Tropomyosin isoforms encoded by TPM2 control the actin-bundling activity of fascin-1
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2022/04/Y/NZ5/00064
Narodowe Centrum Nauki
23-06303K
Grantová Agentura České Republiky
LX22NPO5102
Národní ústav pro výzkum rakoviny
KA-2022-18
University of Pécs, Medical School
PubMed
40887664
PubMed Central
PMC12399007
DOI
10.1186/s40659-025-00640-3
PII: 10.1186/s40659-025-00640-3
Knihovny.cz E-zdroje
- Klíčová slova
- TPM2, Actin, Bundling, Fascin-1, Isoforms, Tropomyosin,
- MeSH
- aktiny * metabolismus MeSH
- fluorescenční mikroskopie MeSH
- konfokální mikroskopie MeSH
- lidé MeSH
- mikrofilamenta metabolismus MeSH
- mikrofilamentové proteiny * metabolismus MeSH
- nádorové buněčné linie MeSH
- protein - isoformy metabolismus MeSH
- transportní proteiny * metabolismus MeSH
- tropomyosin * metabolismus fyziologie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aktiny * MeSH
- FSCN1 protein, human MeSH Prohlížeč
- mikrofilamentové proteiny * MeSH
- protein - isoformy MeSH
- TPM2 protein, human MeSH Prohlížeč
- transportní proteiny * MeSH
- tropomyosin * MeSH
BACKGROUND: In many types of tumors, the expression patterns of actin-binding proteins -fascin-1 and various isoforms of tropomyosin - are altered. Fascin-1 is an actin-bundling protein that promotes cancer cell motility, whereas tropomyosin functions as a tumor and metastasis suppressor. However, the mechanisms by which tropomyosin isoforms regulate fascin-1 remain poorly understood. This study aimed to investigate the reciprocal effects of fascin-1 and tropomyosin isoforms on their interactions with actin and on the formation of actin bundles. METHODS: Recombinant fascin-1 and the cytoskeletal tropomyosin isoforms encoded by TPM2 (Tpm2.1, Tpm2.3, and Tpm2.4) were expressed in BL21-DE3 cells and purified. High-speed centrifugation was employed to assess the actin affinities of fascin-1 and the Tpm2 isoforms. Actin filament bundling was analyzed using low-speed centrifugation and fluorescence microscopy. A pull-down assay was performed to examine direct interactions between fascin-1 and the Tpm2 isoforms. Confocal microscopy was used to analyze the localization of fascin-1 in the metastatic SAOS-2 LM5 cell line overexpressing Tpm2 isoforms. RESULTS: Among the three recombinant, acetylated Tpm2 isoforms, Tpm2.4 exhibited the highest affinity for F-actin. All Tpm2 isoforms strongly inhibited fascin-1-mediated actin bundling at low fascin-1 concentrations, with bundling restored only at substantially higher fascin-1 levels. The resulting actin bundles contained both Tpm2 and fascin-1; however, the number of filaments per bundle was reduced in the presence of any Tpm2 isoform. Fascin-1's affinity for actin was decreased in the presence of Tpm2 isoforms, and increased Tpm2 occupancy on actin filaments partially displaced fascin-1. In contrast, fascin-1 binding did not affect the affinity of Tpm2 isoforms for actin. Pull-down assays revealed that Tpm2 isoforms can directly interact with fascin-1, with Tpm2.4 showing the highest affinity. The inhibitory effect of Tpm2 on fascin-1-actin interactions was further supported by cellular data, which showed that overexpression of cytoplasmic Tpm2.1, Tpm2.3, or Tpm2.4 in SAOS-2 LM5 cells reduced fascin co-localization with actin. CONCLUSION: Cytoplasmic Tpm2 isoforms regulate actin bundling activity of fascin-1 by organizing protein composition in the bundles, a mechanism that may contribute to the suppression of metastatic phenotype in cancer cells.
Department of Biophysics Medical School University of Pécs Pécs Hungary
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Department of Pathological Physiology Faculty of Medicine Masaryk University Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Zobrazit více v PubMed
Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64. PubMed
Gross SR. Actin binding proteins their ups and downs in metastatic life. Cell Adhes Migr. 2013;7(2):199–213. PubMed PMC
Fife CM, McCarroll JA, Kavallaris M. Movers and shakers: cell cytoskeleton in cancer metastasis. Br J Pharmacol. 2014;171(24):5507–23. PubMed PMC
Rottner K, Faix J, Bogdan S, Linder S, Kerkhoff E. Actin assembly mechanisms at a glance. J Cell Sci. 2017;130(20):3427–35. PubMed
Sarantelli E, Mourkakis A, Zacharia LC, Stylianou A, Gkretsi V. Fascin-1 in cancer cell metastasis: old target-new insights. Int J Mol Sci. 2023;24(14):ARTN 11253. PubMed PMC
Yamashiro-Matsumura S, Matsumura F. Purification and characterization of an F-actin-bundling 55-kilodalton protein from HeLa cells. J Biol Chem. 1985;260(8):5087–97. PubMed
Kureishy N, Sapountzi V, Prag S, Anilkumar N, Adams JC. Fascins, and their roles in cell structure and function. BioEssays. 2002;24(4):350–61. PubMed
Yang SY, Huang FK, Huang JY, Chen S, Jakoncic J, Leo-Macias A, et al. Molecular mechanism of fascin function in filopodial formation. J Biol Chem. 2013;288(1):274–84. PubMed PMC
Elkhatib N, Neu MB, Zensen C, Schmoller KM, Louvard D, Bausch AR, et al. Fascin plays a role in stress fiber organization and focal adhesion disassembly. Curr Biol. 2014;24(13):1492–9. PubMed
Lamb MC, Tootle TL. Fascin in cell migration: more than an actin bundling protein. Biology (Basel). 2020. 10.3390/biology9110403. PubMed PMC
Jansen S, Collins A, Yang C, Rebowski G, Svitkina T, Dominguez R. Mechanism of actin filament bundling by fascin. J Biol Chem. 2011;286(34):30087–96. PubMed PMC
Sedeh RS, Fedorov AA, Fedorov EV, Ono S, Matsumura F, Almo SC, et al. Structure, evolutionary conservation, and conformational dynamics of Homo sapiens fascin-1, an F-actin crosslinking protein. J Mol Biol. 2010;400(3):589–604. PubMed PMC
Bryan J, Kane RE. Separation and interaction of the major components of sea urchin actin gel. J Mol Biol. 1978;125(2):207–24. PubMed
Adams JC. Roles of fascin in cell adhesion and motility. Curr Opin Cell Biol. 2004;16(5):590–6. PubMed
Li A, Dawson JC, Forero-Vargas M, Spence HJ, Yu X, Konig I, et al. The actin-bundling protein fascin stabilizes actin in invadopodia and potentiates protrusive invasion. Curr Biol. 2010;20(4):339–45. PubMed PMC
Gong R, Reynolds MJ, Carney KR, Hamilton K, Bidone TC, Alushin GM. Fascin structural plasticity mediates flexible actin bundle construction. Nat Struct Mol Biol. 2025;32:940. PubMed PMC
Gunning P, O’Neill G, Hardeman E. Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev. 2008;88(1):1–35. PubMed
Gunning PW, Hardeman EC, Lappalainen P, Mulvihill DP. Tropomyosin - master regulator of actin filament function in the cytoskeleton. J Cell Sci. 2015;128(16):2965–74. PubMed
Hardeman EC, Bryce NS, Gunning PW. Impact of the actin cytoskeleton on cell development and function mediated via tropomyosin isoforms. Semin Cell Dev Biol. 2020;102:122–31. PubMed
Ostrowska-Podhorodecka Z, Sliwinska M, Reisler E, Moraczewska J. Tropomyosin isoforms regulate cofilin 1 activity by modulating actin filament conformation. Arch Biochem Biophys. 2020;682:108280. PubMed PMC
Vindin H, Gunning P. Cytoskeletal tropomyosins: choreographers of actin filament functional diversity. J Muscle Res Cell Motil. 2013;34(3–4):261–74. PubMed PMC
Gross SR. Actin binding proteins: their ups and downs in metastatic life. Cell Adh Migr. 2013;7(2):199–213. PubMed PMC
Almog N, Ma L, Raychowdhury R, Schwager C, Erber R, Short S, et al. Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. Cancer Res. 2009;69(3):836–44. PubMed
Dube S, Thomas A, Abbott L, Benz P, Mitschow C, Dube DK, et al. Expression of tropomyosin 2 gene isoforms in human breast cancer cell lines. Oncol Rep. 2016;35(6):3143–50. PubMed PMC
Meiring JCM, Bryce NS, Wang Y, Taft MH, Manstein DJ, Liu Lau S, et al. Co-polymers of actin and tropomyosin account for a major fraction of the human actin cytoskeleton. Curr Biol. 2018;28(14):2331–7. PubMed
Hughes JA, Cooke-Yarborough CM, Chadwick NC, Schevzov G, Arbuckle SM, Gunning P, et al. High-molecular-weight tropomyosins localize to the contractile rings of dividing CNS cells but are absent from malignant pediatric and adult CNS tumors. Glia. 2003;42(1):25–35. PubMed
Helfman DM, Flynn P, Khan P, Saeed A. Tropomyosin as a regulator of cancer cell transformation. Adv Exp Med Biol. 2008;644:124–31. PubMed
Raval GN, Bharadwaj S, Levine EA, Willingham MC, Geary RL, Kute T, et al. Loss of expression of tropomyosin-1, a novel class II tumor suppressor that induces anoikis, in primary breast tumors. Oncogene. 2003;22(40):6194–203. PubMed
Bharadwaj S, Hitchcock-DeGregori S, Thorburn A, Prasad GL. N terminus is essential for tropomyosin functions - N-terminal modification disrupts stress fiber organization and abolishes anti-oncogenic effects of tropomyosin-1. J Biol Chem. 2004;279(14):14039–48. PubMed
Stehn JR, Haass NK, Bonello T, Desouza M, Kottyan G, Treutlein H, et al. A novel class of anticancer compounds targets the actin cytoskeleton in tumor cells. Cancer Res. 2013;73(16):5169–82. PubMed
Corinaldesi C, Holmes AB, Martire G, Tosato A, Rizzato D, Lovisa F, et al. Single-cell transcriptomics of pediatric Burkitt lymphoma reveals intra-tumor heterogeneity and markers of therapy resistance. Leukemia. 2025;39(1):189–98. PubMed PMC
Hashimoto Y, Skacel M, Adams JC. Roles of fascin in human carcinoma motility and signaling: prospects for a novel biomarker? Int J Biochem Cell Biol. 2005;37(9):1787–804. PubMed
Machesky LM, Li A. Fascin: Invasive filopodia promoting metastasis. Commun Integr Biol. 2010;3(3):263–70. PubMed PMC
Tan VY, Lewis SJ, Adams JC, Martin RM. Association of fascin-1 with mortality, disease progression and metastasis in carcinomas: a systematic review and meta-analysis. BMC Med. 2013;11:52. PubMed PMC
Lin SC, Taylor MD, Singh PK, Yang SY. How does fascin promote cancer metastasis? FEBS J. 2021;288(5):1434–46. PubMed PMC
Arlt MJ, Kuzmanov A, Snedeker JG, Fuchs B, Silvan U, Sabile AA. Fascin-1 enhances experimental osteosarcoma tumor formation and metastasis and is related to poor patient outcome. BMC Cancer. 2019;19(1):83. PubMed PMC
Liu HL, Zhang Y, Li L, Cao JM, Guo YJ, Wu YY, et al. Fascin actin-bundling protein 1 in human cancer: promising biomarker or therapeutic target? Mol Ther. 2021;20:240–64. PubMed PMC
Jiang HL, Du HY, Liu YN, Tian X, Xia JQ, Yang SC. Identification of novel prognostic biomarkers for osteosarcoma: a bioinformatics analysis of differentially expressed genes in the mesenchymal stem cells from single-cell sequencing data set. Transl Cancer Res. 2022;11(10):3841. PubMed PMC
Chen L, Yang S, Jakoncic J, Zhang JJ, Huang XY. Migrastatin analogues target fascin to block tumour metastasis. Nature. 2010;464(7291):1062–6. PubMed PMC
Alburquerque-González B, Bernabé-García M, Montoro-García S, Bernabé-García A, Rodrigues PC, Sanz JR, et al. New role of the antidepressant imipramine as a Fascin1 inhibitor in colorectal cancer cells. Exp Mol Med. 2020;52(2):281–92. PubMed PMC
Zhang N, Bian Q, Gao Y, Wang Q, Shi Y, Li X, et al. The role of fascin-1 in human urologic cancers: a promising biomarker or therapeutic target? Technol Cancer Res Treat. 2023;22:15330338231175732. PubMed PMC
Matsumura F, Yamashiro-Matsumura S. Modulation of actin-bundling activity of 55-kDa protein by multiple isoforms of tropomyosin. J Biol Chem. 1986;261(10):4655–9. PubMed
Ishikawa R, Yamashiro S, Kohama K, Matsumura F. Regulation of actin binding and actin bundling activities of fascin by caldesmon coupled with tropomyosin. J Biol Chem. 1998;273(41):26991–7. PubMed
Creed SJ, Desouza M, Bamburg JR, Gunning P, Stehn J. Tropomyosin isoform 3 promotes the formation of filopodia by regulating the recruitment of actin-binding proteins to actin filaments. Exp Cell Res. 2011;317(3):249–61. PubMed
Meng Y, Huang K, Shi M, Huo Y, Han L, Liu B, et al. Research advances in the role of the tropomyosin family in cancer. Int J Mol Sci. 2023. 10.3390/ijms241713295. PubMed PMC
Tojkander S, Gateva G, Schevzov G, Hotulainen P, Naumanen P, Martin C, et al. A molecular pathway for myosin II recruitment to stress fibers. Curr Biol. 2011;21(7):539–50. PubMed
Shin H, Kim D, Helfman DM. Tropomyosin isoform Tpm2.1 regulates collective and amoeboid cell migration and cell aggregation in breast epithelial cells. Oncotarget. 2017;8(56):95192–205. PubMed PMC
Abood A, Mesner LD, Jeffery ED, Murali M, Lehe MD, Saquing J, et al. Long-read proteogenomics to connect disease-associated sQTLs to the protein isoform effectors of disease. Am J Hum Genet. 2024;111(9):1914–31. PubMed PMC
Johnson M, Geeves MA, Mulvihill DP. Production of amino-terminally acetylated recombinant proteins in E coli. Methods Mol Biol. 2013;981:193–200. PubMed PMC
Spudich JA, Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971;246(15):4866–71. PubMed
Sliwinska M, Robaszkiewicz K, Czajkowska M, Zheng WJ, Moraczewska J. Functional effects of substitutions I92T and V95A in actin-binding period 3 of tropomyosin. Biochim Biophys Acta. 2018;1866(4):558–68. PubMed
Lin S, Lu S, Mulaj M, Fang B, Keeley T, Wan L, et al. Monoubiquitination inhibits the actin bundling activity of fascin. J Biol Chem. 2016;291(53):27323–33. PubMed PMC
Robaszkiewicz K, Sliwinska M, Moraczewska J. Regulation of actin filament length by muscle isoforms of tropomyosin and cofilin. Int J Mol Sci. 2020;21(12):4285. PubMed PMC
Robaszkiewicz K, Wrobel J, Moraczewska J. Troponin and a myopathy-linked mutation in TPM3 inhibit cofilin-2-induced thin filament depolymerization. Int J Mol Sci. 2023. 10.3390/ijms242216457. PubMed PMC
Jia SF, Worth LL, Kleinerman ES. A nude mouse model of human osteosarcoma lung metastases for evaluating new therapeutic strategies. Clin Exp Metastasis. 1999;17(6):501–6. PubMed
Benes P, Alexova P, Knopfova L, Spanova A, Smarda J. Redox state alters anti-cancer effects of wedelolactone. Environ Mol Mutagen. 2012;53(7):515–24. PubMed
Palm T, Greenfield NJ, Hitchcock-DeGregori SE. Tropomyosin ends determine the stability and functionality of overlap and troponin T complexes. Biophys J. 2003;84(5):3181–9. PubMed PMC
Hilario E, Lataro RC, Alegria MC, Lavarda SC, Ferro JA, Bertolini MC. High-level production of functional muscle alpha-tropomyosin in PubMed
Reindl T, Giese S, Greve JN, Reinke PY, Chizhov I, Latham SL, et al. Distinct actin-tropomyosin cofilament populations drive the functional diversification of cytoskeletal myosin motor complexes. iScience. 2022;25(7):104484. PubMed PMC
Eastwood TA, Baker K, Brooker HR, Frank S, Mulvihill DP. An enhanced recombinant amino-terminal acetylation system and novel high-throughput screen for molecules affecting α-synuclein oligomerisation. FEBS Lett. 2017;591(6):833–41. PubMed PMC
Yamakita Y, Ono S, Matsumura F, Yamashiro S. Phosphorylation of human fascin inhibits its actin binding and bundling activities. J Biol Chem. 1996;271(21):12632–8. PubMed
Muff R, Ram Kumar RM, Botter SM, Born W, Fuchs B. Genes regulated in metastatic osteosarcoma: evaluation by microarray analysis in four human and two mouse cell line systems. Sarcoma. 2012;1:937506. PubMed PMC
Pollard TD, Cooper JA. Actin, a central player in cell shape and movement. Science. 2009;326(5957):1208–12. PubMed PMC
Chen A, Li S, Gui J, Zhou H, Zhu L, Mi Y. Mechanisms of tropomyosin 3 in the development of malignant tumors. Heliyon. 2024;10(15):e35723. PubMed PMC
Creed SJ, Bryce N, Naumanen P, Weinberger R, Lappalainen P, Stehn J, et al. Tropomyosin isoforms define distinct microfilament populations with different drug susceptibility. Eur J Cell Biol. 2008;87(8–9):709–20. PubMed
von der Ecken J, Muller M, Lehman W, Manstein DJ, Penczek PA, Raunser S. Structure of the F-actin-tropomyosin complex. Nature. 2015;519(7541):114–7. PubMed PMC
Lehman W, Hatch V, Korman V, Rosol M, Thomas L, Maytum R, et al. Tropomyosin and actin isoforms modulate the localization of tropomyosin strands on actin filaments. J Mol Biol. 2000;302(3):593–606. PubMed
Vadakekolathu J, Boocock DJ, Pandey K, Guinn BA, Legrand A, Miles AK, et al. Multi-omic analysis of two common P53 mutations: proteins regulated by mutated P53 as potential targets for immunotherapy. Cancers (Basel). 2022. 10.3390/cancers14163975. PubMed PMC
Sokolowska P, Siatkowska M, Bialkowska K, Rosowski M, Komorowski P, Walkowiak B. Osteosarcoma cells in early and late stages as cancer in vitro progression model for assessing the responsiveness of cells to silver nanoparticles. J Biomed Mater Res B Appl Biomater. 2022;110(6):1319–34. PubMed
Zhang J, Zhang J, Xu S, Zhang X, Wang P, Wu H, et al. Hypoxia-induced TPM2 methylation is associated with chemoresistance and poor prognosis in breast cancer. Cell Physiol Biochem. 2018;45(2):692–705. PubMed
Duan P, Cui J, Li H, Yuan L. Tropomyosin 2 exerts anti-tumor effects in lung adenocarcinoma and is a novel prognostic biomarker. Histol Histopathol. 2023;38(6):669–80. PubMed
Wu Z, Ge L, Ma L, Lu M, Song Y, Deng S, et al. TPM2 attenuates progression of prostate cancer by blocking PDLIM7-mediated nuclear translocation of YAP1. Cell Biosci. 2023;13(1):39. PubMed PMC
Adams G Jr, Lopez MP, Cartagena-Rivera AX, Waterman CM. Survey of cancer cell anatomy in nonadhesive confinement reveals a role for filamin-A and fascin-1 in leader bleb-based migration. Mol Biol Cell. 2021;32(18):1772–91. PubMed PMC
Bu MQ, Liu XF, Liu XX, Xu W. Upregulation of fascin-1 is involved in HIF-1α-dependent invasion and migration of hypopharyngeal squamous cell carcinoma. Int J Oncol. 2019;55(2):488–98. PubMed PMC
Mitchell CB, Black B, Sun F, Chrzanowski W, Cooper-White J, Maisonneuve B, et al. Tropomyosin Tpm 2.1 loss induces glioblastoma spreading in soft brain-like environments. J Neurooncol. 2019;141(2):303–13. PubMed
Cui J, Cai Y, Hu Y, Huang Z, Luo Y, Kaz AM, et al. Epigenetic silencing of TPM2 contributes to colorectal cancer progression upon RhoA activation. Tumour Biol. 2016;37(9):12477–83. PubMed
Gibson TJ, Seiler M, Veitia RA. The transience of transient overexpression. Nat Methods. 2013;10(8):715–21. PubMed
Burgess SG, Paul NR, Richards MW, Ault JR, Askenatzis L, Claydon SG, et al. A nanobody inhibitor of Fascin-1 actin-bundling activity and filopodia formation. Open Biol. 2024;14(3):230376. PubMed PMC
Wolfenson H, Meacci G, Liu S, Stachowiak MR, Iskratsch T, Ghassemi S, et al. Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices. Nat Cell Biol. 2016;18(1):33–42. PubMed PMC
Yang B, Wolfenson H, Chung VY, Nakazawa N, Liu S, Hu J, et al. Stopping transformed cancer cell growth by rigidity sensing. Nat Mater. 2020;19(2):239–50. PubMed PMC
Tijore A, Yao M, Wang YH, Hariharan A, Nematbakhsh Y, Lee Doss B, et al. Selective killing of transformed cells by mechanical stretch. Biomaterials. 2021;275:120866. PubMed
Huang FK, Han SQ, Xing BW, Huang JY, Liu BQ, Bordeleau F, et al. Targeted inhibition of fascin function blocks tumour invasion and metastatic colonization. Nat Commun. 2015;6:7465. PubMed
Zhang ZH, Liu XY, Feng JP, Li LF, Li XB, Guo SM, et al. Fascin inhibitor NP-G2–044 decreases cell metastasis and increases overall survival of mice-bearing lung cancers. Curr Mol Med. 2024. 10.2174/0115665240314325240911063427. PubMed
McGuire S, Kara B, Hart PC, Montag A, Wroblewski K, Fazal S, et al. Inhibition of fascin in cancer and stromal cells blocks ovarian cancer metastasis. Gynecol Oncol. 2019;153(2):405–15. PubMed PMC
Chung V, Tsai F, Chen W, Von Hoff DD, Garmey EG, Zhang JJ, et al. NP-G2–044, a first-in-class fascin inhibitor, inhibits growth and metastasis of gynecologic cancers. Eur J Cancer. 2022;174:S34–S34.