• This record comes from PubMed

Colistin resistance in the era of antimicrobial resistance: challenges and strategic countermeasures

. 2025 Sep 01 ; () : . [epub] 20250901

Status Publisher Language English Country United States Media print-electronic

Document type Journal Article, Review

Links

PubMed 40890562
DOI 10.1007/s12223-025-01322-z
PII: 10.1007/s12223-025-01322-z
Knihovny.cz E-resources

Colistin resistance represents a mounting global health concern, particularly alarming in the face of multidrug-resistant (MDR) and extensively drug-resistant (XDR) bacterial infections. As a polymyxin-class antibiotic, colistin has long served as a critical last-line defence against severe Gram-negative infections caused by pathogens such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae. However, its increasing and, at times, indiscriminate use has driven the emergence of resistant strains, thereby compromising its clinical utility.Mechanistically, colistin resistance arises from diverse genetic adaptations that alter the bacterial outer membrane, diminishing the drug's binding affinity. Prominent among these are modifications to lipopolysaccharides (LPS), including the incorporation of cationic groups that neutralise the membrane's negative charge, effectively impeding colistin interaction. In addition to chromosomal mutations, resistance is often mediated through horizontal gene transfer-most notably via mobile colistin resistance (mcr) genes-which facilitates rapid dissemination among bacterial populations.To counter this growing threat, innovative therapeutic strategies are urgently needed. These include the development of novel antibiotics with distinct mechanisms of action, synergistic combination regimens (e.g., colistin paired with potentiating agents), and the exploration of alternative modalities such as bacteriophage therapy. Gene-editing technologies like CRISPR-Cas9 also offer a promising frontier for targeting resistance determinants directly at the genetic level.Equally important are robust antimicrobial stewardship programmes and comprehensive surveillance systems to monitor resistance trends and guide rational antibiotic use. Ultimately, overcoming colistin resistance demands a multifaceted and integrative approach-one that merges scientific innovation with global public health initiatives.

See more in PubMed

Alamneh YA, Antonic V, Garry B et al (2022) Minocycline and the SPR741 adjuvant are an efficacious antibacterial combination for Acinetobacter baumannii infections. Antibiotics 11:1251. https://doi.org/10.3390/antibiotics11091251 PubMed DOI PMC

(2020) Antibiotic Use in the United States, 2017: Progress and opportunities | antibiotic Use | CDC. https://archive.cdc.gov/www_cdc_gov/antibiotic-use/stewardship-report/2017.html .

Askoura M, Mottawea W, Abujamel T, Taher I. Efflux pump inhibitors (EPIs) as new antimicrobial agents against Pseudomonas aeruginosa. Libyan J Med 2011;6(1). https://doi.org/10.3402/ljm.v6i0.5870

Aslan AT, Akova M, Paterson DL (2022) Next-generation polymyxin class of antibiotics: a ray of hope illuminating a dark road. Antibiotics (Basel) 11:1711. https://doi.org/10.3390/antibiotics11121711 PubMed DOI

Ayoub Moubareck C (2020) Polymyxins and bacterial membranes: a review of antibacterial activity and mechanisms of resistance. Membranes 10(8):181. https://doi.org/10.3390/membranes10080181 PubMed DOI PMC

Azzam A, Salem H, Nazih M et al (2025) Prevalence, trends, and molecular insights into colistin resistance among gram-negative bacteria in Egypt: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 24:32. https://doi.org/10.1186/s12941-025-00799-3 PubMed DOI PMC

Bardhan T, Chakraborty M, Bhattacharjee B (2020) Prevalence of colistin-resistant, carbapenem-hydrolyzing proteobacteria in hospital water bodies and out-falls of West Bengal, India. Int J Environ Res Public Health 17:1007. https://doi.org/10.3390/ijerph17031007 PubMed DOI PMC

Barut Selver Ö, Eğrilmez S, Hasanov S et al (2019) The utility of colistin in multiple drug-resistant Pseudomonas aeruginosa bacterial keratitis in a Kaposi’s sarcoma patient. Turk J Ophthalmol 49:220–223. https://doi.org/10.4274/tjo.galenos.2019.79999 PubMed DOI PMC

Bastidas-Caldes C, Guerrero-Freire S, Ortuño-Gutiérrez N et al (2023) Colistin resistance in Escherichia coli and Klebsiella pneumoniae in humans and backyard animals in Ecuador. Rev Panam Salud Publica 47:e48. https://doi.org/10.26633/RPSP.2023.48 PubMed DOI PMC

Bayatinejad G, Salehi M, Beigverdi R et al (2023) In vitro antibiotic combinations of Colistin, Meropenem, Amikacin, and Amoxicillin/clavulanate against multidrug-resistant Klebsiella pneumonia isolated from patients with ventilator-associated pneumonia. BMC Microbiol 23:298. https://doi.org/10.1186/s12866-023-03039-w PubMed DOI PMC

Beceiro A, Moreno A, Fernández N et al (2014) Biological cost of different mechanisms of colistin resistance and their impact on virulence in Acinetobacter baumannii. Antimicrob Agents Chemother 58:518–526. https://doi.org/10.1128/AAC.01597-13 PubMed DOI PMC

Beringer P (2001) The clinical use of colistin in patients with cystic fibrosis. Curr Opin Pulm Med 7:434–440. https://doi.org/10.1097/00063198-200111000-00013 PubMed DOI

Bernasconi OJ, Kuenzli E, Pires J et al (2016) Travelers can import colistin-resistant Enterobacteriaceae, including those possessing the plasmid-mediated mcr-1 gene. Antimicrob Agents Chemother 60:5080–5084. https://doi.org/10.1128/AAC.00731-16 PubMed DOI PMC

Binsker U, Käsbohrer A, Hammerl JA (2022) Global colistin use: a review of the emergence of resistant Enterobacterales and the impact on their genetic basis. FEMS Microbiol Rev 46:fuab049. https://doi.org/10.1093/femsre/fuab049 PubMed DOI

Bisaro F, Jackson-Litteken CD, McGuffey JC et al (2024) Diclofenac sensitizes multi-drug resistant Acinetobacter baumannii to colistin. PLoS Pathog 20:e1012705. https://doi.org/10.1371/journal.ppat.1012705 PubMed DOI PMC

Bitar I, Papagiannitsis CC, Kraftova L et al (2020) Detection of five mcr-9-carrying Enterobacterales isolates in four Czech hospitals. mSphere 5:e01008–20. https://doi.org/10.1128/mSphere.01008-20 PubMed DOI PMC

Blanco P, Hernando-Amado S, Reales-Calderon JA et al (2016) Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms 4(1):14. https://doi.org/10.3390/microorganisms4010014 PubMed DOI PMC

Blasco L, Ambroa A, Trastoy R et al (2020) In vitro and in vivo efficacy of combinations of colistin and different endolysins against clinical strains of multi-drug resistant pathogens. Sci Rep 10:7163. https://doi.org/10.1038/s41598-020-64145-7 PubMed DOI PMC

Boonyasiri A, Brinkac LM, Jauneikaite E et al (2023) Characteristics and genomic epidemiology of colistin-resistant Enterobacterales from farmers, swine, and hospitalized patients in Thailand, 2014–2017. BMC Infect Dis 23:556. https://doi.org/10.1186/s12879-023-08539-8 PubMed DOI PMC

Borowiak M, Fischer J, Hammerl JA et al (2017) Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J Antimicrob Chemother 72:3317–3324. https://doi.org/10.1093/jac/dkx327 PubMed DOI

Bostanghadiri N, Narimisa N, Mirshekar M et al (2024) Prevalence of colistin resistance in clinical isolates of Acinetobacter baumannii: a systematic review and meta-analysis. Antimicrob Resist Infect Control 13:24. https://doi.org/10.1186/s13756-024-01376-7 PubMed DOI PMC

Burata OE, Yeh TJ, Macdonald CB, Stockbridge RB (2022) Still rocking in the structural era: a molecular overview of the small multidrug resistance (SMR) transporter family. J Biol Chem 298:102482. https://doi.org/10.1016/j.jbc.2022.102482 PubMed DOI PMC

Carattoli A, Villa L, Feudi C et al (2017) Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill 22:30589. https://doi.org/10.2807/1560-7917.ES.2017.22.31.30589 PubMed DOI PMC

Carretero-Ledesma M, García-Quintanilla M, Martín-Peña R et al (2018) Phenotypic changes associated with colistin resistance due to lipopolysaccharide loss in Acinetobacter baumannii. Virulence 9:930–942. https://doi.org/10.1080/21505594.2018.1460187 PubMed DOI PMC

Chen M, Shi X, Yu Z et al (2022) In situ structure of the AcrAB-TolC efflux pump at subnanometer resolution. Structure 30:107-113.e3. https://doi.org/10.1016/j.str.2021.08.008 PubMed DOI

Cherak Z, Loucif L, Moussi A, Rolain J-M (2021) Epidemiology of mobile colistin resistance (mcr) genes in aquatic environments. J Glob Antimicrob Resist 27:51–62. https://doi.org/10.1016/j.jgar.2021.07.021 PubMed DOI

Cheung CHP, Dulyayangkul P, Heesom KJ, Avison MB (2020) Proteomic investigation of the signal transduction pathways controlling colistin resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother 64:e00790-e820. https://doi.org/10.1128/AAC.00790-20 PubMed DOI PMC

Chin C-Y, Gregg KA, Napier BA et al (2015) A pmrB-regulated deacetylase required for lipid A modification and polymyxin resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 59:7911–7914. https://doi.org/10.1128/AAC.00515-15 PubMed DOI PMC

Ciofu O, Tolker-Nielsen T (2019) Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-how P. aeruginosa can escape antibiotics. Front Microbiol 10:913. https://doi.org/10.3389/fmicb.2019.00913 PubMed DOI PMC

Clausell A, Rabanal F, Garcia-Subirats M et al (2005) Synthesis and membrane action of polymyxin B analogues. Luminescence 20:117–123. https://doi.org/10.1002/bio.810 PubMed DOI

Clausell A, Rabanal F, Garcia-Subirats M et al (2006) Membrane association and contact formation by a synthetic analogue of polymyxin B and its fluorescent derivatives. J Phys Chem B 110:4465–4471. https://doi.org/10.1021/jp0551972 PubMed DOI

Clausell A, Garcia-Subirats M, Pujol M et al (2007) Gram-negative outer and inner membrane models: insertion of cyclic cationic lipopeptides. J Phys Chem B 111:551–563. https://doi.org/10.1021/jp064757+ PubMed DOI

Deris ZZ, Akter J, Sivanesan S et al (2014) A secondary mode of action of polymyxins against Gram-negative bacteria involves the inhibition of NADH-quinone oxidoreductase activity. J Antibiot (Tokyo) 67:147–151. https://doi.org/10.1038/ja.2013.111 PubMed DOI

Duncan LR, Wang W, Sader HS (2022) In vitro potency and spectrum of the novel polymyxin MRX-8 tested against clinical isolates of Gram-negative bacteria. Antimicrob Agents Chemother 66:e0013922. https://doi.org/10.1128/aac.00139-22 PubMed DOI

Dwibedy SK, Padhy I, Panda AK, Mohapatra SS (2024) Colistin resistance among the Gram-negative nosocomial pathogens in India: a systematic review and meta-analysis. J Chemother. https://doi.org/10.1080/1120009X.2024.2405355 PubMed DOI

Dwyer DJ, Kohanski MA, Hayete B, Collins JJ (2007) Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol Syst Biol 3:91. https://doi.org/10.1038/msb4100135 PubMed DOI PMC

Elias R, Duarte A, Perdigão J (2021) A molecular perspective on colistin and Klebsiella pneumoniae: mode of action, resistance genetics, and phenotypic susceptibility. Diagnostics. 11(7):1165. https://doi.org/10.3390/diagnostics11071165 PubMed DOI PMC

El-Sayed Ahmed MAE-G, Zhong L-L, Shen C et al (2020) Colistin and its role in the era of antibiotic resistance: an extended review (2000–2019). Emerg Microbes Infect 9:868–885. https://doi.org/10.1080/22221751.2020.1754133 PubMed DOI PMC

Falagas ME, Kasiakou SK (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 40:1333–1341. https://doi.org/10.1086/429323 PubMed DOI

Falagas ME, Rafailidis PI, Matthaiou DK (2010) Resistance to polymyxins: mechanisms, frequency and treatment options. Drug Resist Updat 13:132–138. https://doi.org/10.1016/j.drup.2010.05.002 PubMed DOI

Fitzpatrick AWP, Llabrés S, Neuberger A et al (2017) Structure of the MacAB-TolC ABC-type tripartite multidrug efflux pump. Nat Microbiol 2:17070. https://doi.org/10.1038/nmicrobiol.2017.70 PubMed DOI PMC

Formosa C, Herold M, Vidaillac C et al (2015) Unravelling of a mechanism of resistance to colistin in Klebsiella pneumoniae using atomic force microscopy. J Antimicrob Chemother 70:2261–2270. https://doi.org/10.1093/jac/dkv118 PubMed DOI

Ghafur A, Shankar C, GnanaSoundari P et al (2019) Detection of chromosomal and plasmid-mediated mechanisms of colistin resistance in Escherichia coli and Klebsiella pneumoniae from Indian food samples. J Glob Antimicrob Resist 16:48–52. https://doi.org/10.1016/j.jgar.2018.09.005 PubMed DOI

Giamarellou H (2016) Epidemiology of infections caused by polymyxin-resistant pathogens. Int J Antimicrob Agents 48:614–621. https://doi.org/10.1016/j.ijantimicag.2016.09.025 PubMed DOI

Groisman EA, Duprey A, Choi J (2021) How the PhoP/PhoQ system controls virulence and Mg2+ homeostasis: lessons in signal transduction, pathogenesis, physiology, and evolution. Microbiol Mol Biol Rev 85:e0017620. https://doi.org/10.1128/MMBR.00176-20 PubMed DOI

Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108. https://doi.org/10.1038/nrmicro821 PubMed DOI

He G-X, Kuroda T, Mima T et al (2004) An H+-coupled multidrug efflux pump, PmpM, a member of the MATE family of transporters, from Pseudomonas aeruginosa. J Bacteriol 186:262–265. https://doi.org/10.1128/JB.186.1.262-265.2004 PubMed DOI PMC

Hu M, Guo J, Cheng Q et al (2016a) Crystal structure of Escherichia coli originated MCR-1, a phosphoethanolamine transferase for colistin resistance. Sci Rep 6:38793. https://doi.org/10.1038/srep38793 PubMed DOI PMC

Hu Y, Liu F, Lin IYC et al (2016b) Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis 16:146–147. https://doi.org/10.1016/S1473-3099(15)00533-2 PubMed DOI

Huang X, Yu L, Chen X et al (2017) High prevalence of colistin resistance and mcr-1 gene in Escherichia coli isolated from food animals in China. Front Microbiol 8:562. https://doi.org/10.3389/fmicb.2017.00562 PubMed DOI PMC

Huang J, Li C, Song J et al (2020) Regulating polymyxin resistance in Gram-negative bacteria: roles of two-component systems PhoPQ and PmrAB. Future Microbiol 15:445–459. https://doi.org/10.2217/fmb-2019-0322 PubMed DOI PMC

Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11:443–454. https://doi.org/10.1038/nrmicro3032 PubMed DOI PMC

Kamoshida G, Akaji T, Takemoto N et al (2020) Lipopolysaccharide-deficient Acinetobacter baumannii due to colistin resistance is killed by neutrophil-produced lysozyme. Front Microbiol 11:573. https://doi.org/10.3389/fmicb.2020.00573 PubMed DOI PMC

Karaiskos I, Giamarellou H (2014) Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: current and emerging therapeutic approaches. Expert Opin Pharmacother 15:1351–1370. https://doi.org/10.1517/14656566.2014.914172 PubMed DOI PMC

Kermani AA, Burata OE, Koff BB et al (2022) Crystal structures of bacterial small multidrug resistance transporter EmrE in complex with structurally diverse substrates. Elife 11:e76766. https://doi.org/10.7554/eLife.76766 PubMed DOI PMC

Khadka NK, Aryal CM, Pan J (2018) Lipopolysaccharide-dependent membrane permeation and lipid clustering caused by cyclic lipopeptide colistin. ACS Omega 3:17828–17834. https://doi.org/10.1021/acsomega.8b02260 PubMed DOI PMC

Kim SJ, Jo J, Kim J et al (2024) Polymyxin B nonapeptide potentiates the eradication of Gram-negative bacterial persisters. Microbiol Spectr 12:e0368723. https://doi.org/10.1128/spectrum.03687-23 PubMed DOI

Klein EY, Impalli I, Poleon S, Denoel P, Cipriano M, Van Boeckel TP, Pecetta S, Bloom DE, Nandi A (2024) Global trends in antibiotic consumption during 2016–2023 and future projections through 2030. Proc Natl Acad Sci 121(49):e2411919121. https://doi.org/10.1073/pnas.2411919121 PubMed DOI PMC

Kornelsen V, Kumar A (2021) Update on multidrug resistance efflux pumps in Acinetobacter spp. Antimicrob Agents Chemother 65(7):10–128. https://doi.org/10.1128/aac.00514-21.10.1128/aac.00514-21 DOI

Landman D, Georgescu C, Martin DA, et al (2008) Polymyxins revisited. Clin Microbiol Rev 21:449–465. https://doi.org/10.1128/CMR.00006-08

Lai Z, Jian Q, Li G et al (2021) Self-assembling peptide dendron nanoparticles with high stability and a multimodal antimicrobial mechanism of action. ACS Nano 15:15824–15840. https://doi.org/10.1021/acsnano.1c03301 PubMed DOI

Lamers RP, Cavallari JF, Burrows LL (2013) The efflux inhibitor phenylalanine-arginine beta-naphthylamide (PAβN) permeabilizes the outer membrane of gram-negative bacteria. PLoS ONE 8:e60666. https://doi.org/10.1371/journal.pone.0060666 PubMed DOI PMC

Li Y, Dai X, Zeng J et al (2020) Characterization of the global distribution and diversified plasmid reservoirs of the colistin resistance gene mcr-9. Sci Rep 10:8113. https://doi.org/10.1038/s41598-020-65106-w PubMed DOI PMC

Li X, Shen S, Feng Y et al (2024) First report of ISKpn26 element mediating mgrB gene disruption in the ST1 colistin- and carbapenem-resistant Klebsiella pneumoniae cluster isolated from a patient with chest infection. Microbiol Spectr 12:e00952-e1024. https://doi.org/10.1128/spectrum.00952-24 PubMed DOI PMC

Li N, Ebrahimi E, Sholeh M et al (2025) A systematic review and meta-analysis: rising prevalence of colistin resistance in ICU-acquired Gram-negative bacteria. APMIS 133:e13508. https://doi.org/10.1111/apm.13508 PubMed DOI

Lin J-C, Kristopher Siu L-K, Chang F-Y, Wang C-H (2024) Mutations in the pmrB gene constitute the major mechanism underlying chromosomally encoded colistin resistance in clinical Escherichia coli. J Glob Antimicrob Resist 38:275–280. https://doi.org/10.1016/j.jgar.2024.06.013 PubMed DOI

Liu Y-Y, Wang Y, Walsh TR et al (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168. https://doi.org/10.1016/S1473-3099(15)00424-7 PubMed DOI

López-Camacho E, Gómez-Gil R, Tobes R et al (2014) Genomic analysis of the emergence and evolution of multidrug resistance during a Klebsiella pneumoniae outbreak including carbapenem and colistin resistance. J Antimicrob Chemother 69:632–636. https://doi.org/10.1093/jac/dkt419 PubMed DOI

Ly NS, Yang J, Bulitta JB, Tsuji BT (2012) Impact of two-component regulatory systems PhoP-PhoQ and PmrA-PmrB on colistin pharmacodynamics in Pseudomonas aeruginosa. Antimicrob Agents Chemother 56:3453–3456. https://doi.org/10.1128/AAC.06380-11 PubMed DOI PMC

Marchetti VM, Bitar I, Sarti M et al (2021) Genomic Characterization of VIM and MCR co-producers: the first two clinical cases, in Italy. Diagnostics (Basel) 11:79. https://doi.org/10.3390/diagnostics11010079 PubMed DOI

Matzneller P, Strommer S, Drucker C et al (2017) Colistin reduces LPS-triggered inflammation in a human sepsis model in vivo: a randomized controlled trial. Clin Pharmacol Ther 101:773–781. https://doi.org/10.1002/cpt.582 PubMed DOI

Moffatt JH, Harper M, Harrison P et al (2010) Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother 54:4971–4977. https://doi.org/10.1128/AAC.00834-10 PubMed DOI PMC

Moskowitz SM, Ernst RK, Miller SI (2004) PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J Bacteriol 186:575–579. https://doi.org/10.1128/JB.186.2.575-579.2004 PubMed DOI PMC

Mousavi SM, Babakhani S, Moradi L et al (2021) Bacteriophage as a novel therapeutic weapon for killing colistin-resistant multi-drug-resistant and extensively drug-resistant Gram-negative bacteria. Curr Microbiol 78:4023–4036. https://doi.org/10.1007/s00284-021-02662-y PubMed DOI PMC

Murray CJL, Ikuta KS, Sharara F et al (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399:629–655. https://doi.org/10.1016/S0140-6736(21)02724-0 DOI

Narimisa N, Keshtkar A, Dadgar-Zankbar L et al (2024) Prevalence of colistin resistance in clinical isolates of Pseudomonas aeruginosa: a systematic review and meta-analysis. Front Microbiol 15:1477836. https://doi.org/10.3389/fmicb.2024.1477836 PubMed DOI PMC

Needham BD, Trent MS (2013) Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat Rev Microbiol 11:467–481. https://doi.org/10.1038/nrmicro3047 PubMed DOI PMC

Nigam A, Kumari A, Jain R, Batra S (2015) Colistin neurotoxicity: revisited. BMJ Case Rep 2015:bcr2015210787. https://doi.org/10.1136/bcr-2015-210787 PubMed DOI PMC

Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656. https://doi.org/10.1128/MMBR.67.4.593-656.2003 PubMed DOI PMC

Olaitan AO, Morand S, Rolain J-M (2014) Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol 5:643. https://doi.org/10.3389/fmicb.2014.00643 PubMed DOI PMC

Oldham ML, Davidson AL, Chen J (2008) Structural insights into ABC transporter mechanism. Curr Opin Struct Biol 18:726–733. https://doi.org/10.1016/j.sbi.2008.09.007 PubMed DOI PMC

Ontong JC, Ozioma NF, Voravuthikunchai SP, Chusri S (2021) Synergistic antibacterial effects of colistin in combination with aminoglycoside, carbapenems, cephalosporins, fluoroquinolones, tetracyclines, fosfomycin, and piperacillin on multidrug resistant Klebsiella pneumoniae isolates. PLoS ONE 16:e0244673. https://doi.org/10.1371/journal.pone.0244673 PubMed DOI PMC

Paul M, Carmeli Y, Durante-Mangoni E et al (2014) Combination therapy for carbapenem-resistant gram-negative bacteria. J Antimicrob Chemother 69:2305–2309. https://doi.org/10.1093/jac/dku168 PubMed DOI

Pragasam AK, Shankar C, Veeraraghavan B et al (2017) Molecular mechanisms of colistin resistance in Klebsiella pneumoniae causing bacteremia from India—a first report. Front Microbiol 7:2135. https://doi.org/10.3389/fmicb.2016.02135 PubMed DOI PMC

Raetz CRH, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700. https://doi.org/10.1146/annurev.biochem.71.110601.135414 PubMed DOI

Rhouma M, Beaudry F, Letellier A (2016) Resistance to colistin: what is the fate for this antibiotic in pig production? Int J Antimicrob Agents 48:119–126. https://doi.org/10.1016/j.ijantimicag.2016.04.008 PubMed DOI

Romano M, Falchi F, De Gregorio E, Stabile M, Migliaccio A, Ruggiero A, Napolitano V, Autiero I, Squeglia F, Berisio R (2024) Structure-based targeting of the lipid A-modifying enzyme PmrC to contrast colistin resistance in Acinetobacter baumannii. FrontMicrobiol 28(15):1501051. https://doi.org/10.3389/fmicb.2024.1501051 DOI

Rossi F, Girardello R, Cury AP et al (2017) Emergence of colistin resistance in the largest university hospital complex of São Paulo, Brazil, over five years. Braz J Infect Dis 21:98–101. https://doi.org/10.1016/j.bjid.2016.09.011 PubMed DOI

Rouquette-Loughlin C, Dunham SA, Kuhn M et al (2003) The NorM efflux pump of Neisseria gonorrhoeae and Neisseria meningitidis recognizes antimicrobial cationic compounds. J Bacteriol 185:1101–1106. https://doi.org/10.1128/JB.185.3.1101-1106.2003 PubMed DOI PMC

Roy S, Cakmak ZS, Mahmoud S et al (2024) Eradication of Pseudomonas aeruginosa persister cells by eravacycline. ACS Infect Dis 10:4127–4136. https://doi.org/10.1021/acsinfecdis.4c00349 PubMed DOI PMC

Sabnis A, Hagart KL, Klöckner A et al (2021) Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane. Elife 10:e65836. https://doi.org/10.7554/eLife.65836 PubMed DOI PMC

Schoenmakers K (2020) How China is getting its farmers to kick their antibiotics habit. Nature 586:S60–S62. https://doi.org/10.1038/d41586-020-02889-y DOI

Schwarz S, Johnson AP (2016) Transferable resistance to colistin: a new but old threat. J Antimicrob Chemother 71:2066–2070. https://doi.org/10.1093/jac/dkw274 PubMed DOI

Shcherbakov AA, Hisao G, Mandala VS et al (2021) Structure and dynamics of the drug-bound bacterial transporter EmrE in lipid bilayers. Nat Commun 12:172. https://doi.org/10.1038/s41467-020-20468-7 PubMed DOI PMC

She P, Liu Y, Xu L et al (2022) SPR741, double- or triple-combined with erythromycin and clarithromycin, combats drug-resistant Klebsiella pneumoniae, its biofilms, and persister cells. Front Cell Infect Microbiol 12:858606. https://doi.org/10.3389/fcimb.2022.858606 PubMed DOI PMC

Skov RL, Monnet DL (2016) Plasmid-mediated colistin resistance (mcr-1 gene): three months later, the story unfolds. Euro Surveill 21:30155. https://doi.org/10.2807/1560-7917.ES.2016.21.9.30155 PubMed DOI

Slipski CJ, Jamieson TR, Zhanel GG, Bay DC (2020) Riboswitch-associated guanidinium-selective efflux pumps frequently transmitted on proteobacterial plasmids increase Escherichia coli biofilm tolerance to disinfectants. J Bacteriol 202:e00104-e120. https://doi.org/10.1128/JB.00104-20 PubMed DOI PMC

Snyman Y, Whitelaw AC, Reuter S et al (2021) Colistin resistance mechanisms in clinical Escherichia coli and Klebsiella spp. isolates from the Western Cape of South Africa. Microb Drug Resist 27:1249–1258. https://doi.org/10.1089/mdr.2020.0479 PubMed DOI

Sreekantan AP, Rajan PP, Mini M, Kumar P. Multidrug Efflux Pumps in Bacteria and Efflux Pump Inhibitors. Advancements of Microbiology. 2022 Jul 1;61(3). https://doi.org/10.2478/am-2022-0009

Srisakul S, Wannigama DL, Higgins PG et al (2022) Overcoming addition of phosphoethanolamine to lipid A mediated colistin resistance in Acinetobacter baumannii clinical isolates with colistin-sulbactam combination therapy. Sci Rep 12:11390. https://doi.org/10.1038/s41598-022-15386-1 PubMed DOI PMC

Tsutsumi K, Yonehara R, Ishizaka-Ikeda E et al (2019) Structures of the wild-type MexAB-OprM tripartite pump reveal its complex formation and drug efflux mechanism. Nat Commun 10:1520. https://doi.org/10.1038/s41467-019-09463-9 PubMed DOI PMC

Tyson GH, Li C, Hsu C-H et al (2020) The mcr-9 gene of Salmonella and Escherichia coli is not associated with colistin resistance in the United States. Antimicrob Agents Chemother 64:e00573–20. https://doi.org/10.1128/AAC.00573-20 PubMed DOI PMC

Uruén C, Chopo-Escuin G, Tommassen J et al (2020) Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics. https://doi.org/10.3390/antibiotics10010003 PubMed DOI PMC

Uzairue LI, Rabaan AA, Adewumi FA et al (2022) Global prevalence of colistin resistance in Klebsiella pneumoniae from bloodstream infection: a systematic review and meta-analysis. Pathogens 11:1092. https://doi.org/10.3390/pathogens11101092 PubMed DOI PMC

Van der Lans SPA, Janet-Maitre M, Masson FM et al (2023) Colistin resistance mutations in phoQ can sensitize Klebsiella pneumoniae to IgM-mediated complement killing. Sci Rep 13:12618. https://doi.org/10.1038/s41598-023-39613-5 PubMed DOI PMC

Velkov T, Thompson PE, Nation RL, Li J (2010) Structure—activity relationships of polymyxin antibiotics. J Med Chem 53:1898–1916. https://doi.org/10.1021/jm900999h PubMed DOI PMC

Velkov T, Roberts KD, Nation RL, Thompson PE, Li J (2013) Pharmacology of polymyxins: New insights into an ‘old ‘class of antibiotics. Future Microbiol 8(6):711–24. https://doi.org/10.2217/fmb.13.3910.2217/fmb.13.39 PubMed DOI

Walia K, Madhumathi J, Veeraraghavan B et al (2019) Establishing antimicrobial resistance surveillance & research network in India: journey so far. Indian J Med Res 149:164–179. https://doi.org/10.4103/ijmr.IJMR_226_18 PubMed DOI PMC

Wan P, Cui S, Ma Z et al (2020) Reversal of mcr-1-mediated colistin resistance in Escherichia coli by CRISPR-Cas9 system. Infect Drug Resist 13:1171–1178. https://doi.org/10.2147/IDR.S244885 PubMed DOI PMC

Wang Z, Fan G, Hryc CF et al (2017) An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. Elife 6:e24905. https://doi.org/10.7554/eLife.24905 PubMed DOI PMC

Wang Y, Xu C, Zhang R et al (2020) Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study. Lancet Infect Dis 20:1161–1171. https://doi.org/10.1016/S1473-3099(20)30149-3 PubMed DOI

WHO updates list of drug-resistant bacteria most threatening to human health (n.d.)  https://www.who.int/news/item/17-05-2024-who-updates-list-of-drug-resistant-bacteria-most-threatening-to-human-health .

Xavier BB, Lammens C, Ruhal et al (2016) Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, Euro Surveill 21 (27):30280. https://doi.org/10.2807/1560-7917.ES.2016.21.27.30280

Yang Z, He S, Wu H et al (2021) Nanostructured antimicrobial peptides: crucial steps of overcoming the bottleneck for clinics. Front Microbiol 12:710199. https://doi.org/10.3389/fmicb.2021.710199 PubMed DOI PMC

Yang S, Wang H, Zhao D et al (2024) Polymyxins: recent advances and challenges. Front Pharmacol 15:1424765. https://doi.org/10.3389/fphar.2024.1424765 PubMed DOI PMC

Yap PS-X, Cheng W-H, Chang S-K et al (2022) MgrB mutations and altered cell permeability in colistin resistance in Klebsiella pneumoniae. Cells 11:2995. https://doi.org/10.3390/cells11192995 PubMed DOI PMC

Yeom J, Imlay JA, Park W (2010) Iron homeostasis affects antibiotic-mediated cell death in Pseudomonas species. J Biol Chem 285:22689–22695. https://doi.org/10.1074/jbc.M110.127456 PubMed DOI PMC

Yousefian N, Ornik-Cha A, Poussard S et al (2021) Structural characterization of the EmrAB-TolC efflux complex from E. coli. Biochim Biophys Acta Biomembr 1863:183488. https://doi.org/10.1016/j.bbamem.2020.183488 PubMed DOI

Zelendova M, Papagiannitsis CC, Sismova P et al (2023) Plasmid-mediated colistin resistance among human clinical Enterobacterales isolates: national surveillance in the Czech Republic. Front Microbiol 14:1147846. https://doi.org/10.3389/fmicb.2023.1147846 PubMed DOI PMC

Zhang H, Chen B, Wang Z et al (2024) Resensitizing tigecycline- and colistin-resistant Escherichia coli using an engineered conjugative CRISPR/Cas9 system. Microbiol Spectr 12:e0388423. https://doi.org/10.1128/spectrum.03884-23 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...