Hypomethylating agents increase L1 retroelement expression without inducing novel insertions in myeloid malignancies
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
LX22NPO5102
The Ministry of Education, Youth and Sports of the Czech Republic
LM2023067
The Ministry of Education, Youth and Sports of the Czech Republic
90254
The Ministry of Education, Youth and Sports of the Czech Republic
FNBr 65269705
The Ministry of Health of the Czech Republic
19-11299S
The Czech Science Foundation
PubMed
40905279
PubMed Central
PMC12515712
DOI
10.1002/1878-0261.70111
Knihovny.cz E-zdroje
- Klíčová slova
- 5′‐azacytidine, L1, LINE‐1, ORF1p, ORF2p, hypomethylation agent, myelodysplastic syndrome, retrotransposition, transposable elements,
- MeSH
- akutní myeloidní leukemie * genetika farmakoterapie MeSH
- dlouhé rozptýlené jaderné elementy * genetika účinky léků MeSH
- HL-60 buňky MeSH
- lidé MeSH
- metylace DNA * účinky léků MeSH
- myelodysplastické syndromy * genetika farmakoterapie patologie MeSH
- nádorové buněčné linie MeSH
- retroelementy * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- retroelementy * MeSH
Retroelements in the human genome are silenced via multiple mechanisms, including DNA methylation, to prevent their potential mutagenic effect. Retroelement activity, demonstrated by their expression and somatic retrotransposition events, was shown to be deregulated in multiple tumors but not yet in leukemia. We hypothesized that treatment with hypomethylating agents, commonly used in myelodysplastic syndromes and acute myeloid leukemia, could lead to increased retroelement activity and somatic retrotranspositions, thus contributing to disease progression. To address this hypothesis, we induced the expression of ORF1p protein with hypomethylating agents in DAMI and HL-60 myeloid cell lines. To study whether long-term hypomethylating agent therapy induces somatic retrotranspositions, we analyzed (i) both cell lines treated for 4 weeks, and (ii) sequential samples from 17 patients with myelodysplastic syndrome treated with hypomethylating agents. Using a sensitive next-generation sequencing (NGS)-based method, no retroelement events were identified. To conclude, we show that although hypomethylating agents induce the expression of LINE-1-encoded proteins in myeloid cell lines, de novo somatic retrotransposition events do not arise during the long-term exposure to these agents.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Visceral Surgery University Hospital Rostock Germany
Pirogov Russian National Research Medical University Moscow Russia
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Moscow Russia
Zobrazit více v PubMed
Wicker T, Sabot F, Hua‐Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007;8:973–982. PubMed
Brouha B, Schustak J, Badge RM, Lutz‐Prigge S, Farley AH, Moran JV, et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci USA. 2003;100:5280–5285. PubMed PMC
Streva VA, Jordan VE, Linker S, Hedges DJ, Batzer MA, Deininger PL. Sequencing, identification and mapping of primed L1 elements (SIMPLE) reveals significant variation in full length L1 elements between individuals. BMC Genomics. 2015;16:220. PubMed PMC
Taylor MS, LaCava J, Mita P, Molloy KR, Huang CR, Li D, et al. Affinity proteomics reveals human host factors implicated in discrete stages of LINE‐1 retrotransposition. Cell. 2013;155:1034–1048. PubMed PMC
Ardeljan D, Wang X, Oghbaie M, Taylor MS, Husband D, Deshpande V, et al. LINE‐1 ORF2p expression is nearly imperceptible in human cancers. Mob DNA. 2020;11:1. PubMed PMC
Mita P, Wudzinska A, Sun X, Andrade J, Nayak S, Kahler DJ, et al. LINE‐1 protein localization and functional dynamics during the cell cycle. eLife. 2018;7:e30058. PubMed PMC
Cost GJ, Feng Q, Jacquier A, Boeke JD. Human L1 element target‐primed reverse transcription in vitro. EMBO J. 2002;21:5899–5910. PubMed PMC
Doucet AJ, Wilusz JE, Miyoshi T, Liu Y, Moran JV. A 3′ poly(a) tract is required for LINE‐1 retrotransposition. Mol Cell. 2015;60:728–741. PubMed PMC
Ewing AD, Kazazian HH. High‐throughput sequencing reveals extensive variation in human‐specific L1 content in individual human genomes. Genome Res. 2010;20:1262–1270. PubMed PMC
Feusier J, Watkins WS, Thomas J, Farrell A, Witherspoon DJ, Baird L, et al. Pedigree‐based estimation of human mobile element retrotransposition rates. Genome Res. 2019;29:1567–1577. PubMed PMC
Rodić N, Sharma R, Zampella J, Dai L, Taylor MS, Hruban RH, et al. Long interspersed element‐1 protein expression is a hallmark of many human cancers. Am J Pathol. 2014;184:1280–1286. PubMed PMC
Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfard S, Coffman EJ, et al. Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science. 2011;331:593–596. PubMed PMC
Helman E, Lawrence MS, Stewart C, Sougnez C, Getz G, Meyerson M. Somatic retrotransposition in human cancer revealed by whole‐genome and exome sequencing. Genome Res. 2014;24:1053–1063. PubMed PMC
Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette LJ, et al. Landscape of somatic retrotransposition in human cancers. Science. 2012;337:967–971. PubMed PMC
Rodriguez‐Martin B, Alvarez EG, Baez‐Ortega A, Zamora J, Supek F, Demeulemeester J, et al. Pan‐cancer analysis of whole genomes identifies driver rearrangements promoted by LINE‐1 retrotransposition. Nat Genet. 2020;52:306–319. PubMed PMC
Miki Y, Nishisho I, Horii A, Miyoshi Y, Utsunomiya J, Kinzler KW, et al. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res. 1992;52:643–645. PubMed
Rodríguez‐Martín C, Cidre F, Fernández‐Teijeiro A, Gómez‐Mariano G, de la Vega L, Ramos P, et al. Familial retinoblastoma due to intronic LINE‐1 insertion causes aberrant and noncanonical mRNA splicing of the RB1 gene. J Hum Genet. 2016;61:463–466. PubMed
Wolff EM, Byun HM, Han HF, Sharma S, Nichols PW, Siegmund KD, et al. Hypomethylation of a LINE‐1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet. 2010;6:e1000917. PubMed PMC
Rauch TA, Zhong X, Wu X, Wang M, Kernstine KH, Wang Z, et al. High‐resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc Natl Acad Sci USA. 2008;105:252–257. PubMed PMC
Sunami E, de Maat M, Vu A, Turner RR, Hoon DS. LINE‐1 hypomethylation during primary colon cancer progression. PLoS One. 2011;6:e18884. PubMed PMC
van Hoesel AQ, van de Velde CJ, Kuppen PJ, Liefers GJ, Putter H, Sato Y, et al. Hypomethylation of LINE‐1 in primary tumor has poor prognosis in young breast cancer patients: a retrospective cohort study. Breast Cancer Res Treat. 2012;134:1103–1114. PubMed
Yegnasubramanian S, Haffner MC, Zhang Y, Gurel B, Cornish TC, Wu Z, et al. DNA hypomethylation arises later in prostate cancer progression than CpG Island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res. 2008;68:8954–8967. PubMed PMC
Gao XD, Qu JH, Chang XJ, Lu YY, Bai WL, Wang H, et al. Hypomethylation of long interspersed nuclear element‐1 promoter is associated with poor outcomes for curative resected hepatocellular carcinoma. Liver Int. 2014;34:136–146. PubMed PMC
Pattamadilok J, Huapai N, Rattanatanyong P, Vasurattana A, Triratanachat S, Tresukosol D, et al. LINE‐1 hypomethylation level as a potential prognostic factor for epithelial ovarian cancer. Int J Gynecol Cancer. 2008;18:711–717. PubMed
Iwagami S, Baba Y, Watanabe M, Shigaki H, Miyake K, Ishimoto T, et al. LINE‐1 hypomethylation is associated with a poor prognosis among patients with curatively resected esophageal squamous cell carcinoma. Ann Surg. 2013;257:449–455. PubMed
Urazbakhtin S, Smirnova A, Volakhava A, Zerkalenkova E, Salyutina M, Doubek M, et al. The absence of retroelement activity is characteristic for childhood acute leukemias and adult acute lymphoblastic leukemia. Int J Mol Sci. 2022;23:1756. PubMed PMC
DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al. Azacitidine and Venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020;383:617–629. PubMed
Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar‐Reissig R, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 2002;20:2429–2440. PubMed
Komkov AY, Urazbakhtin SZ, Saliutina MV, Komech EA, Shelygin YA, Nugmanov GA, et al. SeqURE – a new copy‐capture based method for sequencing of unknown Retroposition events. Mob DNA. 2020;11:33. PubMed PMC
Nugmanov GA, Komkov AY, Saliutina MV, Minervina AA, Lebedev YB, Mamedov IZ. A pipeline for the error‐free identification of somatic Alu insertions in high‐throughput sequencing data. Mol Biol. 2019;53:154–165. PubMed
Adès L, Itzykson R, Fenaux P. Myelodysplastic syndromes. Lancet. 2014;383:2239–2252. PubMed
Fenaux P, Haase D, Santini V, Sanz GF, Platzbecker U, Mey U, et al. Myelodysplastic syndromes: ESMO clinical practice guidelines for diagnosis, treatment and follow‐up. Ann Oncol. 2021;32:142–156. PubMed
Jiang Y, Dunbar A, Gondek LP, Mohan S, Rataul M, O'Keefe C, et al. Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood. 2009;113:1315–1325. PubMed PMC
Shen L, Kantarjian H, Guo Y, Lin E, Shan J, Huang X, et al. DNA methylation predicts survival and response to therapy in patients with myelodysplastic syndromes. J Clin Oncol. 2010;28:605–613. PubMed PMC
Diesch J, Zwick A, Garz AK, Palau A, Buschbeck M, Götze KS. A clinical‐molecular update on azanucleoside‐based therapy for the treatment of hematologic cancers. Clin Epigenetics. 2016;8:71. PubMed PMC
Duchmann M, Itzykson R. Clinical update on hypomethylating agents. Int J Hematol. 2019;110:161–169. PubMed
Kurnosov AA, Ustyugova SV, Nazarov VI, Minervina AA, Komkov AY, Shugay M, et al. The evidence for increased L1 activity in the site of human adult brain neurogenesis. PLoS One. 2015;10:e0117854. PubMed PMC
Gu Z, Liu Y, Zhang Y, Cao H, Lyu J, Wang X, et al. Silencing of LINE‐1 retrotransposons is a selective dependency of myeloid leukemia. Nat Genet. 2021;53:672–682. PubMed PMC
Merkerova MD, Krejcik Z. Transposable elements and piwi‐interacting RNAs in hemato‐oncology with a focus on myelodysplastic syndrome (review). Int J Oncol. 2021;59:75. PubMed
Colombo AR, Zubair A, Thiagarajan D, Nuzhdin S, Triche TJ, Ramsingh G. Suppression of transposable elements in leukemic stem cells. Sci Rep. 2017;7:7029. PubMed PMC
Wylie A, Jones AE, D'Brot A, Lu WJ, Kurtz P, Moran JV, et al. p53 genes function to restrain mobile elements. Genes Dev. 2016;30:64–77. PubMed PMC
Levine AJ, Ting DT, Greenbaum BD. P53 and the defenses against genome instability caused by transposons and repetitive elements. Bioessays. 2016;38:508–513. PubMed PMC
Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, et al. International consensus classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140:1200–1228. PubMed PMC