Role of circadian CLOCK signaling in cellular senescence
Jazyk angličtina Země Nizozemsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
32373073
National Natural Science Foundation of China
2208/2024-2025
Excellence PrF UHK
CZ.10.03.01/00/22_003/0000048
Eu project
MH CZ - DRO (UHHK, 00179906),
Ministerstvo Zdravotnictví Ceské Republiky
2203
Excellence FIM UHK
PubMed
40900376
DOI
10.1007/s10522-025-10319-7
PII: 10.1007/s10522-025-10319-7
Knihovny.cz E-zdroje
- Klíčová slova
- Aging, Aging-related diseases, CLOCK, Cellular senescence, Circadian rhythm,
- MeSH
- cirkadiánní hodiny * fyziologie MeSH
- cirkadiánní rytmus fyziologie MeSH
- lidé MeSH
- proteiny CLOCK metabolismus MeSH
- signální transdukce * fyziologie MeSH
- stárnutí buněk * fyziologie MeSH
- stárnutí * fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- proteiny CLOCK MeSH
The circadian rhythm is a key biological mechanism that aligns organisms' physiological processes with Earth's 24-h light-dark cycle, crucial for cellular and tissue homeostasis. Disruption of this system is linked to accelerated aging and age-related diseases. Central to circadian regulation is the CLOCK protein, which controls gene transcription related to tissue homeostasis, cellular senescence, and DNA repair. Research reveals CLOCK's dual role: in normal cells, it supports rejuvenation by activating DNA repair factors like XPA and modulating metabolism; in tumor cells, CLOCK signaling is often hijacked by oncogenic drivers like c-MYC and Pdia3, which inhibit telomere shortening / cellular senescence, thereby fostering uncontrolled proliferation and tumorigenesis. Additionally, gut microbiota-derived aryl hydrocarbon receptor (AhR) signals can disrupt the CLOCK-BMAL1 complex, affecting circadian rhythms. CLOCK also interacts with mTOR and NF-κB pathways to regulate autophagy and mitigate harmful secretions impacting tissue function. This review examines the molecular links between CLOCK and cellular senescence, drawing from animal and human studies, to highlight CLOCK's role in aging and its potential as a target for anti-aging therapies.
Biomedical Research Center University Hospital Hradec Kralove 50005 Hradec Kralove Czech Republic
College of Life Science Yangtze University Jingzhou 434025 China
Zobrazit více v PubMed
Abdo AN, Rintisch C, Gabriel CH, Kramer A (2022) Mutational scanning identified amino acids of the CLOCK exon 19-domain essential for circadian rhythms. Acta Physiol 234(4):e13794. https://doi.org/10.1111/apha.13794 DOI
Acosta-Rodríguez VA, Rijo-Ferreira F, Green CB, Takahashi JS (2021) Importance of circadian timing for aging and longevity. Nat Commun 12(1):2862. https://doi.org/10.1038/s41467-021-22922-6 PubMed DOI PMC
Ahmad A, Braden A, Khan S, Xiao J, Khan MM (2024) Crosstalk between the DNA damage response and cellular senescence drives aging and age-related diseases. Semin Immunopathol 46(3):10. https://doi.org/10.1007/s00281-024-01016-7 PubMed DOI
Alibhai FJ, LaMarre J, Reitz CJ et al (2017) Disrupting the key circadian regulator CLOCK leads to age-dependent cardiovascular disease. J Mol Cell Cardiol 105:24–37. https://doi.org/10.1016/j.yjmcc.2017.01.008 PubMed DOI
Allevato M, Bolotin E, Grossman M, Mane-Padros D, Sladek FM, Martinez E (2017) Sequence-specific DNA binding by MYC/MAX to low-affinity non-E-box motifs. PLoS ONE 12(7):e0180147. https://doi.org/10.1371/journal.pone.0180147 PubMed DOI PMC
Amara J, Saliba Y, Hajal J et al (2019) Circadian rhythm disruption aggravates DSS-induced colitis in mice with fecal calprotectin as a marker of colitis severity. Dig Dis Sci 64(11):3122–3133. https://doi.org/10.1007/s10620-019-05675-7 PubMed DOI
Amin S, Liu B, Gan L (2023) Autophagy prevents microglial senescence. Nat Cell Biol 25(7):923–925. https://doi.org/10.1038/s41556-023-01168-y PubMed DOI
Auld F, Maschauer EL, Morrison I, Skene DJ, Riha RL (2017) Evidence for the efficacy of melatonin in the treatment of primary adult sleep disorders. Sleep Med Rev 34:10–22. https://doi.org/10.1016/j.smrv.2016.06.005 PubMed DOI
Baggs JE, Price TS, DiTacchio L, Panda S, Fitzgerald GA, Hogenesch JB (2009) Network features of the mammalian circadian clock. PLoS Biol 7(3):e52. https://doi.org/10.1371/journal.pbio.1000052 PubMed DOI
Bee L, Marini S, Pontarin G et al (2015) Nucleotide excision repair efficiency in quiescent human fibroblasts is modulated by circadian clock. Nucleic Acids Res 43(4):2126–2137. https://doi.org/10.1093/nar/gkv081 PubMed DOI PMC
Bernadotte A, Mikhelson VM, Spivak IM (2016) Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging (Albany NY) 8(1):3–11. https://doi.org/10.18632/aging.100871 PubMed DOI
Bernard M, Bing Y, Francis M et al (2020) Autophagy drives fibroblast senescence through MTORC2 regulation. Autophagy 16(11):2004–2016. https://doi.org/10.1080/15548627.2020.1713640 PubMed DOI PMC
Bevinakoppamath S, Ramachandra SC, Yadav AK, Basavaraj V, Vishwanath P, Prashant A (2022) Understanding the emerging link between circadian rhythm, Nrf2 pathway, and breast cancer to overcome drug resistance. Front Pharmacol. https://doi.org/10.3389/fphar.2021.719631 PubMed DOI PMC
Blancas-Velazquez AS, Bering T, Bille S, Rath MF (2023) Role and neural regulation of clock genes in the rat pineal gland: Clock modulates amplitude of rhythmic expression of Aanat encoding the melatonin-producing enzyme. J Pineal Res 75(2):e12893. https://doi.org/10.1111/jpi.12893 PubMed DOI
Bolsius YG, Zurbriggen MD, Kim JK et al (2021) The role of clock genes in sleep, stress and memory. Biochem Pharmacol 191:114493. https://doi.org/10.1016/j.bcp.2021.114493 PubMed DOI PMC
Börgeson E, Boucher J, Hagberg CE (2022) Of mice and men: Pinpointing species differences in adipose tissue biology. Front Cell Develop Biol. https://doi.org/10.3389/fcell.2022.1003118 DOI
Brown MR, Sen SK, Mazzone A et al (2021) Time-restricted feeding prevents deleterious metabolic effects of circadian disruption through epigenetic control of β cell function. Sci Adv 7(51):eabg6856. https://doi.org/10.1126/sciadv.abg6856 PubMed DOI PMC
Bu Y, Yoshida A, Chitnis N et al (2018) A PERK-miR-211 axis suppresses circadian regulators and protein synthesis to promote cancer cell survival. Nat Cell Biol 20(1):104–115. https://doi.org/10.1038/s41556-017-0006-y PubMed DOI
Burchett JB, Knudsen-Clark AM, Altman BJ (2021) MYC ran up the clock: the complex interplay between MYC and the molecular circadian clock in cancer. Int J Mol Sci. https://doi.org/10.3390/ijms22147761 PubMed DOI PMC
Camblor Murube M, Borregon-Rivilla E, Colmenarejo G et al (2020) Polymorphism of CLOCK gene rs3749474 as a modulator of the circadian evening carbohydrate intake impact on nutritional status in an adult sample. Nutrients. https://doi.org/10.3390/nu12041142 PubMed DOI PMC
Chavan R, Feillet C, Costa SSF et al (2016) Liver-derived ketone bodies are necessary for food anticipation. Nat Commun 7(1):10580. https://doi.org/10.1038/ncomms10580 PubMed DOI PMC
Chen W-D, Wen M-S, Shie S-S et al (2014) The circadian rhythm controls telomeres and telomerase activity. Biochem Biophys Res Commun 451(3):408–414. https://doi.org/10.1016/j.bbrc.2014.07.138 PubMed DOI
Chen P, Hsu WH, Chang A et al (2020) Circadian regulator CLOCK recruits immune-suppressive microglia into the GBM tumor microenvironment. Cancer Discov 10(3):371–381. https://doi.org/10.1158/2159-8290.Cd-19-0400 PubMed DOI PMC
Chen Y, Xu X, Chen Z, Chen L, Jiang Y, Mao Z (2024) Circadian factors CLOCK and BMAL1 promote nonhomologous end joining and antagonize cellular senescence. Life Med 3(2):lnae006. https://doi.org/10.1093/lifemedi/lnae006 PubMed DOI PMC
Cheng X, Côté V, Côté J (2021) NuA4 and SAGA acetyltransferase complexes cooperate for repair of DNA breaks by homologous recombination. PLoS Genet 17(7):e1009459. https://doi.org/10.1371/journal.pgen.1009459 PubMed DOI PMC
Cheng W-Y, Chan P-L, Ong H-Y, Wong K-H, Chang RC (2024) Systemic inflammation disrupts circadian rhythms and diurnal neuroimmune dynamics. Int J Mol Sci. https://doi.org/10.3390/ijms25137458 PubMed DOI PMC
Chen-Liaw A, Aggarwala V, Mogno I et al (2025) Gut microbiota strain richness is species specific and affects engraftment. Nature 637(8045):422–429. https://doi.org/10.1038/s41586-024-08242-x PubMed DOI
Comai S, Lopez-Canul M, De Gregorio D et al (2019) Melatonin MT1 receptor as a novel target in neuropsychopharmacology: MT1 ligands, pathophysiological and therapeutic implications, and perspectives. Pharmacol Res 144:343–356. https://doi.org/10.1016/j.phrs.2019.04.015 PubMed DOI
Correia-Melo C, Marques FDM, Anderson R et al (2016) Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J 35(7):724–742. https://doi.org/10.15252/embj.201592862 PubMed DOI PMC
Czeisler CA (2007) The effect of light on the human circadian pacemaker ciba foundation symposium 183—circadian clocks and their adjustment. Novartis Foundation Symposia, p 254–302
da Silveira EJD, Barros CCDS, Bottino MC, Castilho RM, Squarize C (2024) The rhythms of histones in regeneration: the epigenetic modifications determined by clock genes. Exp Dermatol 33(1):e15005. https://doi.org/10.1111/exd.15005 PubMed DOI PMC
de Baat A, Trinh B, Ellingsgaard H, Donath MY (2023) Physiological role of cytokines in the regulation of mammalian metabolism. Trends Immunol 44(8):613–627. https://doi.org/10.1016/j.it.2023.06.002 PubMed DOI
de Lange T (2018) Shelterin-mediated telomere protection. Annu Rev Genet 52:223–247. https://doi.org/10.1146/annurev-genet-032918-021921 PubMed DOI
Deng Y, Gao HY, Wu QH (2024a) T-2 toxin induces immunosenescence in RAW264.7 macrophages by activating the HIF-1α/cGAS-STING pathway. J Agric Food Chem 72(43):24046–24057. https://doi.org/10.1021/acs.jafc.4c07268 PubMed DOI
Deng Y, Lin B, Ho C-T et al (2024b) Capsaicin-mediated repair of circadian disruption-induced intestinal barrier damage via the gut microbiota. Food Front. https://doi.org/10.1002/fft2.467 DOI
Diehl JA, Fuchs SY, Koumenis C (2011) The cell biology of the unfolded protein response. Gastroenterology 141(1):38–41. https://doi.org/10.1053/j.gastro.2011.05.018 PubMed DOI
Dong Z, Zhang G, Qu M et al (2019) Targeting glioblastoma stem cells through disruption of the circadian clock. Cancer Discov 9(11):1556–1573. https://doi.org/10.1158/2159-8290.Cd-19-0215 PubMed DOI PMC
Doruk YU, Yarparvar D, Akyel YK et al (2020) A clock-binding small molecule disrupts the interaction between CLOCK and BMAL1 and enhances circadian rhythm amplitude. J Biol Chem 295(11):3518–3531. https://doi.org/10.1074/jbc.RA119.011332 PubMed DOI PMC
Du Y, Chen X, Kajiwara S, Orihara K (2024) Effect of urolithin a on the improvement of circadian rhythm dysregulation in intestinal barrier induced by inflammation nutrients. vol 16,
Dubrovsky YV, Samsa WE, Kondratov RV (2010) Deficiency of circadian protein CLOCK reduces lifespan and increases age-related cataract development in mice. Aging (Albany NY) 2(12):936–944. https://doi.org/10.18632/aging.100241 PubMed DOI
Duszka K, Wahli W (2020) Peroxisome proliferator-activated receptors as molecular links between caloric restriction and circadian rhythm nutrients. Nutrients 12:3476 PubMed DOI PMC
Edifizi D, Nolte H, Babu V et al (2017) Multilayered reprogramming in response to persistent DNA damage in C. elegans. Cell Rep 20(9):2026–2043. https://doi.org/10.1016/j.celrep.2017.08.028 PubMed DOI PMC
Fan R, Peng X, Xie L et al (2022) Importance of Bmal1 in Alzheimer’s disease and associated aging-related diseases: mechanisms and interventions. Aging Cell 21(10):e13704. https://doi.org/10.1111/acel.13704 PubMed DOI PMC
Fang G, Wang S, Chen Q, Luo H, Lian X, Shi D (2023) Time-restricted feeding affects the fecal microbiome metabolome and its diurnal oscillations in lung cancer mice. Neoplasia 45:100943. https://doi.org/10.1016/j.neo.2023.100943 PubMed DOI PMC
Fernández-Ortiz M, Sayed RKA, Román-Montoya Y et al (2022) Age and chronodisruption in mouse heart: effect of the NLRP3 inflammasome and melatonin therapy. Int J Mol Sci. https://doi.org/10.3390/ijms23126846 PubMed DOI PMC
Fulop GA, Kiss T, Tarantini S et al (2018) Nrf2 deficiency in aged mice exacerbates cellular senescence promoting cerebrovascular inflammation. Geroscience 40(5–6):513–521. https://doi.org/10.1007/s11357-018-0047-6 PubMed DOI PMC
Fumagalli M, Rossiello F, Mondello C, d’Adda di Fagagna F (2014) Stable cellular senescence is associated with persistent DDR activation. PLoS ONE 9(10):e110969. https://doi.org/10.1371/journal.pone.0110969 PubMed DOI PMC
Gao J, Zheng Y, Li L et al (2021) Integrated transcriptomics and epigenomics reveal chamber-specific and species-specific characteristics of human and mouse hearts. PLoS Biol 19(5):e3001229. https://doi.org/10.1371/journal.pbio.3001229 PubMed DOI PMC
Gao W, Wang X, Zhou Y, Wang X, Yu Y (2022) Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct Target Ther 7(1):196. https://doi.org/10.1038/s41392-022-01046-3 PubMed DOI PMC
Gervason S, Napoli M, Dreux-Zhiga A et al (2019) Attenuation of negative effects of senescence in human skin using an extract from Sphingomonas hydrophobicum: development of new skin care solution. Int J Cosmet Sci 41(4):391–397. https://doi.org/10.1111/ics.12534 PubMed DOI
Gray KJ, Gibbs JE (2022) Adaptive immunity, chronic inflammation and the clock. Semin Immunopathol 44(2):209–224. https://doi.org/10.1007/s00281-022-00919-7 PubMed DOI PMC
Gu L, Liu M, Zhang Y, Zhou H, Wang Y, Xu Z-X (2024) Telomere-related DNA damage response pathways in cancer therapy: prospective targets. Front Pharmacol. https://doi.org/10.3389/fphar.2024.1379166 PubMed DOI PMC
Gul B, Anwar R, Saleem M, Noor A, Ullah MI (2023) Cassia absus-mediated upregulation of IL-4, IL-10 and downregulation of IL-1β, IL-6, TNF- α, NF-κB, IFN-γ in CFA-induced arthritis model. Inflammopharmacology 31(3):1241–1256. https://doi.org/10.1007/s10787-023-01185-1 PubMed DOI
Guo B, Yang N, Borysiewicz E et al (2015) Catabolic cytokines disrupt the circadian clock and the expression of clock-controlled genes in cartilage via an NFкB-dependent pathway. Osteoarthritis Cartilage 23(11):1981–1988. https://doi.org/10.1016/j.joca.2015.02.020 PubMed DOI PMC
Guo H-L, Long J-Y, Hu Y-H et al (2022) Caffeine therapy for apnea of prematurity: role of the circadian CLOCK gene polymorphism. Front Pharmacol. https://doi.org/10.3389/fphar.2021.724145 PubMed DOI PMC
Hahn O, Grönke S, Stubbs TM et al (2017) Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism. Genome Biol 18(1):56. https://doi.org/10.1186/s13059-017-1187-1 PubMed DOI PMC
Hahn O, Drews LF, Nguyen A et al (2019) A nutritional memory effect counteracts benefits of dietary restriction in old mice. Nat Metab 1(11):1059–1073. https://doi.org/10.1038/s42255-019-0121-0 PubMed DOI PMC
Hardeland R (2018) Melatonin and inflammation-story of a double-edged blade. J Pineal Res 65(4):e12525. https://doi.org/10.1111/jpi.12525 PubMed DOI
Harding HP, Calfon M, Urano F, Novoa I, Ron D (2002) Transcriptional and translational control in the mammalian unfolded protein response. Annu Rev Cell Dev Biol 18(1):575–599. https://doi.org/10.1146/annurev.cellbio.18.011402.160624 PubMed DOI
Hatori M, Vollmers C, Zarrinpar A et al (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15(6):848–860. https://doi.org/10.1016/j.cmet.2012.04.019 PubMed DOI PMC
Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621. https://doi.org/10.1016/0014-4827(61)90192-6 PubMed DOI
Het Panhuis W, Schönke M, Modder M et al (2023) Time-restricted feeding attenuates hypercholesterolaemia and atherosclerosis development during circadian disturbance in APOE∗3-Leiden. CETP mice. EBioMedicine. https://doi.org/10.1016/j.ebiom.2023.104680 DOI
Hirose M, Leliavski A, de Assis LV, et al. (2024) Chronic inflammation disrupts circadian rhythms in splenic CD4+ and CD8+ T cells in mice cells. 13
Hong H-K, Maury E, Ramsey K et al (2018) Requirement for NF-κB in maintenance of molecular and behavioral circadian rhythms in mice. Genes Dev. https://doi.org/10.1101/gad.319228.118 PubMed DOI PMC
Hu L, Chen Y, Cortes IM et al (2020) Supply of methionine and arginine alters phosphorylation of mechanistic target of rapamycin (mTOR), circadian clock proteins, and α-s1-casein abundance in bovine mammary epithelial cells. Food Funct 11(1):883–894. https://doi.org/10.1039/c9fo02379h PubMed DOI
Hu L, Li G, Shu Y, Hou X, Yang L, Jin Y (2022) Circadian dysregulation induces alterations of visceral sensitivity and the gut microbiota in light/dark phase shift mice. Front Microbiol. https://doi.org/10.3389/fmicb.2022.935919 PubMed DOI PMC
Hu Y, Lv Y, Long X, Yang G, Zhou J (2024) Melatonin attenuates chronic sleep deprivation-induced cognitive deficits and HDAC3-Bmal1/clock interruption. CNS Neurosci Ther 30(3):e14474. https://doi.org/10.1111/cns.14474 PubMed DOI
Huang C, Zhang C, Cao Y, Li J, Bi F (2023) Major roles of the circadian clock in cancer. Cancer Biol Med 20(1):1–24. https://doi.org/10.20892/j.issn.2095-3941.2022.0474 PubMed DOI PMC
Imamura K, Yoshitane H, Hattori K et al (2018) ASK family kinases mediate cellular stress and redox signaling to circadian clock. Proc Natl Acad Sci U S A 115(14):3646–3651. https://doi.org/10.1073/pnas.1719298115 PubMed DOI PMC
Jaeger C, Khazaal AQ, Xu C, Sun M, Krager SL, Tischkau SA (2017) Aryl hydrocarbon receptor deficiency alters circadian and metabolic rhythmicity. J Biol Rhythms 32(2):109–120. https://doi.org/10.1177/0748730417696786 PubMed DOI
Jia X, Song Y, Li Z et al (2024) Melatonin regulates the circadian rhythm to ameliorate postoperative sleep disorder and neurobehavioral abnormalities in aged mice. CNS Neurosci Ther 30(3):e14436. https://doi.org/10.1111/cns.14436 PubMed DOI
Jiang Z, Zou K, Liu X et al (2021) Aging attenuates the ovarian circadian rhythm. J Assist Reprod Genet 38(1):33–40. https://doi.org/10.1007/s10815-020-01943-y PubMed DOI
Jin M, Zhang Y (2020) Autophagy and Inflammatory Diseases. In: Le W (ed) Autophagy: Biology and Diseases: Clinical Science. Springer, New York, pp 391–400 DOI
Jokl E, Llewellyn J, Simpson K, et al. (2023) Circadian disruption primes myofibroblasts for accelerated activation as a mechanism underpinning fibrotic progression in non-alcoholic fatty liver disease cells. 12
Juste YR, Kaushik S, Bourdenx M et al (2021) Reciprocal regulation of chaperone-mediated autophagy and the circadian clock. Nat Cell Biol 23(12):1255–1270. https://doi.org/10.1038/s41556-021-00800-z PubMed DOI PMC
Kang L, Li P, Wang D, Wang T, Hao D, Qu X (2021) Alterations in intestinal microbiota diversity, composition, and function in patients with sarcopenia. Sci Rep 11(1):4628. https://doi.org/10.1038/s41598-021-84031-0 PubMed DOI PMC
Karamitri A, Jockers R (2019) Melatonin in type 2 diabetes mellitus and obesity. Nat Rev Endocrinol 15(2):105–125. https://doi.org/10.1038/s41574-018-0130-1 PubMed DOI
Kaushik S, Cuervo AM (2018) The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19(6):365–381. https://doi.org/10.1038/s41580-018-0001-6 PubMed DOI PMC
Kawamoto S, Hara E (2024) Crosstalk between gut microbiota and cellular senescence: a vicious cycle leading to aging gut. Trends Cell Biol 34(8):626–635. https://doi.org/10.1016/j.tcb.2023.12.004 PubMed DOI
Kawauchi T, Ishimaru K, Nakamura Y et al (2017) Clock-dependent temporal regulation of IL-33/ST2-mediated mast cell response. Allergol Int 66(3):472–478. https://doi.org/10.1016/j.alit.2017.02.004 PubMed DOI
Ke Y, Li D, Zhao M et al (2018) Gut flora-dependent metabolite trimethylamine-N-oxide accelerates endothelial cell senescence and vascular aging through oxidative stress. Free Radic Biol Med 116:88–100. https://doi.org/10.1016/j.freeradbiomed.2018.01.007 PubMed DOI
Kemp MG, Reardon JT, Lindsey-Boltz LA, Sancar A (2012) Mechanism of release and fate of excised oligonucleotides during nucleotide excision repair. J Biol Chem 287(27):22889–22899. https://doi.org/10.1074/jbc.M112.374447 PubMed DOI PMC
Kim S, Seo S-U, Kweon M-N (2024) Gut microbiota-derived metabolites tune host homeostasis fate. Semin Immunopathol 46(1):2. https://doi.org/10.1007/s00281-024-01012-x PubMed DOI PMC
King DP, Zhao Y, Sangoram AM et al (1997) Positional cloning of the mouse circadian <em><strong>Clock</strong></em> <strong>Gene</strong>. Cell 89(4):641–653. https://doi.org/10.1016/S0092-8674(00)80245-7 PubMed DOI PMC
Kolinjivadi AM, Chong ST, Ngeow J (2021) Molecular connections between circadian rhythm and genome maintenance pathways. Endocr Relat Cancer 28(2):R55–R66. https://doi.org/10.1530/ERC-20-0372 PubMed DOI
Korf H-W, von Gall C (2024) Mouse models in circadian rhythm and melatonin research. J Pineal Res 76(5):e12986. https://doi.org/10.1111/jpi.12986 PubMed DOI
Koritala BSC, Porter KI, Arshad OA et al (2021) Night shift schedule causes circadian dysregulation of DNA repair genes and elevated DNA damage in humans. J Pineal Res 70(3):e12726. https://doi.org/10.1111/jpi.12726 PubMed DOI PMC
Kou L, Chi X, Sun Y et al (2024) Circadian regulation of microglia function: potential targets for treatment of Parkinson’s disease. Ageing Res Rev 95:102232. https://doi.org/10.1016/j.arr.2024.102232 PubMed DOI
Krasikova YS, Lavrik OI, Rechkunova NI (2022) The XPA protein—life under precise control. Cells 11:3723 PubMed DOI PMC
Kroetsch JT, Lidington D, Alibhai FJ et al (2023) Disrupting circadian control of peripheral myogenic reactivity mitigates cardiac injury following myocardial infarction. Cardiovasc Res 119(6):1403–1415. https://doi.org/10.1093/cvr/cvac174 PubMed DOI
Kumar R, Sharma A, Gupta M, Padwad Y, Sharma R (2020) Cell-free culture supernatant of probiotic Lactobacillus fermentum protects against H PubMed DOI
Leite G, Pimentel M, Barlow GM et al (2021) Age and the aging process significantly alter the small bowel microbiome. Cell Rep. https://doi.org/10.1016/j.celrep.2021.109765 PubMed DOI
Li X, Wang S, Yang S et al (2018) Circadian locomotor output cycles kaput affects the proliferation and migration of breast cancer cells by regulating the expression of E-cadherin via IQ motif containing GTPase activating protein 1. Oncol Lett 15(5):7097–7103. https://doi.org/10.3892/ol.2018.8226 PubMed DOI PMC
Li L, Zhang M, Zhao C, Cheng Y, Liu C, Shi M (2022) Circadian clock gene Clock-Bmal1 regulates cellular senescence in chronic obstructive pulmonary disease. BMC Pulm Med 22(1):435. https://doi.org/10.1186/s12890-022-02237-y PubMed DOI PMC
Li H, Song S, Xu S-F et al (2023a) Chronic inflammation by LPS aggravates rotenone neurotoxicity and circadian clock disruption in rats. Novel Res Aspect Med Med Sci 1:168–188. https://doi.org/10.9734/bpi/nramms/v1/6051B DOI
Li X, Li C, Zhang W, Wang Y, Qian P, Huang H (2023b) Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct Target Ther 8(1):239. https://doi.org/10.1038/s41392-023-01502-8 PubMed DOI PMC
Li Z, Fu B, Wei A et al (2023c) D-Glucosamine induces circadian phase delay by promoting BMAL1 degradation through AMPK/mTOR pathway. Life Sci 325:121765. https://doi.org/10.1016/j.lfs.2023.121765 PubMed DOI
Liang C, Liu Z, Song M et al (2021) Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration. Cell Res 31(2):187–205. https://doi.org/10.1038/s41422-020-0385-7 PubMed DOI
Lindsay EC, Metcalfe NB, Llewellyn MS (2020) The potential role of the gut microbiota in shaping host energetics and metabolic rate. J Anim Ecol 89(11):2415–2426. https://doi.org/10.1111/1365-2656.13327 PubMed DOI
Liu Z, Selby CP, Yang Y et al (2020) Circadian regulation of c-MYC in mice. Proc Natl Acad Sci U S A 117(35):21609–21617. https://doi.org/10.1073/pnas.2011225117 PubMed DOI PMC
Liu L-P, Li M-H, Zheng Y-W (2023a) Hair follicles as a critical model for monitoring the circadian clock. Int J Mol Sci. https://doi.org/10.3390/ijms24032407 PubMed DOI PMC
Liu X, Ma Y, Yu Y et al (2023b) Gut microbial methionine impacts circadian clock gene expression and reactive oxygen species level in host gastrointestinal tract. Protein Cell 14(4):309–313. https://doi.org/10.1093/procel/pwac021 PubMed DOI
Llabre JE, Trujillo R, Sroga GE, Figueiro MG, Vashishth D (2021) Circadian rhythm disruption with high-fat diet impairs glycemic control and bone quality. FASEB J 35(9):e21786. https://doi.org/10.1096/fj.202100610RR PubMed DOI
Luna-Marco C, Devos D, Cacace J et al (2024) Molecular circadian clock disruption in the leukocytes of individuals with type 2 diabetes and overweight, and its relationship with leukocyte–endothelial interactions. Diabetologia 67(10):2316–2328. https://doi.org/10.1007/s00125-024-06219-z PubMed DOI PMC
Lv P, Yang X, Du J (2024) LKRSDH-dependent histone modifications of insulin-like peptide sites contribute to age-related circadian rhythm changes. Nat Commun 15(1):3336. https://doi.org/10.1038/s41467-024-47740-4 PubMed DOI PMC
Ma N, He T, Johnston LJ, Ma X (2020) Host–microbiome interactions: the aryl hydrocarbon receptor as a critical node in tryptophan metabolites to brain signaling. Gut Microbes 11(5):1203–1219. https://doi.org/10.1080/19490976.2020.1758008 PubMed DOI PMC
Mao J-q, Cheng L, Zhang Y-d, Xie G-j, Wang P (2024) Chinese formula Guben-jiannao ye alleviates the dysfunction of circadian and sleep rhythms in APP/PS1 mice implicated in activation of the PI3K/AKT/mTOR signaling pathway. J Ethnopharmacol 335:118696. https://doi.org/10.1016/j.jep.2024.118696 PubMed DOI
Marano M, Rosati J, Magliozzi A et al (2023) Circadian profile, daytime activity, and the Parkinson’s phenotype: a motion sensor pilot study with neurobiological underpinnings. Neurobiol Sleep Circadian Rhythms 14:100094. https://doi.org/10.1016/j.nbscr.2023.100094 PubMed DOI PMC
Marcheva B, Ramsey KM, Buhr ED et al (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466(7306):627–631. https://doi.org/10.1038/nature09253 PubMed DOI PMC
Marin I, Boix O, Garcia-Garijo A et al (2023) Cellular senescence is immunogenic and promotes antitumor immunity. Cancer Discov 13(2):410–431. https://doi.org/10.1158/2159-8290.Cd-22-0523 PubMed DOI
Mattison JA, Colman RJ, Beasley TM et al (2017) Caloric restriction improves health and survival of rhesus monkeys. Nat Commun 8:14063. https://doi.org/10.1038/ncomms14063 PubMed DOI PMC
Medoro A, Saso L, Scapagnini G, Davinelli S (2024) NRF2 signaling pathway and telomere length in aging and age-related diseases. Mol Cell Biochem 479(10):2597–2613. https://doi.org/10.1007/s11010-023-04878-x PubMed DOI
Mitsui S, Yamaguchi S, Matsuo T, Ishida Y, Okamura H (2001) Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev 15(8):995–1006. https://doi.org/10.1101/gad.873501 PubMed DOI PMC
Mongrain V, La Spada F, Curie T, Franken P (2011) Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex. PLoS ONE 6(10):e26622. https://doi.org/10.1371/journal.pone.0026622 PubMed DOI PMC
Mure LS, Le HD, Benegiamo G et al (2018) Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science. https://doi.org/10.1126/science.aao0318 PubMed DOI PMC
Musich PR, Li Z, Zou Y (2017) Xeroderma pigmentosa group A (XPA), nucleotide excision repair and regulation by ATR in response to ultraviolet irradiation. In: Ahmad SI (ed) Ultraviolet light in human health, diseases and environment. Springer, Cham, pp 41–54 DOI
Musiek ES, Lim MM, Yang G et al (2013) Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J Clin Invest 123(12):5389–5400. https://doi.org/10.1172/JCI70317 PubMed DOI PMC
Nebert DW (2017) Aryl hydrocarbon receptor (AHR): “pioneer member” of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of “sensors” of foreign and endogenous signals. Prog Lipid Res 67:38–57. https://doi.org/10.1016/j.plipres.2017.06.001 PubMed DOI PMC
Nelson N, Relógio A (2024) Molecular mechanisms of tumour development in glioblastoma: an emerging role for the circadian clock. NPJ Precis Oncol 8(1):40. https://doi.org/10.1038/s41698-024-00530-z PubMed DOI PMC
Ogrodnik M (2021) Cellular aging beyond cellular senescence: Markers of senescence prior to cell cycle arrest in vitro and in vivo. Aging Cell 20(4):e13338. https://doi.org/10.1111/acel.13338 PubMed DOI PMC
Ogrodnik M, Salmonowicz H, Gladyshev VN (2019) Integrating cellular senescence with the concept of damage accumulation in aging: relevance for clearance of senescent cells. Aging Cell 18(1):e12841. https://doi.org/10.1111/acel.12841 PubMed DOI
Olivieri F, Albertini MC, Orciani M et al (2015) DNA damage response (DDR) and senescence: shuttled inflamma-miRNAs on the stage of inflamm-aging. Oncotarget 6(34):35509–35521. https://doi.org/10.18632/oncotarget.5899 PubMed DOI PMC
Ortega-Campos SM, Verdugo-Sivianes EM, Amiama-Roig A, Blanco JR, Carnero A (2023) Interactions of circadian clock genes with the hallmarks of cancer. Biochimica Et Biophysica Acta (BBA) - Reviews on Cancer 1878(3):188900. https://doi.org/10.1016/j.bbcan.2023.188900 PubMed DOI
Osum M, Serakinci N (2020) Impact of circadian disruption on health; SIRT1 and telomeres. DNA Repair 96:102993. https://doi.org/10.1016/j.dnarep.2020.102993 PubMed DOI
Park S, Kim K, Bae IH et al (2018) TIMP3 is a CLOCK-dependent diurnal gene that inhibits the expression of UVB-induced inflammatory cytokines in human keratinocytes. FASEB J 32(3):1510–1523. https://doi.org/10.1096/fj.201700693R PubMed DOI
Park J, Zhu Q, Mirek E et al (2019) BMAL1 associates with chromosome ends to control rhythms in TERRA and telomeric heterochromatin. PLoS ONE 14(10):e0223803. https://doi.org/10.1371/journal.pone.0223803 PubMed DOI PMC
Patel SA, Velingkaar N, Makwana K, Chaudhari A, Kondratov R (2016) Calorie restriction regulates circadian clock gene expression through BMAL1 dependent and independent mechanisms. Sci Rep 6(1):25970. https://doi.org/10.1038/srep25970 PubMed DOI PMC
Petrenko V, Gandasi NR, Sage D, Tengholm A, Barg S, Dibner C (2020) In pancreatic islets from type 2 diabetes patients, the dampened circadian oscillators lead to reduced insulin and glucagon exocytosis. Proc Natl Acad Sci U S A 117(5):2484–2495. https://doi.org/10.1073/pnas.1916539117 PubMed DOI PMC
Pfeffer M, Korf HW, Wicht H (2018) Synchronizing effects of melatonin on diurnal and circadian rhythms. Gen Comp Endocrinol 258:215–221. https://doi.org/10.1016/j.ygcen.2017.05.013 PubMed DOI
Pickard A, Chang J, Alachkar N et al (2019) Preservation of circadian rhythms by the protein folding chaperone, BiP. FASEB J 33(6):7479–7489. https://doi.org/10.1096/fj.201802366RR PubMed DOI PMC
Poulsen RC, Dalbeth N (2024) Circadian rhythms in NLRP3 inflammasome regulation: possible implications for the nighttime risk of gout flares gout, urate, and crystal deposition disease. 2:108-132
Poza JJ, Pujol M, Ortega-Albás JJ, Romero O (2022) Melatonin in sleep disorders. Neurología (English Edition) 37(7):575–585. https://doi.org/10.1016/j.nrleng.2018.08.004 DOI
Prieto LI, Baker DJ (2019) Cellular senescence and the immune system in cancer. Gerontology 65(5):505–512. https://doi.org/10.1159/000500683 PubMed DOI
Raza GS, Kaya Y, Stenbäck V et al (2024) Effect of aerobic exercise and time-restricted feeding on metabolic markers and circadian rhythm in mice fed with the high-fat diet. Mol Nutr Food Res 68(5):2300465. https://doi.org/10.1002/mnfr.202300465 DOI
Reitz CJ, Alibhai FJ, de Lima-Seolin BG, Nemec-Bakk A, Khaper N, Martino TA (2020) Circadian mutant mice with obesity and metabolic syndrome are resilient to cardiovascular disease. Am J Physiol-Heart Circulat Physiol 319(5):H1097–H1111. https://doi.org/10.1152/ajpheart.00462.2020 DOI
Roth JR, Varshney S, de Moraes RCM, Melkani GC (2023) Circadian-mediated regulation of cardiometabolic disorders and aging with time-restricted feeding. Obesity 31(S1):40–49. https://doi.org/10.1002/oby.23664 PubMed DOI
Saccon TD, Nagpal R, Yadav H et al (2021) Senolytic combination of dasatinib and quercetin alleviates intestinal senescence and inflammation and modulates the gut microbiome in aged mice. J Gerontol A Biol Sci Med Sci 76(11):1895–1905. https://doi.org/10.1093/gerona/glab002 PubMed DOI PMC
Salazar A, von Hagen J (2023) Circadian oscillations in skin and their interconnection with the cycle of life. Int J Mol Sci. https://doi.org/10.3390/ijms24065635 PubMed DOI PMC
Salminen A (2022a) Aryl hydrocarbon receptor (AhR) reveals evidence of antagonistic pleiotropy in the regulation of the aging process. Cell Mol Life Sci 79(9):489. https://doi.org/10.1007/s00018-022-04520-x PubMed DOI PMC
Salminen A (2022b) Mutual antagonism between aryl hydrocarbon receptor and hypoxia-inducible factor-1α (AhR/HIF-1α) signaling: impact on the aging process. Cell Signal 99:110445. https://doi.org/10.1016/j.cellsig.2022.110445 PubMed DOI
Salminen A (2023) Aryl hydrocarbon receptor (AhR) impairs circadian regulation: impact on the aging process. Ageing Res Rev 87:101928. https://doi.org/10.1016/j.arr.2023.101928 PubMed DOI
Salotti J, Johnson PF (2019) Regulation of senescence and the SASP by the transcription factor C/EBPβ. Exp Gerontol 128:110752. https://doi.org/10.1016/j.exger.2019.110752 PubMed DOI
Sanada F, Taniyama Y, Muratsu J et al (2018) Source of chronic inflammation in aging. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2018.00012 PubMed DOI PMC
Sancar A, Lindsey-Boltz LA, Gaddameedhi S et al (2015) Circadian clock, cancer, and chemotherapy. Biochemistry 54(2):110–123. https://doi.org/10.1021/bi5007354 PubMed DOI
Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168(6):960–976. https://doi.org/10.1016/j.cell.2017.02.004 PubMed DOI PMC
Schrumpfová PP, Fajkus J (2020) Composition and function of telomerase—a polymerase associated with the origin of eukaryotes biomolecules. 10,
Schumacher B, Pothof J, Vijg J, Hoeijmakers JHJ (2021) The central role of DNA damage in the ageing process. Nature 592(7856):695–703. https://doi.org/10.1038/s41586-021-03307-7 PubMed DOI PMC
Sha Y, Zhang D, Tu J et al (2024) Chronic exposure to tris(1,3-dichloro-2-propyl) phosphate: effects on intestinal microbiota and serum metabolism in rats. Ecotoxicol Environ Saf 279:116469. https://doi.org/10.1016/j.ecoenv.2024.116469 PubMed DOI
Shen W, Zhang W, Ye W et al (2020) SR9009 induces a REV-ERB dependent anti-small-cell lung cancer effect through inhibition of autophagy. Theranostics 10(10):4466–4480. https://doi.org/10.7150/thno.42478 PubMed DOI PMC
Shinde R, McGaha TL (2018) The aryl hydrocarbon receptor: connecting immunity to the microenvironment. Trends Immunol 39(12):1005–1020. https://doi.org/10.1016/j.it.2018.10.010 PubMed DOI PMC
Shostak A, Ruppert B, Ha N et al (2016) MYC/MIZ1-dependent gene repression inversely coordinates the circadian clock with cell cycle and proliferation. Nat Commun 7(1):11807. https://doi.org/10.1038/ncomms11807 PubMed DOI PMC
Solanas G, Peixoto FO, Perdiguero E et al (2017) Aged Stem Cells Reprogram Their Daily Rhythmic Functions to Adapt to Stress. Cell 170(4):678-692.e20. https://doi.org/10.1016/j.cell.2017.07.035 PubMed DOI
Spengler ML, Kuropatwinski KK, Comas M et al (2012) Core circadian protein CLOCK is a positive regulator of NF-κB-mediated transcription. Proc Natl Acad Sci U S A 109(37):E2457–E2465. https://doi.org/10.1073/pnas.1206274109 PubMed DOI PMC
Stein RM, Kang HJ, McCorvy JD et al (2020) Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature 579(7800):609–614. https://doi.org/10.1038/s41586-020-2027-0 PubMed DOI PMC
Stevenson M, Mowdawalla C, Wong B et al (2024) Clock and Bmal1 inhibit expression of Sglt1 in mouse kidneys and glucose reabsorption. Physiology (Bethesda) 39(S1):1756. https://doi.org/10.1152/physiol.2024.39.S1.1756 DOI
Su Z, Hu Q, Li X, Wang Z, Xie Y (2024) The influence of circadian rhythms on DNA damage repair in skin photoaging. Int J Mol Sci. https://doi.org/10.3390/ijms252010926 PubMed DOI PMC
Sulli G, Rommel A, Wang X et al (2018) Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence. Nature 553(7688):351–355. https://doi.org/10.1038/nature25170 PubMed DOI PMC
Sun Q, Wang H, Tao S, Xi X (2023) Large-scale detection of telomeric motif sequences in genomic data using telfinder. Microbiology Spectrum 11(2):e03928-e4022. https://doi.org/10.1128/spectrum.03928-22 PubMed DOI PMC
Szwed A, Kim E, Jacinto E (2021) Regulation and metabolic functions of mTORC1 and mTORC2. Physiol Rev 101(3):1371–1426. https://doi.org/10.1152/physrev.00026.2020 PubMed DOI PMC
Tabibzadeh S (2021) Circadiomic medicine and aging. Ageing Res Rev 71:101424. https://doi.org/10.1016/j.arr.2021.101424 PubMed DOI
Takita E, Yokota S, Tahara Y et al (2013) Biological clock dysfunction exacerbates contact hypersensitivity in mice. Br J Dermatol 168(1):39–46. https://doi.org/10.1111/j.1365-2133.2012.11176.x PubMed DOI
Tang Z, Xu T, Li Y, Fei W, Yang G, Hong Y (2020) Inhibition of CRY2 by STAT3/miRNA-7-5p promotes osteoblast differentiation through upregulation of CLOCK/BMAL1/P300 expression. Molecular Therapy - Nucleic Acids 19:865–876. https://doi.org/10.1016/j.omtn.2019.12.020 PubMed DOI
Tenchov R, Sasso JM, Wang X, Zhou QA (2024) Aging hallmarks and progression and age-related diseases: a landscape view of research advancement. ACS Chem Neurosci 15(1):1–30. https://doi.org/10.1021/acschemneuro.3c00531 PubMed DOI
Thummadi NB, Jagota A (2019) Aging renders desynchronization between clock and immune genes in male Wistar rat kidney: chronobiotic role of curcumin. Biogerontology 20(4):515–532. https://doi.org/10.1007/s10522-019-09813-6 PubMed DOI
Toledo M, Batista-Gonzalez A, Merheb E et al (2018) Autophagy regulates the liver clock and glucose metabolism by degrading CRY1. Cell Metab 28(2):268-281.e4. https://doi.org/10.1016/j.cmet.2018.05.023 PubMed DOI PMC
Trikha P, Lee DA (2020) The role of AhR in transcriptional regulation of immune cell development and function. Biochimica Et Biophysica Acta (BBA) 1873(1):188335. https://doi.org/10.1016/j.bbcan.2019.188335 DOI
Vancamelbeke M, Vermeire S (2017) The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol 11(9):821–834. https://doi.org/10.1080/17474124.2017.1343143 PubMed DOI PMC
Veverka P, Janovič T, Hofr C (2019) Quantitative biology of human Shelterin and telomerase: searching for the weakest point. Int J Mol Sci. https://doi.org/10.3390/ijms20133186 PubMed DOI PMC
Vitaterna MH, King DP, Chang A-M et al (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264(5159):719–725. https://doi.org/10.1126/science.8171325 PubMed DOI PMC
Voigt RM, Summa KC, Forsyth CB et al (2016) The circadian clock mutation promotes intestinal dysbiosis. Alcohol Clin Exp Res 40(2):335–347. https://doi.org/10.1111/acer.12943 PubMed DOI PMC
Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081–1086. https://doi.org/10.1126/science.1209038 PubMed DOI
Wang S, Lin Y, Yuan X, Li F, Guo L, Wu B (2018) Rev-erbα integrates colon clock with experimental colitis through regulation of NF-κB/NLRP3 axis. Nat Commun 9(1):4246. https://doi.org/10.1038/s41467-018-06568-5 PubMed DOI PMC
Wang Q, Li L, Li C et al (2022) Circadian protein CLOCK modulates regulatory B cell functions of nurses engaging day-night shift rotation. Cell Signal 96:110362. https://doi.org/10.1016/j.cellsig.2022.110362 PubMed DOI
Wang C, Barnoud C, Cenerenti M et al (2023) Dendritic cells direct circadian anti-tumour immune responses. Nature 614(7946):136–143. https://doi.org/10.1038/s41586-022-05605-0 PubMed DOI
Wang C, Yang X, Guo Z, Zhu G, Fan L (2024a) Circadian gene CLOCK accelerates atherosclerosis by promoting endothelial autophagy. Biotechnol Genet Eng Rev 40(2):1230–1245. https://doi.org/10.1080/02648725.2023.2193061 PubMed DOI
Wang C, Zeng Q, Gül ZM et al (2024b) Circadian tumor infiltration and function of CD8 PubMed DOI
Welz P-S, Benitah SA (2020) Molecular connections between circadian clocks and aging. J Mol Biol 432(12):3661–3679. https://doi.org/10.1016/j.jmb.2019.12.036 PubMed DOI
Wilkinson MJ, Manoogian ENC, Zadourian A et al (2020) Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab 31(1):92-104.e5. https://doi.org/10.1016/j.cmet.2019.11.004 PubMed DOI
Wu X, Chen L, Zeb F et al (2019) Regulation of circadian rhythms by NEAT1 mediated TMAO-induced endothelial proliferation: a protective role of asparagus extract. Exp Cell Res 382(1):111451. https://doi.org/10.1016/j.yexcr.2019.05.032 PubMed DOI
Wu Z, Qu J, Liu G-H (2024) Roles of chromatin and genome instability in cellular senescence and their relevance to ageing and related diseases. Nat Rev Mol Cell Biol. https://doi.org/10.1038/s41580-024-00775-3 PubMed DOI
Xiao-hu Y, Chen W, Zhen-yu G, Guang-lang Z, Long-hua F (2023) CLOCK stabilizes vulnerable plaques by regulating vascular smooth muscle cell phenotype switching via RhoA/ROCK signaling in Atherosclerosis. J Biol Regul Homeost Agents 37(5):2539–2549. https://doi.org/10.23812/j.biol.regul.homeost.agents.20233705.251 DOI
Xu Y (2011) Chemistry in human telomere biology: structure, function and targeting of telomere DNA/RNA. Chem Soc Rev 40(5):2719–2740. https://doi.org/10.1039/C0CS00134A PubMed DOI
Xu L, Lin J, Liu Y et al (2022) CLOCK regulates Drp1 mRNA stability and mitochondrial homeostasis by interacting with PUF60. Cell Rep 39(2):110635. https://doi.org/10.1016/j.celrep.2022.110635 PubMed DOI
Xu Y, Wang X, Belsky DW, McCall WV, Liu Y, Su S (2023) Blunted rest-activity circadian rhythm is associated with increased rate of biological aging: an analysis of NHANES 2011–2014. J Gerontol A Biol Sci Med Sci 78(3):407–413. https://doi.org/10.1093/gerona/glac199 PubMed DOI
Xu X, Mo L, Liao Y et al (2024) An association between elevated telomerase reverse transcriptase expression and the immune tolerance disruption of dendritic cells. Cell Commun Signal 22(1):284. https://doi.org/10.1186/s12964-024-01650-6 PubMed DOI PMC
Xuan W, Hsu W-H, Khan F et al (2022) Circadian regulator CLOCK drives immunosuppression in glioblastoma. Cancer Immunol Res 10(6):770–784. https://doi.org/10.1158/2326-6066.CIR-21-0559 PubMed DOI PMC
Yang M (2024) Interaction between intestinal flora and gastric cancer in tumor microenvironment. Front Oncol 14:1402483. https://doi.org/10.3389/fonc.2024.1402483 PubMed DOI PMC
Ye Y, Abu El Haija M, Obeid R et al (2023) Gastric bypass alters diurnal feeding behavior and reprograms the hepatic clock to regulate endogenous glucose flux. JCI Insight. https://doi.org/10.1172/jci.insight.166618 PubMed DOI PMC
Yin X-L, Li J-C, Xue R et al (2022) Melatonin pretreatment prevents propofol-induced sleep disturbance by modulating circadian rhythm in rats. Exp Neurol 354:114086. https://doi.org/10.1016/j.expneurol.2022.114086 PubMed DOI
Yoo ID, Park MW, Cha HW et al (2020) Elevated CLOCK and BMAL1 contribute to the impairment of aerobic glycolysis from astrocytes in Alzheimer’s disease. Int J Mol Sci. https://doi.org/10.3390/ijms21217862 PubMed DOI PMC
Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107(7):881–891. https://doi.org/10.1016/S0092-8674(01)00611-0 PubMed DOI
Yoshitane H, Imamura K, Okubo T et al (2022) mTOR-AKT signaling in cellular clock resetting triggered by osmotic stress. Antioxid Redox Signal 37(10–12):631–646. https://doi.org/10.1089/ars.2021.0059 PubMed DOI
Yousefzadeh M, Henpita C, Vyas R, Soto-Palma C, Robbins P, Niedernhofer L (2021) DNA damage—how and why we age? Elife 10:e62852. https://doi.org/10.7554/eLife.62852 PubMed DOI PMC
Yuan G, Hua B, Cai T et al (2017) Clock mediates liver senescence by controlling ER stress. Aging (Albany NY) 9(12):2647–2665. https://doi.org/10.18632/aging.101353 PubMed DOI
Yuan G, Xu L, Cai T et al (2019) Clock mutant promotes osteoarthritis by inhibiting the acetylation of NFκB. Osteoarthritis Cartilage 27(6):922–931. https://doi.org/10.1016/j.joca.2019.01.012 PubMed DOI
Zhang SL, Lahens NF, Yue Z et al (2021) A circadian clock regulates efflux by the blood-brain barrier in mice and human cells. Nat Commun 12(1):617. https://doi.org/10.1038/s41467-020-20795-9 PubMed DOI PMC
Zhang X, Yin M, Hu J (2022) Nucleotide excision repair: a versatile and smart toolkit. Acta Biochim Biophys Sin (Shanghai) 54(6):807–819. https://doi.org/10.3724/abbs.2022054 PubMed DOI
Zhang C, Chen L, Sun L et al (2023a) BMAL1 collaborates with CLOCK to directly promote DNA double-strand break repair and tumor chemoresistance. Oncogene 42(13):967–979. https://doi.org/10.1038/s41388-023-02603-y PubMed DOI PMC
Zhang P, Jin Y, Xia W, Wang X, Zhou Z (2023b) Phillygenin inhibits inflammation in chondrocytes via the Nrf2/NF-κB axis and ameliorates osteoarthritis in mice. J Orthop Transl 41:1–11. https://doi.org/10.1016/j.jot.2023.03.002 DOI
Zhang W, Ho C-T, Wei W, Xiao J, Lu M (2024) Piperine regulates the circadian rhythms of hepatic clock gene expressions and gut microbiota in high-fat diet-induced obese rats. Food Sci Hum Wellness 13(3):1617–1627. https://doi.org/10.26599/FSHW.2022.9250137 DOI
Zhao H, Liu Z, Chen H et al (2024) Identifying specific functional roles for senescence across cell types. Cell. https://doi.org/10.1016/j.cell.2024.09.021 PubMed DOI PMC
Zhong J, Wang B, Wu B et al (2021) Clock knockdown attenuated reactive oxygen species-mediated senescence of chondrocytes through restoring autophagic flux. Life Sci 269:119036. https://doi.org/10.1016/j.lfs.2021.119036 PubMed DOI
Zhu Y, Liu Y, Escames G et al (2022) Deciphering clock genes as emerging targets against aging. Ageing Res Rev 81:101725. https://doi.org/10.1016/j.arr.2022.101725 PubMed DOI
Zou Y, Wang S, Zhang H et al (2024) The triangular relationship between traditional Chinese medicines, intestinal flora, and colorectal cancer. Med Res Rev 44(2):539–567. https://doi.org/10.1002/med.21989 PubMed DOI