 2017;97:935–948. doi: 10.1080/03067319.2017.1373772. DOI
Zhou S., Peng S., Li Z., Zhang D., Zhu Y., Li X., Hong M., Li W., Lu P. Risk assessment of pollutants in flowback and produced waters and sludge in impoundments. Sci. Total Environ. 2022;811:152250. doi: 10.1016/j.scitotenv.2021.152250. PubMed DOI
Azzouz A., Ballesteros E. Combined microwave-assisted extraction and continuous solid-phase extraction prior to gas chromatography–mass spectrometry determination of pharmaceuticals, personal care products and hormones in soils, sediments and sludge. Sci. Total Environ. 2012;419:208–215. doi: 10.1016/j.scitotenv.2011.12.058. PubMed DOI
Rhodes L. Microwave-assisted extraction using US EPA method 3546. LC GC N. Am. 2002;20:23.
Anastassiades M., Lehotay S.J., Stajnbaher D., Schenck F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003;86:412–431. doi: 10.1093/jaoac/86.2.412. PubMed DOI
Arbeláez P., Borrull F., Maria Marcé R., Pocurull E. Trace-level determination of sweeteners in sewage sludge using selective pressurized liquid extraction and liquid chromatography–tandem mass spectrometry. J. Chromatogr. A. 2015;1408:15–21. doi: 10.1016/j.chroma.2015.07.001. PubMed DOI
García-Galán M.J., Díaz-Cruz S., Barceló D. Multiresidue trace analysis of sulfonamide antibiotics and their metabolites in soils and sewage sludge by pressurized liquid extraction followed by liquid chromatography–electrospray-quadrupole linear ion trap mass spectrometry. J. Chromatogr. A. 2013;1275:32–40. doi: 10.1016/j.chroma.2012.12.004. PubMed DOI
Mohapatra D.P., Brar S.K., Tyagi R.D., Picard P., Surampalli R.Y. Carbamazepine in municipal wastewater and wastewater sludge: Ultrafast quantification by laser diode thermal desorption-atmospheric pressure chemical ionization coupled with tandem mass spectrometry. Talanta. 2012;99:247–255. doi: 10.1016/j.talanta.2012.05.047. PubMed DOI
Radjenović J., Petrović M., Barceló D. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res. 2009;43:831–841. doi: 10.1016/j.watres.2008.11.043. PubMed DOI
Radjenović J., Jelić A., Petrović M., Barceló D. Determination of pharmaceuticals in sewage sludge by pressurized liquid extraction (PLE) coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS) Anal. Bioanal. Chem. 2009;393:1685–1695. doi: 10.1007/s00216-009-2604-4. PubMed DOI
Salvia M.-V., Fieu M., Vulliet E. Determination of Tetracycline and Fluoroquinolone Antibiotics at Trace Levels in Sludge and Soil. Appl. Environ. Soil Sci. 2015;2015:e435741. doi: 10.1155/2015/435741. DOI
Scheurer M., Ramil M., Metcalfe C.D., Groh S., Ternes T.A. The challenge of analyzing beta-blocker drugs in sludge and wastewater. Anal. Bioanal. Chem. 2010;396:845–856. doi: 10.1007/s00216-009-3225-7. PubMed DOI
Seira J., Claparols C., Joannis-Cassan C., Albasi C., Montréjaud-Vignoles M., Sablayrolles C. Optimization of pressurized liquid extraction using a multivariate chemometric approach for the determination of anticancer drugs in sludge by ultra high performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A. 2013;1283:27–38. doi: 10.1016/j.chroma.2013.01.114. PubMed DOI
Esparza X., Moyano E., de Boer J., Galceran M.T., van Leeuwen S.P.J. Analysis of perfluorinated phosponic acids and perfluorooctane sulfonic acid in water, sludge and sediment by LC–MS/MS. Talanta. 2011;86:329–336. doi: 10.1016/j.talanta.2011.09.024. PubMed DOI
Gorga M., Insa S., Petrovic M., Barceló D. Analysis of endocrine disrupters and related compounds in sediments and sewage sludge using on-line turbulent flow chromatography–liquid chromatography–tandem mass spectrometry. J. Chromatogr. A. 2014;1352:29–37. doi: 10.1016/j.chroma.2014.05.028. PubMed DOI
Mascolo G., Locaputo V., Mininni G. New perspective on the determination of flame retardants in sewage sludge by using ultrahigh pressure liquid chromatography-tandem mass spectrometry with different ion sources. J Chromatogr A. 2010;1217:4601–4611. doi: 10.1016/j.chroma.2010.05.003. PubMed DOI
Mastroianni N., Postigo C., de Alda M.L., Barcelo D. Illicit and abused drugs in sewage sludge: Method optimization and occurrence. J. Chromatogr. A. 2013;1322:29–37. doi: 10.1016/j.chroma.2013.10.078. PubMed DOI
Tohidi F., Cai Z. GC/MS analysis of triclosan and its degradation by-products in wastewater and sludge samples from different treatments. Environ. Sci. Pollut. Res. 2015;22:11387–11400. doi: 10.1007/s11356-015-4289-x. PubMed DOI
Riva F., Zuccato E., Pacciani C., Colombo A., Castiglioni S. A multi-residue analytical method for extraction and analysis of pharmaceuticals and other selected emerging contaminants in sewage sludge. Anal. Methods. 2021;13:526–535. doi: 10.1039/D0AY02027C. PubMed DOI
De la Torre A., Concejero M.A., Martínez M.A. Concentrations and sources of an emerging pollutant, decabromodiphenylethane (DBDPE), in sewage sludge for land application. J. Environ. Sci. 2012;24:558–563. doi: 10.1016/S1001-0742(11)60801-2. PubMed DOI
Llorca M., Farré M., Picó Y., Barceló D. Analysis of perfluorinated compounds in sewage sludge by pressurized solvent extraction followed by liquid chromatography–mass spectrometry. J. Chromatogr. A. 2011;1218:4840–4846. doi: 10.1016/j.chroma.2011.01.085. PubMed DOI
Herrero P., Borrull F., Marcé R.M., Pocurull E. Pressurised liquid extraction and ultra-high performance liquid chromatography-tandem mass spectrometry to determine endogenous and synthetic glucocorticoids in sewage sludge. Talanta. 2013;103:186–193. doi: 10.1016/j.talanta.2012.10.030. PubMed DOI
Arbeláez P., Granados J., Borrull F., Marcé R.M., Pocurull E. Determination of sedative hypnotics in sewage sludge by pressurized liquid extraction with high-performance liquid chromatography and tandem mass spectrometry. J. Sep. Sci. 2014;37:3481–3488. doi: 10.1002/jssc.201400791. PubMed DOI
vom Eyser C., Palmu K., Otterpohl R., Schmidt T.C., Tuerk J. Determination of pharmaceuticals in sewage sludge and biochar from hydrothermal carbonization using different quantification approaches and matrix effect studies. Anal. Bioanal. Chem. 2015;407:821–830. doi: 10.1007/s00216-014-8068-1. PubMed DOI
Lonappan L., Pulicharla R., Rouissi T., Brar S.K., Verma M., Surampalli R.Y., Valero J.R. Diclofenac in municipal wastewater treatment plant: Quantification using laser diode thermal desorption--atmospheric pressure chemical ionization--tandem mass spectrometry approach in comparison with an established liquid chromatography-electrospray ionization-tandem mass spectrometry method. J. Chromatogr. A. 2016;1433:106–113. doi: 10.1016/j.chroma.2016.01.030. PubMed DOI
Langford K.H., Reid M., Thomas K.V. Multi-residue screening of prioritised human pharmaceuticals, illicit drugs and bactericides in sediments and sludge. J. Environ. Monit. 2011;13:2284–2291. doi: 10.1039/c1em10260e. PubMed DOI
Mailler R., Gasperi J., Patureau D., Vulliet E., Delgenes N., Danel A., Deshayes S., Eudes V., Guerin S., Moilleron R., et al. Fate of emerging and priority micropollutants during the sewage sludge treatment: Case study of Paris conurbation. Part 1: Contamination of the different types of sewage sludge. Waste Manag. 2017;59:379–393. doi: 10.1016/j.wasman.2016.11.010. PubMed DOI
Shukla R., Ahammad S.Z. Performance assessment of a modified trickling filter and conventional activated sludge process along with tertiary treatment in removing emerging pollutants from urban sewage. Sci. Total Environ. 2023;858:159833. doi: 10.1016/j.scitotenv.2022.159833. PubMed DOI
Hawthorne S.B., Yang Y., Miller D.J. Extraction of Organic Pollutants from Environmental Solids with Sub- and Supercritical Water. Anal. Chem. 1994;66:2912–2920. doi: 10.1021/ac00090a019. DOI
Svahn O., Björklund E. Extraction Efficiency of a Commercial Espresso Machine Compared to a Stainless-Steel Column Pressurized Hot Water Extraction (PHWE) System for the Determination of 23 Pharmaceuticals, Antibiotics and Hormones in Sewage Sludge. Appl. Sci. 2019;9:1509. doi: 10.3390/app9071509. DOI
Herrero P., Borrull F., Marcé R.M., Pocurull E. A pressurised hot water extraction and liquid chromatography–high resolution mass spectrometry method to determine polar benzotriazole, benzothiazole and benzenesulfonamide derivates in sewage sludge. J. Chromatogr. A. 2014;1355:53–60. doi: 10.1016/j.chroma.2014.05.086. PubMed DOI
Peysson W., Vulliet E. Determination of 136 pharmaceuticals and hormones in sewage sludge using quick, easy, cheap, effective, rugged and safe extraction followed by analysis with liquid chromatography–time-of-flight-mass spectrometry. J. Chromatogr. A. 2013;1290:46–61. doi: 10.1016/j.chroma.2013.03.057. PubMed DOI
Masiá A., Vásquez K., Campo J., Picó Y. Assessment of two extraction methods to determine pesticides in soils, sediments and sludges. Application to the Túria River Basin. J. Chromatogr. A. 2015;1378:19–31. doi: 10.1016/j.chroma.2014.11.079. PubMed DOI
Ponce-Robles L., Rivas G., Esteban B., Oller I., Malato S., Agüera A. Determination of pesticides in sewage sludge from an agro-food industry using QuEChERS extraction followed by analysis with liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2017;409:6181–6193. doi: 10.1007/s00216-017-0558-5. PubMed DOI
Cerqueira M.B.R., Caldas S.S., Primel E.G. New sorbent in the dispersive solid phase extraction step of quick, easy, cheap, effective, rugged, and safe for the extraction of organic contaminants in drinking water treatment sludge. J. Chromatogr. A. 2014;1336:10–22. doi: 10.1016/j.chroma.2014.02.002. PubMed DOI
Cerqueira M.B.R., Guilherme J.R., Caldas S.S., Martins M.L., Zanella R., Primel E.G. Evaluation of the QuEChERS method for the extraction of pharmaceuticals and personal care products from drinking-water treatment sludge with determination by UPLC-ESI-MS/MS. Chemosphere. 2014;107:74–82. doi: 10.1016/j.chemosphere.2014.03.026. PubMed DOI
Rossini D., Ciofi L., Ancillotti C., Checchini L., Bruzzoniti M.C., Rivoira L., Fibbi D., Orlandini S., Del Bubba M. Innovative combination of QuEChERS extraction with on-line solid-phase extract purification and pre-concentration, followed by liquid chromatography-tandem mass spectrometry for the determination of non-steroidal anti-inflammatory drugs and their metabolites in sewage sludge. Anal. Chim. Acta. 2016;935:269–281. doi: 10.1016/j.aca.2016.06.023. PubMed DOI
Ramos S., Homem V., Santos L. Development and optimization of a QuEChERS-GC–MS/MS methodology to analyse ultraviolet-filters and synthetic musks in sewage sludge. Sci. Total Environ. 2019;651:2606–2614. doi: 10.1016/j.scitotenv.2018.10.143. PubMed DOI
Rede D., Teixeira I., Delerue-Matos C., Fernandes V.C. Assessing emerging and priority micropollutants in sewage sludge: Environmental insights and analytical approaches. Environ. Sci. Pollut. Res. 2024;31:3152–3168. doi: 10.1007/s11356-023-30963-1. PubMed DOI PMC
Benedetti B., Majone M., Cavaliere C., Montone C.M., Fatone F., Frison N., Laganà A., Capriotti A.L. Determination of multi-class emerging contaminants in sludge and recovery materials from waste water treatment plants: Development of a modified QuEChERS method coupled to LC–MS/MS. Microchem. J. 2020;155:104732. doi: 10.1016/j.microc.2020.104732. DOI
Angeles-de Paz G., Ledezma-Villanueva A., Robledo-Mahón T., Pozo C., Calvo C., Aranda E., Purswani J. Assembled mixed co-cultures for emerging pollutant removal using native microorganisms from sewage sludge. Chemosphere. 2023;313:137472. doi: 10.1016/j.chemosphere.2022.137472. PubMed DOI
Ajibola A.S., Tisler S., Zwiener C. Simultaneous determination of multiclass antibiotics in sewage sludge based on QuEChERS extraction and liquid chromatography-tandem mass spectrometry. Anal. Methods. 2020;12:576–586. doi: 10.1039/C9AY02188D. DOI
Montemurro N., Joedicke J., Pérez S. Development and application of a QuEChERS method with liquid chromatography-quadrupole time of flight-mass spectrometry for the determination of 50 wastewater-borne pollutants in earthworms exposed through treated wastewater. Chemosphere. 2021;263:128222. doi: 10.1016/j.chemosphere.2020.128222. PubMed DOI
Barker S.A., Long A.R., Short C.R. Isolation of drug residues from tissues by solid phase dispersion. J. Chromatogr. A. 1989;475:353–361. doi: 10.1016/S0021-9673(01)89689-8. PubMed DOI
Barker S.A. Matrix solid-phase dispersion. J. Chromatogr. A. 2000;885:115–127. doi: 10.1016/S0021-9673(00)00249-1. PubMed DOI
Triñanes S., Casais M.C., Mejuto M.C., Cela R. Matrix solid-phase dispersion followed by liquid chromatography tandem mass spectrometry for the determination of selective ciclooxygenase-2 inhibitors in sewage sludge samples. J. Chromatogr. A. 2016;1462:35–43. doi: 10.1016/j.chroma.2016.07.044. PubMed DOI
Sánchez-Brunete C., Miguel E., Albero B., Tadeo J.L. Determination of triclosan and methyl triclosan in environmental solid samples by matrix solid-phase dispersion and gas chromatography-mass spectrometry. J. Sep. Sci. 2010;33:2768–2775. doi: 10.1002/jssc.201000284. PubMed DOI
González-Mariño I., Rodríguez I., Quintana J.B., Cela R. Matrix solid-phase dispersion followed by gas chromatography-mass spectrometry for the determination of triclosan and methyl triclosan in sludge and sediments. Anal. Bioanal. Chem. 2010;398:2289–2297. doi: 10.1007/s00216-010-4136-3. PubMed DOI
Casado J., Rodríguez I., Carpinteiro I., Ramil M., Cela R. Gas chromatography quadrupole time-of-flight mass spectrometry determination of benzotriazole ultraviolet stabilizers in sludge samples. J. Chromatogr. A. 2013;1293:126–132. doi: 10.1016/j.chroma.2013.03.050. PubMed DOI
Casado J., Castro G., Rodríguez I., Ramil M., Cela R. Selective extraction of antimycotic drugs from sludge samples using matrix solid-phase dispersion followed by on-line clean-up. Anal. Bioanal. Chem. 2015;407:907–917. doi: 10.1007/s00216-014-8167-z. PubMed DOI
Cerqueira M.B.R., Soares K.L., Caldas S.S., Primel E.G. Sample as solid support in MSPD: A new possibility for determination of pharmaceuticals, personal care and degradation products in sewage sludge. Chemosphere. 2018;211:875–883. doi: 10.1016/j.chemosphere.2018.07.165. PubMed DOI
Li M., Sun Q., Li Y., Lv M., Lin L., Wu Y., Ashfaq M., Yu C. Simultaneous analysis of 45 pharmaceuticals and personal care products in sludge by matrix solid-phase dispersion and liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2016;408:4953–4964. doi: 10.1007/s00216-016-9590-0. PubMed DOI
Montes R., Rodríguez I., Casado J., López-Sabater M.C., Cela R. Determination of the cardiac drug amiodarone and its N-desethyl metabolite in sludge samples. J. Chromatogr. A. 2015;1394:62–70. doi: 10.1016/j.chroma.2015.03.024. PubMed DOI
Celano R., Rodríguez I., Cela R., Rastrelli L., Piccinelli A.L. Liquid chromatography quadrupole time-of-flight mass spectrometry quantification and screening of organophosphate compounds in sludge. Talanta. 2014;118:312–320. doi: 10.1016/j.talanta.2013.10.024. PubMed DOI
Albero B., Pérez R.A., Sánchez-Brunete C., Tadeo J.L. Occurrence and analysis of parabens in municipal sewage sludge from wastewater treatment plants in Madrid (Spain) J. Hazard. Mater. 2012;239–240:48–55. doi: 10.1016/j.jhazmat.2012.05.017. PubMed DOI
Castro G., Ramil M., Cela R., Rodríguez I. Identification and determination of emerging pollutants in sewage sludge driven by UPLC-QTOF-MS data mining. Sci. Total Environ. 2021;778:146256. doi: 10.1016/j.scitotenv.2021.146256. PubMed DOI
Arthur C.L., Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990;62:2145–2148. doi: 10.1021/ac00218a019. DOI
Zhang Z., Yang M.J., Pawliszyn J. Solid-Phase Microextraction. A Solvent-Free Alternative for Sample Preparation. Anal. Chem. 1994;66:844A–853A. doi: 10.1021/ac00089a001. DOI
Li J., Wang Y.-B., Li K.-Y., Cao Y.-Q., Wu S., Wu L. Advances in different configurations of solid-phase microextraction and their applications in food and environmental analysis. TrAC Trends Anal. Chem. 2015;72:141–152. doi: 10.1016/j.trac.2015.04.023. DOI
Risticevic S., Vuckovic D., Pawliszyn J. Solid-Phase Microextraction. John Wiley & Sons; Hoboken, NJ, USA: 2010. pp. 81–101. Handbook of Sample Preparation. DOI
Wu S.-F., Ding W.-H. Fast determination of synthetic polycyclic musks in sewage sludge and sediments by microwave-assisted headspace solid-phase microextraction and gas chromatography-mass spectrometry. J. Chromatogr. A. 2010;1217:2776–2781. doi: 10.1016/j.chroma.2010.02.067. PubMed DOI
Vallecillos L., Pocurull E., Borrull F. A simple and automated method to determine macrocyclic musk fragrances in sewage sludge samples by headspace solid-phase microextraction and gas chromatography–mass spectrometry. J. Chromatogr. A. 2013;1314:38–43. doi: 10.1016/j.chroma.2013.09.033. PubMed DOI
Pedersen-Bjergaard S., Rasmussen K.E. Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Anal. Chem. 1999;71:2650–2656. doi: 10.1021/ac990055n. PubMed DOI
Rezaee M., Yamini Y., Faraji M. Evolution of dispersive liquid–liquid microextraction method. J. Chromatogr. A. 2010;1217:2342–2357. doi: 10.1016/j.chroma.2009.11.088. PubMed DOI
Baltussen E., Sandra P., David F., Cramers C. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. J. Microcolumn Sep. 1999;11:737–747. doi: 10.1002/(SICI)1520-667X(1999)11:10<737::AID-MCS7>3.0.CO;2-4. DOI
Camino-Sánchez F.J., Rodríguez-Gómez R., Zafra-Gómez A., Santos-Fandila A., Vílchez J.L. Stir bar sorptive extraction: Recent applications, limitations and future trends. Talanta. 2014;130:388–399. doi: 10.1016/j.talanta.2014.07.022. PubMed DOI
David F., Ochiai N., Sandra P. Two decades of stir bar sorptive extraction: A retrospective and future outlook. TrAC Trends Anal. Chem. 2019;112:102–111. doi: 10.1016/j.trac.2018.12.006. DOI
Ferreira A.M.C., Möder M., Laespada M.E.F. Stir bar sorptive extraction of parabens, triclosan and methyl triclosan from soil, sediment and sludge with in situ derivatization and determination by gas chromatography–mass spectrometry. J. Chromatogr. A. 2011;1218:3837–3844. doi: 10.1016/j.chroma.2011.04.055. PubMed DOI
Moein M.M., Abdel-Rehim A., Abdel-Rehim M. Microextraction by packed sorbent (MEPS) TrAC Trends Anal. Chem. 2015;67:34–44. doi: 10.1016/j.trac.2014.12.003. DOI
Abdel-Rehim M. Microextraction by packed sorbent (MEPS): A tutorial. Anal. Chim. Acta. 2011;701:119–128. doi: 10.1016/j.aca.2011.05.037. PubMed DOI
Maia M.R., Arcanjo A.L.P., Pinho G.P., Silvério F.O., Maia M.R., Arcanjo A.L.P., Pinho G.P., Silvério F.O. Solid-Liquid Extraction with Low Temperature Purification Coupled with Gas Chromatography and Mass Spectrometry for Determination of Polychlorinated Biphenyls in Sewage Sludge. J. Braz. Chem. Soc. 2017;28:179–186. doi: 10.5935/0103-5053.20160161. DOI
Pereira N.G.F., Silvério F.O., Pinho G.P. Optimisation, validation and application of the solid-liquid extraction with low-temperature purification followed by gas chromatography-mass spectrometry for determination of phthalates in sewage sludge. Int. J. Environ. Anal. Chem. 2020;100:968–980. doi: 10.1080/03067319.2019.1646735. DOI
Andrade V.F., Durães A.F.S., Cassimiro D.L., de Pinho G.P., Silvério F.O. Fast extraction of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran in sewage sludge and soil samples. J. Environ. Sci. Health Part B. 2017;52:267–273. doi: 10.1080/03601234.2016.1273003. PubMed DOI
Shoemaker J.A. Determination of Selected Organic Contaminants in Drinking Water by Direct Aqueous Injection—Liquid Chromatography/Tandem Mass Spectrometry (DAI-LC/MS/MS). 2009, p. 40. [(accessed on 25 October 2024)]; Available online: https://www.epa.gov/sites/default/files/2015-06/documents/epa-538.pdf.
Larsson E., Rabayah A. Sludge removal of nonsteroidal anti-inflammatory drugs during wastewater treatment studied by direct hollow fiber liquid phase microextraction. J. Environ. Prot. 2013;4:36367. doi: 10.4236/jep.2013.49109. DOI
Grześkowiak T., Czarczyńska-Goślińska B., Zgoła-Grześkowiak A. Current approaches in sample preparation for trace analysis of selected endocrine-disrupting compounds: Focus on polychlorinated biphenyls, alkylphenols, and parabens. TrAC Trends Anal. Chem. 2016;75:209–226. doi: 10.1016/j.trac.2015.07.005. DOI
Keçili R., Büyüktiryaki S., Dolak İ., Hussain C.M. 5—The use of magnetic nanoparticles in sample preparation devices and tools. In: Mustansar Hussain C., editor. Handbook of Nanomaterials in Analytical Chemistry. Elsevier; Amsterdam, The Netherlands: 2020. pp. 75–95.
Luque-Muñoz A., Vílchez J.L., Zafra-Gómez A. Multiclass method for the determination of pharmaceuticals and personal care products in compost from sewage sludge using ultrasound and salt-assisted liquid–liquid extraction followed by ultrahigh performance liquid chromatography-tandem mass spectrometry analysis. J. Chromatogr. A. 2017;1507:72–83. doi: 10.1016/j.chroma.2017.05.051. PubMed DOI
Lara-Gonzalo A., Sánchez-Uría J.E., Segovia-García E., Sanz-Medel A. Selected ion storage versus tandem MS/MS for organochlorine pesticides determination in drinking waters with SPME and GC-MS. Int. J. Environ. Anal. Chem. 2012;92:856–867. doi: 10.1080/03067319.2010.533766. DOI
García-Córcoles M.T., Rodríguez-Gómez R., de Alarcón-Gómez B., Çipa M., Martín-Pozo L., Kauffmann J.-M., Zafra-Gómez A. Chromatographic Methods for the Determination of Emerging Contaminants in Natural Water and Wastewater Samples: A Review. Crit. Rev. Anal. Chem. 2019;49:160–186. doi: 10.1080/10408347.2018.1496010. PubMed DOI
Petrovic M., Farré M., de Alda M.L., Perez S., Postigo C., Köck M., Radjenovic J., Gros M., Barcelo D. Recent trends in the liquid chromatography–mass spectrometry analysis of organic contaminants in environmental samples. J. Chromatogr. A. 2010;1217:4004–4017. doi: 10.1016/j.chroma.2010.02.059. PubMed DOI
Farré M., Kantiani L., Petrovic M., Pérez S., Barceló D. Achievements and future trends in the analysis of emerging organic contaminants in environmental samples by mass spectrometry and bioanalytical techniques. J. Chromatogr. A. 2012;1259:86–99. doi: 10.1016/j.chroma.2012.07.024. PubMed DOI
Castro G., Roca M., Rodríguez I., Ramil M., Cela R. Identification and determination of chlorinated azoles in sludge using liquid chromatography quadrupole time-of-flight and triple quadrupole mass spectrometry platforms. J. Chromatogr. A. 2016;1476:69–76. doi: 10.1016/j.chroma.2016.11.020. PubMed DOI
Wood R. How to validate analytical methods. TrAC Trends Anal. Chem. 1999;18:624–632. doi: 10.1016/S0165-9936(99)00150-8. DOI
Trufelli H., Palma P., Famiglini G., Cappiello A. An overview of matrix effects in liquid chromatography–mass spectrometry. Mass Spectrom. Rev. 2011;30:491–509. doi: 10.1002/mas.20298. PubMed DOI
Parr M.K., Schmidt A.H. Life cycle management of analytical methods. J. Pharm. Biomed. Anal. 2018;147:506–517. doi: 10.1016/j.jpba.2017.06.020. PubMed DOI
Schwesig D., Borchers U., Chancerelle L., Dulio V., Eriksson U., Farré M., Goksoyr A., Lamoree M., Leonards P., Wegener J.-W., et al. A harmonized European framework for method validation to support research on emerging pollutants. TrAC Trends Anal. Chem. 2011;30:1233–1242. doi: 10.1016/j.trac.2011.03.015. DOI
Cortese M., Gigliobianco M.R., Magnoni F., Censi R., Di Martino P. Compensate for or Minimize Matrix Effects? Strategies for Overcoming Matrix Effects in Liquid Chromatography-Mass Spectrometry Technique: A Tutorial Review. Molecules. 2020;25:3047. doi: 10.3390/molecules25133047. PubMed DOI PMC
Matuszewski B.K., Constanzer M.L., Chavez-Eng C.M. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC−MS/MS. Anal. Chem. 2003;75:3019–3030. doi: 10.1021/ac020361s. PubMed DOI
Method 8000C, Revision3 EPA. [(accessed on 3 October 2024)];2003 Available online: https://archive.epa.gov/epawaste/hazard/testmethods/web/pdf/method%208000c%2c%20revision%203%20-%202003.pdf.
Capability of Detection—Part 6: Methodology for the Determination of the Critical Value and the Minimum Detectable Value in Poisson Distributed Measurements by Normal Approximations. ISO; Geneva, Switzerland: 2019.