The Absence of Retroelement Activity Is Characteristic for Childhood Acute Leukemias and Adult Acute Lymphoblastic Leukemia
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-11299S
Czech Science Foundation
075-15-2020-807
Ministry of Science and Higher Education of the Russian Federation
PubMed
35163677
PubMed Central
PMC8835895
DOI
10.3390/ijms23031756
PII: ijms23031756
Knihovny.cz E-zdroje
- Klíčová slova
- acute leukemia, mobile elements, retroelements, tumor-specific insertions,
- MeSH
- akutní lymfatická leukemie genetika MeSH
- akutní myeloidní leukemie genetika MeSH
- dítě MeSH
- DNA nádorová genetika MeSH
- dospělí MeSH
- genetická transkripce MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- předškolní dítě MeSH
- regulace genové exprese u leukemie MeSH
- reprodukovatelnost výsledků MeSH
- retroelementy genetika MeSH
- senioři MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA nádorová MeSH
- retroelementy MeSH
Retroelements (RE) have been proposed as important players in cancerogenesis. Different cancer types are characterized by a different level of tumor-specific RE insertions. In previous studies, small cohorts of hematological malignancies, such as acute myeloid leukemia, multiple myeloma, and chronic lymphocytic leukemia have been characterized by a low level of RE insertional activity. Acute lymphoblastic leukemia (ALL) in adults and childhood acute leukemias have not been studied in this context. We performed a search for new RE insertions (Alu and L1) in 44 childhood ALL, 14 childhood acute myeloid leukemia, and 14 adult ALL samples using a highly sensitive NGS-based approach. First, we evaluated the method sensitivity revealing the 1% detection threshold for the proportion of cells with specific RE insertion. Following this result, we did not identify new tumor-specific RE insertions in the tested cohort of acute leukemia samples at the established level of sensitivity. Additionally, we analyzed the transcription levels of active L1 copies and found them increased. Thus, the increased transcription of active L1 copies is not sufficient for overt elevation of L1 retrotranspositional activity in leukemia.
Center of Life Sciences Skolkovo Institute of Science and Technology 121205 Moscow Russia
Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Zobrazit více v PubMed
Lander E.S., Linton L.M., Birren B., Nusbaum C., Zody M.C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W., et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. PubMed
Goodier J.L. Restricting retrotransposons: A review. Mob. DNA. 2016;7:16. doi: 10.1186/s13100-016-0070-z. PubMed DOI PMC
Khan H., Smit A., Boissinot S. Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. Genome Res. 2006;16:78–87. doi: 10.1101/gr.4001406. PubMed DOI PMC
Penzkofer T., Jager M., Figlerowicz M., Badge R., Mundlos S., Robinson P.N., Zemojtel T. L1Base 2: More retrotransposition-active LINE-1s, more mammalian genomes. Nucleic Acids Res. 2017;45:D68–D73. doi: 10.1093/nar/gkw925. PubMed DOI PMC
Kazazian H.H., Jr., Moran J.V. Mobile DNA in Health and Disease. N. Engl. J. Med. 2017;377:361–370. doi: 10.1056/NEJMra1510092. PubMed DOI PMC
Deininger P. Alu elements: Know the SINEs. Genome Biol. 2011;12:236. doi: 10.1186/gb-2011-12-12-236. PubMed DOI PMC
Belancio V.P., Roy-Engel A.M., Deininger P.L. All y’all need to know ‘bout retroelements in cancer. Semin. Cancer Biol. 2010;20:200–210. doi: 10.1016/j.semcancer.2010.06.001. PubMed DOI PMC
Bundo M., Toyoshima M., Okada Y., Akamatsu W., Ueda J., Nemoto-Miyauchi T., Sunaga F., Toritsuka M., Ikawa D., Kakita A., et al. Increased l1 retrotransposition in the neuronal genome in schizophrenia. Neuron. 2014;81:306–313. doi: 10.1016/j.neuron.2013.10.053. PubMed DOI
Rodriguez-Martin B., Alvarez E.G., Baez-Ortega A., Zamora J., Supek F., Demeulemeester J., Santamarina M., Ju Y.S., Temes J., Garcia-Souto D., et al. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat. Genet. 2020;52:306–319. doi: 10.1038/s41588-019-0562-0. PubMed DOI PMC
Tubio J.M., Li Y., Ju Y.S., Martincorena I., Cooke S.L., Tojo M., Gundem G., Pipinikas C.P., Zamora J., Raine K., et al. Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science. 2014;345:1251343. doi: 10.1126/science.1251343. PubMed DOI PMC
The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium Pan-cancer analysis of whole genomes. Nature. 2020;578:82–93. doi: 10.1038/s41586-020-1969-6. PubMed DOI PMC
Kulpa D.A., Moran J.V. Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat. Struct. Mol. Biol. 2006;13:655–660. doi: 10.1038/nsmb1107. PubMed DOI
Helman E., Lawrence M.S., Stewart C., Sougnez C., Getz G., Meyerson M. Somatic retrotransposition in human cancer revealed by whole-genome and exome sequencing. Genome Res. 2014;24:1053–1063. doi: 10.1101/gr.163659.113. PubMed DOI PMC
Lee E., Iskow R., Yang L., Gokcumen O., Haseley P., Luquette L.J., 3rd, Lohr J.G., Harris C.C., Ding L., Wilson R.K., et al. Landscape of somatic retrotransposition in human cancers. Science. 2012;337:967–971. doi: 10.1126/science.1222077. PubMed DOI PMC
Feusier J., Watkins W.S., Thomas J., Farrell A., Witherspoon D.J., Baird L., Ha H., Xing J., Jorde L.B. Pedigree-based estimation of human mobile element retrotransposition rates. Genome Res. 2019;29:1567–1577. doi: 10.1101/gr.247965.118. PubMed DOI PMC
Goubert C., Thomas J., Payer L.M., Kidd J.M., Feusier J., Watkins W.S., Burns K.H., Jorde L.B., Feschotte C. TypeTE: A tool to genotype mobile element insertions from whole genome resequencing data. Nucleic Acids Res. 2020;48:e36. doi: 10.1093/nar/gkaa074. PubMed DOI PMC
Komkov A.Y., Minervina A.A., Nugmanov G.A., Saliutina M.V., Khodosevich K.V., Lebedev Y.B., Mamedov I.Z. An advanced enrichment method for rare somatic retroelement insertions sequencing. Mob. DNA. 2018;9:31. doi: 10.1186/s13100-018-0136-1. PubMed DOI PMC
Loh J.W., Ha H., Lin T., Sun N., Burns K.H., Xing J. Integrated Mobile Element Scanning (ME-Scan) method for identifying multiple types of polymorphic mobile element insertions. Mob. DNA. 2020;11:12. doi: 10.1186/s13100-020-00207-x. PubMed DOI PMC
Mamedov I.Z., Arzumanyan E.S., Amosova A.L., Lebedev Y.B., Sverdlov E.D. Whole-genome experimental identification of insertion/deletion polymorphisms of interspersed repeats by a new general approach. Nucleic Acids Res. 2005;33:e16. doi: 10.1093/nar/gni018. PubMed DOI PMC
Shukla R., Upton K.R., Munoz-Lopez M., Gerhardt D.J., Fisher M.E., Nguyen T., Brennan P.M., Baillie J.K., Collino A., Ghisletti S., et al. Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell. 2013;153:101–111. doi: 10.1016/j.cell.2013.02.032. PubMed DOI PMC
Solyom S., Ewing A.D., Rahrmann E.P., Doucet T., Nelson H.H., Burns M.B., Harris R.S., Sigmon D.F., Casella A., Erlanger B., et al. Extensive somatic L1 retrotransposition in colorectal tumors. Genome Res. 2012;22:2328–2338. doi: 10.1101/gr.145235.112. PubMed DOI PMC
Upton K.R., Gerhardt D.J., Jesuadian J.S., Richardson S.R., Sanchez-Luque F.J., Bodea G.O., Ewing A.D., Salvador-Palomeque C., van der Knaap M.S., Brennan P.M., et al. Ubiquitous l1 mosaicism in hippocampal neurons. Cell. 2015;161:228–239. doi: 10.1016/j.cell.2015.03.026. PubMed DOI PMC
Evrony G.D., Lee E., Park P.J., Walsh C.A. Resolving rates of mutation in the brain using single-neuron genomics. Elife. 2016;5:e12966. doi: 10.7554/eLife.12966. PubMed DOI PMC
Komkov A.Y., Urazbakhtin S.Z., Saliutina M.V., Komech E.A., Shelygin Y.A., Nugmanov G.A., Shubin V.P., Smirnova A.O., Bobrov M.Y., Tsukanov A.S., et al. SeqURE—A new copy-capture based method for sequencing of unknown Retroposition events. Mob. DNA. 2020;11:33. doi: 10.1186/s13100-020-00228-6. PubMed DOI PMC
Kurnosov A.A., Ustyugova S.V., Nazarov V.I., Minervina A.A., Komkov A.Y., Shugay M., Pogorelyy M.V., Khodosevich K.V., Mamedov I.Z., Lebedev Y.B. The evidence for increased L1 activity in the site of human adult brain neurogenesis. PLoS ONE. 2015;10:e0117854. doi: 10.1371/journal.pone.0117854. PubMed DOI PMC
Kivioja T., Vaharautio A., Karlsson K., Bonke M., Enge M., Linnarsson S., Taipale J. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods. 2012;9:72–74. doi: 10.1038/nmeth.1778. PubMed DOI
Nugmanov G.A., Komkov A.Y., Saliutina M.V., Minervina A.A., Lebedev Y.B., Mamedov I.Z. A Pipeline for the Error-free Identification of Somatic Alu Insertions in High-throughput Sequencing Data. Mol. Biol. 2019;53:138–146. doi: 10.1134/S0026893319010114. PubMed DOI
Fagerberg L., Hallstrom B.M., Oksvold P., Kampf C., Djureinovic D., Odeberg J., Habuka M., Tahmasebpoor S., Danielsson A., Edlund K., et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteom. 2014;13:397–406. doi: 10.1074/mcp.M113.035600. PubMed DOI PMC
Gerousi M., Psomopoulos F., Kotta K., Tsagiopoulou M., Stavroyianni N., Anagnostopoulos A., Anastasiadis A., Gkanidou M., Kotsianidis I., Ntoufa S., et al. The Calcitriol/Vitamin D Receptor System Regulates Key Immune Signaling Pathways in Chronic Lymphocytic Leukemia. Cancers. 2021;13:285. doi: 10.3390/cancers13020285. PubMed DOI PMC
Cajuso T., Sulo P., Tanskanen T., Katainen R., Taira A., Hanninen U.A., Kondelin J., Forsstrom L., Valimaki N., Aavikko M., et al. Retrotransposon insertions can initiate colorectal cancer and are associated with poor survival. Nat. Commun. 2019;10:4022. doi: 10.1038/s41467-019-11770-0. PubMed DOI PMC
Miki Y., Nishisho I., Horii A., Miyoshi Y., Utsunomiya J., Kinzler K.W., Vogelstein B., Nakamura Y. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res. 1992;52:643–645. PubMed
Cuellar T.L., Herzner A.M., Zhang X., Goyal Y., Watanabe C., Friedman B.A., Janakiraman V., Durinck S., Stinson J., Arnott D., et al. Silencing of retrotransposons by SETDB1 inhibits the interferon response in acute myeloid leukemia. J. Cell Biol. 2017;216:3535–3549. doi: 10.1083/jcb.201612160. PubMed DOI PMC
Ardeljan D., Steranka J.P., Liu C., Li Z., Taylor M.S., Payer L.M., Gorbounov M., Sarnecki J.S., Deshpande V., Hruban R.H., et al. Cell fitness screens reveal a conflict between LINE-1 retrotransposition and DNA replication. Nat. Struct. Mol. Biol. 2020;27:168–178. doi: 10.1038/s41594-020-0372-1. PubMed DOI PMC
Den Nijs J.I., Gonggrijp H.S., Augustinus E., Leeksma C.H. Hot bands: A simple G-banding method for leukemic metaphases. Cancer Genet. Cytogenet. 1985;15:373–374. doi: 10.1016/0165-4608(85)90181-5. PubMed DOI
Gabert J., Beillard E., van der Velden V.H., Bi W., Grimwade D., Pallisgaard N., Barbany G., Cazzaniga G., Cayuela J.M., Cave H., et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—A Europe Against Cancer program. Leukemia. 2003;17:2318–2357. doi: 10.1038/sj.leu.2403135. PubMed DOI
Meyer C., Schneider B., Reichel M., Angermueller S., Strehl S., Schnittger S., Schoch C., Jansen M.W., van Dongen J.J., Pieters R., et al. Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. Proc. Natl. Acad. Sci. USA. 2005;102:449–454. doi: 10.1073/pnas.0406994102. PubMed DOI PMC
Afrin S., Zhang C.R.C., Meyer C., Stinson C.L., Pham T., Bruxner T.J.C., Venn N.C., Trahair T.N., Sutton R., Marschalek R., et al. Targeted Next-Generation Sequencing for Detecting MLL Gene Fusions in Leukemia. Mol. Cancer Res. 2018;16:279–285. doi: 10.1158/1541-7786.MCR-17-0569. PubMed DOI
Meyer C., Lopes B.A., Caye-Eude A., Cave H., Arfeuille C., Cuccuini W., Sutton R., Venn N.C., Oh S.H., Tsaur G., et al. Human MLL/KMT2A gene exhibits a second breakpoint cluster region for recurrent MLL-USP2 fusions. Leukemia. 2019;33:2306–2340. doi: 10.1038/s41375-019-0451-7. PubMed DOI PMC
Jansen M.W., van der Velden V.H., van Dongen J.J. Efficient and easy detection of MLL-AF4, MLL-AF9 and MLL-ENL fusion gene transcripts by multiplex real-time quantitative RT-PCR in TaqMan and LightCycler. Leukemia. 2005;19:2016–2018. doi: 10.1038/sj.leu.2403939. PubMed DOI
Blagodatskikh K.A., Kramarov V.M., Barsova E.V., Garkovenko A.V., Shcherbo D.S., Shelenkov A.A., Ustinova V.V., Tokarenko M.R., Baker S.C., Kramarova T.V., et al. Improved DOP-PCR (iDOP-PCR): A robust and simple WGA method for efficient amplification of low copy number genomic DNA. PLoS ONE. 2017;12:e0184507. doi: 10.1371/journal.pone.0184507. PubMed DOI PMC
Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012;13:134. doi: 10.1186/1471-2105-13-134. PubMed DOI PMC
Schmieder R., Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–864. doi: 10.1093/bioinformatics/btr026. PubMed DOI PMC
Shen W., Le S., Li Y., Hu F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS ONE. 2016;11:e0163962. doi: 10.1371/journal.pone.0163962. PubMed DOI PMC
Boratyn G.M., Thierry-Mieg J., Thierry-Mieg D., Busby B., Madden T.L. Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinform. 2019;20:405. doi: 10.1186/s12859-019-2996-x. PubMed DOI PMC