Co-Occurring Sister Taxa of Mountain Butterflies Exhibit Distinct Cuticular Hydrocarbon Profiles
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
40909013
PubMed Central
PMC12405801
DOI
10.1002/ece3.72027
PII: ECE372027
Knihovny.cz E-resources
- Keywords
- CHCs, Lepidoptera, contact pheromones, secondary contact, semiochemicals,
- Publication type
- Journal Article MeSH
Invisible to human perception, differentiation in chemical traits such as insects cuticular hydrocarbons (CHCs) might contribute to speciation. The species-rich mountain butterfly genus Erebia represents a well-established model for studying speciation because closely related taxa form stable secondary contact zones. However, to which degree these taxa would also differ in their chemical composition of the cuticle has remained unexplored. We compared CHCs of males and females from four locally sympatric or parapatric sister taxa pairs with varying levels of gene flow. Rarely hybridizing taxa pairs (E. cassioides-E. tyndarus, E. euryale-E. ligea) exhibited significant CHC differentiation at both interspecific and intersexual levels. Conversely, taxa pairs with no prior contact (E. melampus-E. sudetica) or frequent ongoing hybridization in their contact zones (E. euryale adyte-E. e. isarica) showed limited CHC differentiation. Our findings suggest that differentiation in CHC profiles scales with among-species gene flow. Although it remains unclear whether CHCs are involved in mate recognition in Erebia, the observed differentiation could play a role in reproductive isolation, particularly under environmental changes that promote novel interspecific interactions. Future research should explore the role of CHC divergence across hybrid zone gradients and pinpoint the genomic regions underlying CHC synthesis and perception.
Biodiversity Genomics Laboratory Institute of Biology University of Neuchâtel Neuchâtel Switzerland
Biology Centre CAS Institute of Entomology České Budějovice Czech Republic
Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
Naturéum State Museum of Natural Sciences Lausanne Switzerland
See more in PubMed
Adams, S. A. , and Tsutsui N. D.. 2020. “The Evolution of Species Recognition Labels in Insects.” Philosophical Transactions of the Royal Society, B: Biological Sciences 375, no. 1802: 20190476. 10.1098/rstb.2019.0476. PubMed DOI PMC
Aitken, S. N. , and Whitlock M. C.. 2013. “Assisted Gene Flow to Facilitate Local Adaptation to Climate Change.” Annual Review of Ecology, Evolution, and Systematics 44, no. 1: 367–388. 10.1146/annurev-ecolsys-110512-135747. DOI
Augustijnen, H. , Bätscher L., Cesanek M., et al. 2024. “A Macroevolutionary Role for Chromosomal Fusion and Fission in PubMed DOI PMC
Augustijnen, H. , and Lucek K.. 2024. “Beyond Gene Flow: (Non)‐Parallelism of Secondary Contact in a Pair of Highly Differentiated Sibling Species.” Molecular Ecology 33, no. 17: e17488. 10.1111/mec.17488. PubMed DOI
Augustijnen, H. , Patsiou T., and Lucek K.. 2022. “Secondary Contact Rather Than Coexistence— PubMed DOI PMC
Augustijnen, H. , Patsiou T., Schmitt T., and Lucek K.. 2024. “Living on the Edge—Genomic and Ecological Delineation of Cryptic Lineages in the High‐Elevation Specialist DOI
Benjamini, Y. , and Yekutieli D.. 2001. “The Control of the False Discovery Rate in Multiple Testing Under Dependency.” Annals of Statistics 29, no. 4: 1165–1188. 10.1214/aos/1013699998. DOI
Blomquist, G. J. , and Ginzel M. D.. 2021. “Chemical Ecology, Biochemistry, and Molecular Biology of Insect Hydrocarbons.” Annual Review of Entomology 66, no. 1: 45–60. 10.1146/annurev-ento-031620-071754. PubMed DOI
Bouaouina, S. , Chittaro Y., Willi Y., and Lucek K.. 2023. “Asynchronous Life Cycles Contribute to Reproductive Isolation Between Two Alpine Butterflies.” Evolution Letters 7: qrad046. 10.1093/evlett/qrad046. PubMed DOI PMC
Brussard, P. F. , and Ehrlich P. R.. 1970. “Adult Behavior and Population Structure in DOI
Buckley, S. H. , Tregenza T., and Butlin R. K.. 2003. “Transitions in Cuticular Composition Across a Hybrid Zone: Historical Accident or Environmental Adaptation?” Biological Journal of the Linnean Society 78, no. 2: 193–201. 10.1046/j.1095-8312.2003.00147.x. DOI
Buellesbach, J. , Gadau J., Beukeboom L. W., et al. 2013. “Cuticular Hydrocarbon Divergence in the Jewel Wasp PubMed DOI PMC
Capblancq, T. , Mavárez J., Rioux D., and Després L.. 2019. “Speciation With Gene Flow: Evidence From a Complex of Alpine Butterflies ( PubMed DOI PMC
Carlsson, M. A. , Schäpers A., Nässel D. R., and Janz N.. 2013. “Organization of the Olfactory System of Nymphalidae Butterflies.” Chemical Senses 38, no. 4: 355–367. 10.1093/chemse/bjt008. PubMed DOI
Cupedo, F. 1996. “Die Morphologische Gliederung Des
Cupedo, F. , and Doorenweerd C.. 2022. “Mitochondrial DNA‐Based Phylogeography of the Large Ringlet DOI
Dapporto, L. 2007. “Cuticular Lipid Diversification in DOI
Dapporto, L. , Menchetti M., Dincă V., et al. 2024. “The Genetic Legacy of the Quaternary Ice Ages for West Palearctic Butterflies.” Science Advances 10, no. 38: eadm8596. 10.1126/sciadv.adm8596. PubMed DOI PMC
Ehlers, S. , and Schulz S.. 2023. “The Scent Chemistry of Butterflies.” Natural Product Reports 40, no. 4: 794–818. PubMed
Engsontia, P. , Sangket U., Chotigeat W., and Satasook C.. 2014. “Molecular Evolution of the Odorant and Gustatory Receptor Genes in Lepidopteran Insects: Implications for Their Adaptation and Speciation.” Journal of Molecular Evolution 79, no. 1: 21–39. 10.1007/s00239-014-9633-0. PubMed DOI
Etges, W. J. , de Oliveira C. C., Rajpurohit S., and Gibbs A. G.. 2017. “Effects of Temperature on Transcriptome and Cuticular Hydrocarbon Expression in Ecologically Differentiated Populations of Desert PubMed DOI PMC
Fezza, T. J. , Siderhurst M. S., Jang E. B., Stacy E. A., and Price D. K.. 2022. “Phenotypic Disruption of Cuticular Hydrocarbon Production in Hybrids Between Sympatric Species of Hawaiian Picture‐Wing PubMed DOI PMC
Gibbs, A. G. , Louie A. K., and Ayala J. A.. 1998. “Effects of Temperature on Cuticular Lipids and Water Balance in a Desert PubMed DOI
Grant, G. G. , Frech D., MacDonald L., Slessor K. N., and King G. G. S.. 1987. “Copulation Releaser Pheromone in Body Scales of Female Whitemarked Tussock Moth, PubMed DOI
Grula, J. W. , McChesney J. D., and Taylor O. R. J.. 1980. “Aphrodisiac Pheromones of the Sulfur Butterflies
Haubrich, K. , and Schmitt T.. 2007. “Cryptic Differentiation in Alpine‐Endemic, High‐Altitude Butterflies Reveals Down‐Slope Glacial Refugia.” Molecular Ecology 16, no. 17: 3643–3658. 10.1111/j.1365-294X.2007.03424.x. PubMed DOI
Heuskin, S. , Vanderplanck M., Bacquet P., et al. 2014. “The Composition of Cuticular Compounds Indicates Body Parts, Sex and Age in the Model Butterfly DOI
Holze, H. , Schrader L., and Buellesbach J.. 2021. “Advances in Deciphering the Genetic Basis of Insect Cuticular Hydrocarbon Biosynthesis and Variation.” Heredity 126: 219–234. 10.1038/s41437-020-00380-y. PubMed DOI PMC
Hood, G. R. , Jennings J. H., Bruzzese D. J., et al. 2022. “Cuticular Hydrocarbon Variation Among
Jospin, A. , Chittaro Y., Bolt D., et al. 2023. “Genomic Evidence for Three Distinct Species in the PubMed DOI PMC
Kather, R. , and Martin S. J.. 2012. “Cuticular Hydrocarbon Profiles as a Taxonomic Tool: Advantages, Limitations and Technical Aspects.” Physiological Entomology 37, no. 1: 25–32. 10.1111/j.1365-3032.2011.00826.x. DOI
Kleckova, I. , Konvicka M., and Klecka J.. 2014. “Thermoregulation and Microhabitat Use in Mountain Butterflies of the Genus PubMed DOI
Klečková, I. , Klečka J., Fric Z. F., et al. 2023. “Climatic Niche Conservatism and Ecological Diversification in the Holarctic Cold‐Dwelling Butterfly Genus DOI
Konvicka, M. , Kuras T., Liparova J., et al. 2021. “Low Winter Precipitation, but Not Warm Autumns and Springs, Threatens Mountain Butterflies in Middle‐High Mountains.” PeerJ 9: e12021. 10.7717/peerj.12021. PubMed DOI PMC
Konvicka, M. , Maradova M., Benes J., Fric Z., and Kepka P.. 2003. “Uphill Shifts in Distribution of Butterflies in The Czech Republic: Effects of Changing Climate Detected on a Regional Scale.” Global Ecology and Biogeography 12, no. 5: 403–410. 10.1046/j.1466-822X.2003.00053.x. DOI
Kuras, T. , Beneš J., and Konvicka M.. 2001. “Behaviour and Within‐Habitat Distribution of Adult
Lucek, K. , Butlin R. K., and Patsiou T.. 2020. “Secondary Contact Zones of Closely‐Related PubMed DOI
Luna, P. , and Dáttilo W.. 2024. “Climate Change Disrupts Insect Biotic Interactions: Cascading Effects Through the Web of Life.” In Effects of Climate Change on Insects: Physiological, Evolutionary, and Ecological Responses, edited by González‐Tokman D. and Dáttilo W.. Oxford University Press. 10.1093/oso/9780192864161.003.0015. DOI
Makki, R. , Cinnamon E., and Gould A. P.. 2014. “The Development and Functions of Oenocytes.” Annual Review of Entomology 59: 405–425. 10.1146/annurev-ento-011613-162056. PubMed DOI PMC
Martin, S. , and Drijfhout F.. 2009. “A Review of Ant Cuticular Hydrocarbons.” Journal of Chemical Ecology 35, no. 10: 1151–1161. 10.1007/s10886-009-9695-4. PubMed DOI
Mazzoni, C. J. , Ciofi C., and Waterhouse R. M.. 2023. “Biodiversity: An Atlas of European Reference Genomes.” Nature 619, no. 7969: 252. 10.1038/d41586-023-02229-w. PubMed DOI
Menzel, F. , Blaimer B. B., and Schmitt T.. 2017. “How Do Cuticular Hydrocarbons Evolve? Physiological Constraints and Climatic and Biotic Selection Pressures Act on a Complex Functional Trait.” Proceedings of the Royal Society B: Biological Sciences 284, no. 1850: 20161727. 10.1098/rspb.2016.1727. PubMed DOI PMC
Minter, M. , Dasmahapatra K. K., Thomas C. D., et al. 2020. “Past, Current, and Potential Future Distributions of Unique Genetic Diversity in a Cold‐Adapted Mountain Butterfly.” Ecology and Evolution 10, no. 20: 11155–11168. 10.1002/ece3.6755. PubMed DOI PMC
Moris, V. , Podsiadlowski L., Martin S., et al. 2023. “Intrasexual Cuticular Hydrocarbon Dimorphism in a Wasp Sheds Light on Hydrocarbon Biosynthesis Genes in Hymenoptera.” Communications Biology 6: 1–15. 10.1038/s42003-022-04370-0. PubMed DOI PMC
Neems, R. M. , and Butlin R. K.. 1997. “Variation in Cuticular Hydrocarbons Across a Hybrid Zone in the Grasshopper DOI
Nice, C. C. , Gompert Z., Fordyce J. A., Forister M. L., Lucas L. K., and Buerkle C. A.. 2013. “Hybrid Speciation and Independent Evolution in Lineages of Alpine Butterflies.” Evolution 67, no. 4: 1055–1068. 10.1111/evo.12019. PubMed DOI
Oksanen, J. , Simpson G., Blanchet F., et al. 2022. “vegan: Community Ecology Package_.” R package version 2.6‐4. https://CRAN.R‐project.org/package=vegan.
Ômura, H. , Noguchi T., and Ohta S.. 2020. “The Male Swallowtail Butterfly, DOI
Ômura, H. , Noguchi T., and Ohta S.. 2022. “Chemical Identity of Cuticular Lipid Components in the Mimetic Swallowtail Butterfly PubMed DOI
Ômura, H. , Yanai N., and Honda K.. 2012. “Sexual Dimorphism in Scent Substances and Cuticular Lipids of Adult PubMed DOI
Ômura, H. , and Yotsuzuka S.. 2015. “Male‐Specific Epicuticular Compounds of the Sulfur Butterfly DOI
Parkash, R. , Kalra B., and Sharma V.. 2008. “Changes in Cuticular Lipids, Water Loss and Desiccation Resistance in a Tropical Drosophilid: Analysis of Variation Between and Within Populations.” Fly 2, no. 4: 189–197. 10.4161/fly.6619. PubMed DOI
R Core Team . 2024. “R: A Language and Environment for Statistical Computing_.” R foundation for statistical computing, Vienna, Austria. https://www.R‐project.org/.
Redjdal, A. , Sahnoune M., Moali A., and De Biseau J.‐C.. 2023. “High Divergence of Cuticular Hydrocarbons and Hybridization Success in Two Allopatric Seven‐Spot Ladybugs.” Journal of Chemical Ecology 49, no. 3: 103–115. 10.1007/s10886-023-01406-5. PubMed DOI
Riesch, R. , Muschick M., Lindtke D., et al. 2017. “Transitions Between Phases of Genomic Differentiation During Stick‐Insect Speciation.” Nature Ecology & Evolution 1, no. 4: 82. 10.1038/s41559-017-0082. PubMed DOI
Rödder, D. , Schmitt T., Gros P., Ulrich W., and Habel J. C.. 2021. “Climate Change Drives Mountain Butterflies Towards the Summits.” Scientific Reports 11, no. 1: 14382. 10.1038/s41598-021-93826-0. PubMed DOI PMC
Rusuwa, B. B. , Chung H., Allen S. L., Frentiu F. D., and Chenoweth S. F.. 2022. “Natural Variation at a Single Gene Generates Sexual Antagonism Across Fitness Components in PubMed DOI
Schmid, R. , Heuckeroth S., Korf A., et al. 2023. “Integrative Analysis of Multimodal Mass Spectrometry Data in MZmine 3.” Nature Biotechnology 41, no. 4: 449. 10.1038/s41587-023-01690-2. PubMed DOI PMC
Schmitt, T. , Louy D., Zimmermann E., and Habel J. C.. 2016. “Species Radiation in the Alps: Multiple Range Shifts Caused Diversification in Ringlet Butterflies in the European High Mountains.” Organisms Diversity & Evolution 16, no. 4: 791–808. 10.1007/s13127-016-0282-6. DOI
Schwander, T. , Arbuthnott D., Gries R., Gries G., Nosil P., and Crespi B. J.. 2013. “Hydrocarbon Divergence and Reproductive Isolation in PubMed DOI PMC
Silberglied, R. E. 1984. “Visual Communication and Sexual Selection Among Butterflies.” In The Biology of Butterflies, edited by Vane‐Wright R. I. and Ackery P. R., 207–223. Academic Press.
Singleton, K. , Gries R., van Herk W. G., et al. 2022. “Identification of the Major Sex Pheromone Component of the Click Beetle PubMed DOI PMC
Sistri, G. , Menchetti M., Santini L., et al. 2022. “The Isolated DOI
Slone, J. D. , Pask G. M., Ferguson S. T., et al. 2017. “Functional Characterization of Odorant Receptors in the Ponerine Ant, PubMed DOI PMC
Sonderegger, P. 2005. “Die Erebien Der Schweiz (Lepidoptera: Satyrinae, Genus DOI
Steiger, S. , and Stökl J.. 2014. “The Role of Sexual Selection in the Evolution of Chemical Signals in Insects.” Insects 5: 423–438. 10.3390/insects5020423. PubMed DOI PMC
Sun, X. , Zhang X., Wu G., et al. 2017. “N‐Pentacosane Acts as Both Contact and Volatile Pheromone in the Tea Weevil, PubMed DOI
Todesco, M. , Pascual M. A., Owens G. L., et al. 2016. “Hybridization and Extinction.” Evolutionary Applications 9, no. 7: 892–908. 10.1111/eva.12367. PubMed DOI PMC
Torres‐Oliva, M. , Almeida F. C., Sánchez‐Gracia A., and Rozas J.. 2016. “Comparative Genomics Uncovers Unique Gene Turnover and Evolutionary Rates in a Gene Family Involved in the Detection of Insect Cuticular Pheromones.” Genome Biology and Evolution 8, no. 6: 1734–1747. 10.1093/gbe/evw108. DOI
van Zweden, J. S. , Dreier S., and d'Ettorre P.. 2009. “Disentangling Environmental and Heritable Nestmate Recognition Cues in a Carpenter Ant.” Journal of Insect Physiology 55, no. 2: 159–164. 10.1016/j.jinsphys.2008.11.001. PubMed DOI
Wicker‐Thomas, C. , Garrido D., Bontonou G., et al. 2015. “Flexible Origin of Hydrocarbon/Pheromone Precursors in PubMed DOI PMC
Wilby, A. , Grubb L. A., Burrows J., and Menéndez R.. 2024. “Contrasting Responses to Microhabitat and Temperature Determine Breeding Habitat Differentiation Between Two Viola‐Feeding Butterflies.” Ecological Entomology 49, no. 3: 407–417. 10.1111/een.13312. DOI
Wu, N. , Evans E., Van Schooten B., et al. 2022. “Widespread Gene Expression Divergence in Butterfly Sensory Tissues Plays a Fundamental Role During Reproductive Isolation and Speciation.” Molecular Biology and Evolution 39, no. 11: msac225. 10.1093/molbev/msac225. PubMed DOI PMC
figshare
10.6084/m9.figshare.28070693.v1