Diversity of RNA Viruses and Circular Viroid-like Elements in Heterobasidion spp. in Near-Natural Forests of Bosnia and Herzegovina
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000453
European Regional Development Fund, Project "Phytophthora Research Centre"
CZBRNO02
Erasmus+ grant funded by the European Union
CIPROM/2022/21
Generalitat Valenciana, PROMETEO program
PubMed
40872857
PubMed Central
PMC12390675
DOI
10.3390/v17081144
PII: v17081144
Knihovny.cz E-zdroje
- Klíčová slova
- Heterobasidion abietinum, Heterobasidion annosum, diversity, forest virome, mycoviruses, root rot, viroids,
- MeSH
- Basidiomycota * virologie MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom virový MeSH
- kruhová RNA genetika MeSH
- lesy MeSH
- mykoviry genetika klasifikace izolace a purifikace MeSH
- nemoci rostlin mikrobiologie MeSH
- RNA virová genetika MeSH
- RNA-viry * genetika klasifikace izolace a purifikace MeSH
- viroidy * genetika klasifikace izolace a purifikace MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Bosna a Hercegovina MeSH
- Názvy látek
- kruhová RNA MeSH
- RNA virová MeSH
Heterobasidion root rot fungi represent a major threat to conifer forest stands, and virocontrol (biocontrol) has been proposed as an alternative strategy of disease management in recent years. Here, we investigated the occurrence of RNA viruses and viroid-like genomes in Heterobasidion annosum sensu lato in near-natural forests of Bosnia and Herzegovina (Dinaric Alps), a region previously unexplored in this regard. Seventeen H. annosum s.l. isolates were screened for virus presence by RNA Sequencing and bioinformatic analyses. In total, 32 distinct mycoviruses were discovered in the datasets, 26 of which were previously unknown. The detected viruses represent two dsRNA (Partitiviridae and Curvulaviridae), six linear ssRNA (Mitoviridae, Narnaviridae, Botourmiaviridae, Virgaviridae, Benyviridae, and Deltaflexiviridae) and three circular ssRNA (Dumbiviridae, Quambiviridae, and Trimbiviridae) virus families. In addition to the known circular ambiviruses with their hammerhead (HHRz) and hairpin (HPRz) ribozymes, two other smaller non-coding circular RNAs of ca. 910 bp each were identified encoding HHRz and deltavirus (DVRz) ribozymes in both polarities of their genomes. This study documents the first report of a putative viroid-like RNA agent in Heterobasidion, along with beny-like and deltaflexivirus-like viruses in Heterobasidion abietinum, and expands the known virosphere of Heterobasidion species in Southeastern European forests.
Zobrazit více v PubMed
Mataruga M., Ballian D., Terzić R., Daničić V., Cvjetković B. State of forests in Bosnia and Herzegovina: Ecological and vegetation distribution, management and genetic variability. In: Šijačić-Nikolić M., Milovanović J., Nonić M., editors. Forests of Southeast Europe under a Changing Climate. Volume 65. Springer International Publishing; Cham, Switzerland: 2019. pp. 3–19. DOI
Myers N., Mittermeier R.A., Mittermeier C., da Fonseca G.A.B., Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853–858. doi: 10.1038/35002501. PubMed DOI
Govedar Z., Krstić M., Keren S., Babić V., Zlokapa B., Kanjevac B. Actual and balanced stand structure: Examples from beech-fir-spruce old-growth forests in the area of the Dinarides in Bosnia and Herzegovina. Sustainability. 2018;10:540. doi: 10.3390/su10020540. DOI
Motta R., Alberti G., Ascoli D., Berretti R., Bilic S., Bono A., Milic C., Vojislav D., Finsinger W., Garbarino M., et al. Old-growth forests in the Dinaric Alps of Bosnia-Herzegovina and Montenegro: A continental hot-spot for research and biodiversity. Front. For. Glob. Change. 2024;7:1371144. doi: 10.3389/ffgc.2024.1371144. DOI
Drinić P. Taksacioni elementi sastojina jele, smrče i bukve prašumskog tipa u Bosni [Taxation elements of the fir-spruce-beech old-growth forests in Bosnia] Rad. Šumarskog Fak. Univ. u Sarajev. 1956;4:107–160. doi: 10.54652/rsf.1956.v4.i1.388. DOI
Drašković B., Gutalj M., Stjepanović S., Miletić B. Estimating recent forest losses in Bosnia and Herzegovina by using the Copernicus and Corine land cover databases. Šumarski List. 2021;145:581–589. doi: 10.31298/sl.145.11-12.7. DOI
Vukmir G., Stanišljević L., Cero M., Cacan M., Marković M., Rudež M., Laganin O., Kostić R., Oprašić S., Ćatović S., et al. Initial National Communication (INC) of Bosnia and Herzegovina Under the United Nations Framework Convention on Climate Change. UNDP (United Nations Development Programme); Banja Luka, Bosnia and Herzegovina: 2019. [(accessed on 17 June 2025)]. Available online: https://www.undp.org/bosnia-herzegovina/publications/initial-national-communication-inc.
Camarero J.J., Pizarro M., Gernandt D.S., Gazol A. Smaller conifers are more resilient to drought. Agric. For. Meteorol. 2024;350:109993. doi: 10.1016/j.agrformet.2024.109993. DOI
Stanivuković Z., Vasiljević R. The most significant biotic harmful agents and their influence on the intensity of spruce (Picea abies Karst.) dieback on the Romanian plateau. Šumarstvo. 2019;3–4:21–41.
Zahirović K., Treštić T., Čabaravdić A., Dautbašić M., Mujezinović O. Causitive agents of decay of Norway spruce/Picea abies (L.) Karst./on the mountain Zvijezda. Šumarski List. 2019;143:155–160. doi: 10.31298/sl.143.3-4.5. DOI
Karadžić D., Stanivuković Z., Milanović S., Milenković I. Najznačajniji Prouzrokovači Infektivnih Bolesti u Šumama Republike Srpske [The Most Important Causes of Infectious Diseases in the Forests of the Republic of Srpska] University of Banja Luka, Faculty of Forestry; Banja Luka, Bosnia and Herzegovina: 2019. [(accessed on 11 August 2025)]. 324p. /unibl/book/idKnjiga:2140, 978-99938-56-42-9. Available online: https://pub.unibl.org/s/lat/item/48960.
Piri T., Vainio E.J., Hantula J. Preventing mycelial spread of Heterobasidion annosum in young Scots pine stands using fungal and viral biocontrol agents. Biol. Control. 2023;184:105263. doi: 10.1016/j.biocontrol.2023.105263. DOI
Ihrmark K., Zheng J., Stenström E., Stenlid J. Presence of double-stranded RNA in Heterobasidion annosum. For. Pathol. 2001;31:387–394. doi: 10.1046/j.1439-0329.2001.00263.x. DOI
Vainio E.J., Hantula J. Taxonomy, biogeography and importance of Heterobasidion viruses. Virus Res. 2016;219:2–10. doi: 10.1016/j.virusres.2015.10.014. PubMed DOI
Dálya L.B., Černý M., de la Peña M., Poimala A., Vainio E.J., Hantula J., Botella L. Diversity and impact of single-stranded RNA viruses in Czech Heterobasidion populations. MSystems. 2024;9:e0050624. doi: 10.1128/msystems.00506-24. PubMed DOI PMC
Vainio E.J., Hakanpää J., Dai Y.C., Hansen E., Korhonen K., Hantula J. Species of Heterobasidion host a diverse pool of partitiviruses with global distribution and interspecies transmission. Fungal Biol. 2011;115:1234–1243. doi: 10.1016/j.funbio.2011.08.008. PubMed DOI
Vainio E.J., Hyder R., Aday Kaya A.G., Hansen E., Piri T., Doğmuş-Lehtijärvi H.T., Lehtijärvi A., Korhonen K., Hantula J. Population structure of a novel putative mycovirus infecting the conifer root-rot fungus Heterobasidion annosum sensu lato. Virology. 2012;422:366–376. doi: 10.1016/j.virol.2011.10.032. PubMed DOI
Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. [(accessed on 10 January 2025)]. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI
Kopylova E., Noé L., Touzet H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–3217. doi: 10.1093/bioinformatics/bts611. PubMed DOI
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Li H., Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. 1000 Genome project data processing subgroup. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.L., Pham S., Pevzner P.A. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Botella L., Hejna O., Kudláček T., Kovačiková K., Rost M., Forgia M., Raco M., Milenković I., Corcobado T., Maia C., et al. The virome of the panglobal, wide host-range plant pathogen Phytophthora cinnamomi: Phylogeography and evolutionary insights. Virus Evol. 2025;11:veaf020. doi: 10.1093/ve/veaf020. PubMed DOI PMC
Nawrocki E.P., Eddy S.R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29:2933–2935. doi: 10.1093/bioinformatics/btt509. PubMed DOI PMC
Forgia M., Navarro B., Daghino S., Cervera A., Gisel A., Perotto S., Aghayeva D.N., Akinyuwa M.F., Gobbi E., Zheludev I.N., et al. Hybrids of RNA viruses and viroid-like elements replicate in fungi. Nat. Commun. 2023;14:2591. doi: 10.1038/s41467-023-38301-2. PubMed DOI PMC
Lorenz R., Bernhart S.H., Höner zu Siederdissen C., Tafer H., Flamm C., Stadler P.F., Hofacker I.L. ViennaRNA package 2.0. Algorit. Mol. Biol. 2011;6:26. doi: 10.1186/1748-7188-6-26. PubMed DOI PMC
Tamura K., Stecher G., Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021;38:3022–3027. doi: 10.1093/molbev/msab120. PubMed DOI PMC
Jombart T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–1405. doi: 10.1093/bioinformatics/btn129. PubMed DOI
Jombart T., Ahmed I. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27:3070–3071. doi: 10.1093/bioinformatics/btr521. PubMed DOI PMC
Sutela S., Piri T., Vainio E.J. Discovery and community dynamics of novel ssRNA mycoviruses in the conifer pathogen Heterobasidion parviporum. Front. Microbiol. 2021;12:770787. doi: 10.3389/fmicb.2021.770787. PubMed DOI PMC
Vainio E.J., Capretti P., Motta E., Hantula J. Molecular characterization of HetRV8-ir1, a partitivirus of the invasive conifer pathogenic fungus Heterobasidion irregulare. Arch. Virol. 2013;158:1613–1615. doi: 10.1007/s00705-013-1643-5. PubMed DOI
Jurvansuu J., Kashif M., Vaario L., Vainio E.J., Hantula J. Partitiviruses of a fungal forest pathogen have species-specific quantities of genome segments and transcripts. Virology. 2014;462–463:25–33. doi: 10.1016/j.virol.2014.05.021. PubMed DOI
Márquez L.M., Redman R.S., Rodriguez R.J., Roossinck M.J. A virus in a fungus in a plant: Three-way symbiosis required for thermal tolerance. Science. 2007;315:513–515. doi: 10.1126/science.1136237. PubMed DOI
Wang C., Wu J., Zhu X., Chen J. Complete nucleotide sequences of dsRNA2 and dsRNA7 detected in the phytopathogenic fungus Sclerotium hydrophilum and their close phylogenetic relationship to a group of unclassified viruses. Virus Genes. 2016;52:823–827. doi: 10.1007/s11262-016-1375-1. PubMed DOI
Liu C., Li M., Redda E.T., Mei J., Zhang J., Elena S.F., Wu B., Jiang X. Complete nucleotide sequence of a novel mycovirus from Trichoderma harzianum in China. Arch. Virol. 2019;164:1213–1216. doi: 10.1007/s00705-019-04145-9. PubMed DOI PMC
Sutela S., Vainio E.J. Virus population structure in the ectomycorrhizal fungi Lactarius rufus and L. tabidus at two forest sites in Southern Finland. Virus Res. 2020;285:197993. doi: 10.1016/j.virusres.2020.197993. PubMed DOI
Drenkhan T., Sutela S., Veeväli V., Vainio E.J. Phlebiopsis gigantea strains from Estonia show potential as native biocontrol agents against Heterobasidion root rot and contain diverse dsRNA and ssRNA viruses. Biol. Control. 2022;167:104837. doi: 10.1016/j.biocontrol.2022.104837. DOI
Le S.Q., Gascuel O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 2008;25:1307–1320. doi: 10.1093/molbev/msn067. PubMed DOI
Vainio E.J. Mitoviruses in the conifer root rot pathogens Heterobasidion annosum and H. parviporum. Virus Res. 2019;271:197681. doi: 10.1016/j.virusres.2019.197681. PubMed DOI
Guo M., Shen G., Wang J., Liu M., Bian Y., Xu Z. Mycoviral diversity and characteristics of a negative-stranded RNA virus LeNSRV1 in the edible mushroom Lentinula edodes. Virology. 2021;555:89–101. doi: 10.1016/j.virol.2020.11.008. PubMed DOI
Vainio E.J., Jurvansuu J., Streng J., Rajamäki M.-L., Hantula J., Valkonen J.P.T. Diagnosis and discovery of fungal viruses using deep sequencing of small RNAs. J. Gen. Virol. 2015;96:714–725. doi: 10.1099/jgv.0.000003. PubMed DOI
Whelan S., Goldman N. A general empirical model of protein evolution derived from multiple protein families using a Maximum-Likelihood approach. Mol. Biol. Evol. 2001;18:691–699. doi: 10.1093/oxfordjournals.molbev.a003851. PubMed DOI
Li W., Sun H., Cao S., Zhang A., Zhang H., Shu Y., Chen H. Extreme diversity of mycoviruses present in single strains of Rhizoctonia cerealis, the pathogen of wheat sharp eyespot. Microbiol Spectr. 2023;11:e0052223. doi: 10.1128/spectrum.00522-23. PubMed DOI PMC
Canuti M., Rodrigues B., Lang A.S., Dufour S.C., Verhoeven J.T.P. Novel divergent members of the Kitrinoviricota discovered through metagenomics in the intestinal contents of red-backed voles (Clethrionomys gapperi) Int. J. Mol. Sci. 2023;24:131. doi: 10.3390/ijms24010131. PubMed DOI PMC
Forgia M., Isgandarli E., Aghayeva D.N., Huseynova I., Turina M. Virome characterization of Cryphonectria parasitica isolates from Azerbaijan unveiled a new mymonavirus and a putative new RNA virus unrelated to described viral sequences. Virology. 2021;553:51–61. doi: 10.1016/j.virol.2020.10.008. PubMed DOI
Kuhn J.H., Botella L., de la Peña M., Vainio E.J., Krupovic M., Lee B.D., Navarro B., Sabanadzovic S., Simmonds P., Turina M. Ambiviricota, a novel ribovirian phylum for viruses with viroid-like properties. J. Virol. 2024;98:e00831-24. doi: 10.1128/jvi.00831-24. PubMed DOI PMC
Sutela S., Forgia M., Vainio E.J., Chiapello M., Daghino S., Vallino M., Martino E., Girlanda M., Perotto S., Turina M. The virome from a collection of endomycorrhizal fungi reveals new viral taxa with unprecedented genome organization. Virus Evol. 2020;6:veaa076. doi: 10.1093/ve/veaa076. PubMed DOI PMC
Göker M., Scheuner C., Klenk H.-P., Stielow J.B., Menzel W. Codivergence of mycoviruses with their hosts. PLoS ONE. 2011;6:e22252. doi: 10.1371/journal.pone.0022252. PubMed DOI PMC
Koonin E.V., Lee B.D. Diversity and evolution of viroids and viroid-like agents with circular RNA genomes revealed by metatranscriptome mining. Nucleic Acids Res. 2025;53:1278. doi: 10.1093/nar/gkae1278. PubMed DOI PMC
Sun L., Hadidi A. Mycoviroids: Fungi as Hosts and Vectors of Viroids. Cells. 2022;11:1335. doi: 10.3390/cells11081335. PubMed DOI PMC
Lee B.D., Neri U., Roux S., Wolf Y.I., Camargo A.P., Krupovic M., Simmonds P., Kyrpides N., Gophna U., Dolja V.V., et al. Mining metatranscriptomes reveals a vast world of viroid-like circular RNAs. Cell. 2023;186:646–661. doi: 10.1016/j.cell.2022.12.039. PubMed DOI PMC
Friday P., Mukkara R.A., Owens T., Baumstark M.F., Bruist M.F. Processing of potatospindle tuber viroid RNAs in yeast, a nonconventional host. J. Virol. 2017;91:e01078-17. doi: 10.1128/JVI.01078-17. PubMed DOI PMC
Latifi L., Bernard C.S. Replication of avocado sunblotch viroid in the cyanobacterium Nostocsp. PCC 7120. J. Plant Pathol. Microbiol. 2016;7:341. doi: 10.4172/2157-7471.1000341. DOI
Tian M., Wei S., Bian R., Luo J., Khan H.A., Tai H., Kondo H., Hadidi A., Andika I.B., Sun L. Natural cross-kingdom spread of apple Scar Skin viroid from apple trees to fungi. Cells. 2022;11:3686. doi: 10.3390/cells11223686. PubMed DOI PMC
Wei S., Bian R., Andika I.B., Niu E., Liu Q., Kondo H., Yang L., Zhou H., Pang T., Lian Z., et al. Symptomatic plant viroid infections in phytopathogenic fungi. Proc. Natl. Acad. Sci. USA. 2019;116:13042–13050. doi: 10.1073/pnas.1900762116. PubMed DOI PMC
Afanasenko O.S., Khiutti A.V., Mironenko N.V., Lashina N.M. Transmission of potato spindle tuber viroid between Phytophthora infestans and host plants. Vavilovskii Zhurnal Genet. Sel. 2022;26:272–280. doi: 10.18699/VJGB-22-34. PubMed DOI PMC
Dong K., Xu C., Kotta-Loizou I., Jiang J., Lv R., Kong L., Li S., Hong N., Wang G., Coutts R.H.A., et al. Novel viroid-like RNAs naturally infect a filamentous fungus. Adv. Sci. 2023;10:e2204308. doi: 10.1002/advs.202204308. PubMed DOI PMC
Navarro B., Turina M. Viroid and viroid-like elements in plants and plant-associated microbiota: A new layer of biodiversity for plant holobionts. New Phytol. 2024;244:1216–1222. doi: 10.1111/nph.20156. PubMed DOI
Hermanns K., Marklewitz M., Zirkel F., Kopp A., Kramer-Schadt S., Junglen S. Mosquito community composition shapes virus prevalence patterns along anthropogenic disturbance gradients. eLife. 2023;12:e66550. doi: 10.7554/eLife.66550. PubMed DOI PMC
Tirera S., de Thoisy B., Donato D., Bouchier C., Lacoste V., Franc A., Lavergne A. The influence of habitat on viral diversity in neotropical rodent hosts. Viruses. 2021;13:1690. doi: 10.3390/v13091690. PubMed DOI PMC