• This record comes from PubMed

Co-Occurring Sister Taxa of Mountain Butterflies Exhibit Distinct Cuticular Hydrocarbon Profiles

. 2025 Sep ; 15 (9) : e72027. [epub] 20250903

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

Invisible to human perception, differentiation in chemical traits such as insects cuticular hydrocarbons (CHCs) might contribute to speciation. The species-rich mountain butterfly genus Erebia represents a well-established model for studying speciation because closely related taxa form stable secondary contact zones. However, to which degree these taxa would also differ in their chemical composition of the cuticle has remained unexplored. We compared CHCs of males and females from four locally sympatric or parapatric sister taxa pairs with varying levels of gene flow. Rarely hybridizing taxa pairs (E. cassioides-E. tyndarus, E. euryale-E. ligea) exhibited significant CHC differentiation at both interspecific and intersexual levels. Conversely, taxa pairs with no prior contact (E. melampus-E. sudetica) or frequent ongoing hybridization in their contact zones (E. euryale adyte-E. e. isarica) showed limited CHC differentiation. Our findings suggest that differentiation in CHC profiles scales with among-species gene flow. Although it remains unclear whether CHCs are involved in mate recognition in Erebia, the observed differentiation could play a role in reproductive isolation, particularly under environmental changes that promote novel interspecific interactions. Future research should explore the role of CHC divergence across hybrid zone gradients and pinpoint the genomic regions underlying CHC synthesis and perception.

See more in PubMed

Adams, S. A. , and Tsutsui N. D.. 2020. “The Evolution of Species Recognition Labels in Insects.” Philosophical Transactions of the Royal Society, B: Biological Sciences 375, no. 1802: 20190476. 10.1098/rstb.2019.0476. PubMed DOI PMC

Aitken, S. N. , and Whitlock M. C.. 2013. “Assisted Gene Flow to Facilitate Local Adaptation to Climate Change.” Annual Review of Ecology, Evolution, and Systematics 44, no. 1: 367–388. 10.1146/annurev-ecolsys-110512-135747. DOI

Augustijnen, H. , Bätscher L., Cesanek M., et al. 2024. “A Macroevolutionary Role for Chromosomal Fusion and Fission in PubMed DOI PMC

Augustijnen, H. , and Lucek K.. 2024. “Beyond Gene Flow: (Non)‐Parallelism of Secondary Contact in a Pair of Highly Differentiated Sibling Species.” Molecular Ecology 33, no. 17: e17488. 10.1111/mec.17488. PubMed DOI

Augustijnen, H. , Patsiou T., and Lucek K.. 2022. “Secondary Contact Rather Than Coexistence— PubMed DOI PMC

Augustijnen, H. , Patsiou T., Schmitt T., and Lucek K.. 2024. “Living on the Edge—Genomic and Ecological Delineation of Cryptic Lineages in the High‐Elevation Specialist DOI

Benjamini, Y. , and Yekutieli D.. 2001. “The Control of the False Discovery Rate in Multiple Testing Under Dependency.” Annals of Statistics 29, no. 4: 1165–1188. 10.1214/aos/1013699998. DOI

Blomquist, G. J. , and Ginzel M. D.. 2021. “Chemical Ecology, Biochemistry, and Molecular Biology of Insect Hydrocarbons.” Annual Review of Entomology 66, no. 1: 45–60. 10.1146/annurev-ento-031620-071754. PubMed DOI

Bouaouina, S. , Chittaro Y., Willi Y., and Lucek K.. 2023. “Asynchronous Life Cycles Contribute to Reproductive Isolation Between Two Alpine Butterflies.” Evolution Letters 7: qrad046. 10.1093/evlett/qrad046. PubMed DOI PMC

Brussard, P. F. , and Ehrlich P. R.. 1970. “Adult Behavior and Population Structure in DOI

Buckley, S. H. , Tregenza T., and Butlin R. K.. 2003. “Transitions in Cuticular Composition Across a Hybrid Zone: Historical Accident or Environmental Adaptation?” Biological Journal of the Linnean Society 78, no. 2: 193–201. 10.1046/j.1095-8312.2003.00147.x. DOI

Buellesbach, J. , Gadau J., Beukeboom L. W., et al. 2013. “Cuticular Hydrocarbon Divergence in the Jewel Wasp PubMed DOI PMC

Capblancq, T. , Mavárez J., Rioux D., and Després L.. 2019. “Speciation With Gene Flow: Evidence From a Complex of Alpine Butterflies ( PubMed DOI PMC

Carlsson, M. A. , Schäpers A., Nässel D. R., and Janz N.. 2013. “Organization of the Olfactory System of Nymphalidae Butterflies.” Chemical Senses 38, no. 4: 355–367. 10.1093/chemse/bjt008. PubMed DOI

Cupedo, F. 1996. “Die Morphologische Gliederung Des

Cupedo, F. , and Doorenweerd C.. 2022. “Mitochondrial DNA‐Based Phylogeography of the Large Ringlet DOI

Dapporto, L. 2007. “Cuticular Lipid Diversification in DOI

Dapporto, L. , Menchetti M., Dincă V., et al. 2024. “The Genetic Legacy of the Quaternary Ice Ages for West Palearctic Butterflies.” Science Advances 10, no. 38: eadm8596. 10.1126/sciadv.adm8596. PubMed DOI PMC

Ehlers, S. , and Schulz S.. 2023. “The Scent Chemistry of Butterflies.” Natural Product Reports 40, no. 4: 794–818. PubMed

Engsontia, P. , Sangket U., Chotigeat W., and Satasook C.. 2014. “Molecular Evolution of the Odorant and Gustatory Receptor Genes in Lepidopteran Insects: Implications for Their Adaptation and Speciation.” Journal of Molecular Evolution 79, no. 1: 21–39. 10.1007/s00239-014-9633-0. PubMed DOI

Etges, W. J. , de Oliveira C. C., Rajpurohit S., and Gibbs A. G.. 2017. “Effects of Temperature on Transcriptome and Cuticular Hydrocarbon Expression in Ecologically Differentiated Populations of Desert PubMed DOI PMC

Fezza, T. J. , Siderhurst M. S., Jang E. B., Stacy E. A., and Price D. K.. 2022. “Phenotypic Disruption of Cuticular Hydrocarbon Production in Hybrids Between Sympatric Species of Hawaiian Picture‐Wing PubMed DOI PMC

Gibbs, A. G. , Louie A. K., and Ayala J. A.. 1998. “Effects of Temperature on Cuticular Lipids and Water Balance in a Desert PubMed DOI

Grant, G. G. , Frech D., MacDonald L., Slessor K. N., and King G. G. S.. 1987. “Copulation Releaser Pheromone in Body Scales of Female Whitemarked Tussock Moth, PubMed DOI

Grula, J. W. , McChesney J. D., and Taylor O. R. J.. 1980. “Aphrodisiac Pheromones of the Sulfur Butterflies

Haubrich, K. , and Schmitt T.. 2007. “Cryptic Differentiation in Alpine‐Endemic, High‐Altitude Butterflies Reveals Down‐Slope Glacial Refugia.” Molecular Ecology 16, no. 17: 3643–3658. 10.1111/j.1365-294X.2007.03424.x. PubMed DOI

Heuskin, S. , Vanderplanck M., Bacquet P., et al. 2014. “The Composition of Cuticular Compounds Indicates Body Parts, Sex and Age in the Model Butterfly DOI

Holze, H. , Schrader L., and Buellesbach J.. 2021. “Advances in Deciphering the Genetic Basis of Insect Cuticular Hydrocarbon Biosynthesis and Variation.” Heredity 126: 219–234. 10.1038/s41437-020-00380-y. PubMed DOI PMC

Hood, G. R. , Jennings J. H., Bruzzese D. J., et al. 2022. “Cuticular Hydrocarbon Variation Among

Jospin, A. , Chittaro Y., Bolt D., et al. 2023. “Genomic Evidence for Three Distinct Species in the PubMed DOI PMC

Kather, R. , and Martin S. J.. 2012. “Cuticular Hydrocarbon Profiles as a Taxonomic Tool: Advantages, Limitations and Technical Aspects.” Physiological Entomology 37, no. 1: 25–32. 10.1111/j.1365-3032.2011.00826.x. DOI

Kleckova, I. , Konvicka M., and Klecka J.. 2014. “Thermoregulation and Microhabitat Use in Mountain Butterflies of the Genus PubMed DOI

Klečková, I. , Klečka J., Fric Z. F., et al. 2023. “Climatic Niche Conservatism and Ecological Diversification in the Holarctic Cold‐Dwelling Butterfly Genus DOI

Konvicka, M. , Kuras T., Liparova J., et al. 2021. “Low Winter Precipitation, but Not Warm Autumns and Springs, Threatens Mountain Butterflies in Middle‐High Mountains.” PeerJ 9: e12021. 10.7717/peerj.12021. PubMed DOI PMC

Konvicka, M. , Maradova M., Benes J., Fric Z., and Kepka P.. 2003. “Uphill Shifts in Distribution of Butterflies in The Czech Republic: Effects of Changing Climate Detected on a Regional Scale.” Global Ecology and Biogeography 12, no. 5: 403–410. 10.1046/j.1466-822X.2003.00053.x. DOI

Kuras, T. , Beneš J., and Konvicka M.. 2001. “Behaviour and Within‐Habitat Distribution of Adult

Lucek, K. , Butlin R. K., and Patsiou T.. 2020. “Secondary Contact Zones of Closely‐Related PubMed DOI

Luna, P. , and Dáttilo W.. 2024. “Climate Change Disrupts Insect Biotic Interactions: Cascading Effects Through the Web of Life.” In Effects of Climate Change on Insects: Physiological, Evolutionary, and Ecological Responses, edited by González‐Tokman D. and Dáttilo W.. Oxford University Press. 10.1093/oso/9780192864161.003.0015. DOI

Makki, R. , Cinnamon E., and Gould A. P.. 2014. “The Development and Functions of Oenocytes.” Annual Review of Entomology 59: 405–425. 10.1146/annurev-ento-011613-162056. PubMed DOI PMC

Martin, S. , and Drijfhout F.. 2009. “A Review of Ant Cuticular Hydrocarbons.” Journal of Chemical Ecology 35, no. 10: 1151–1161. 10.1007/s10886-009-9695-4. PubMed DOI

Mazzoni, C. J. , Ciofi C., and Waterhouse R. M.. 2023. “Biodiversity: An Atlas of European Reference Genomes.” Nature 619, no. 7969: 252. 10.1038/d41586-023-02229-w. PubMed DOI

Menzel, F. , Blaimer B. B., and Schmitt T.. 2017. “How Do Cuticular Hydrocarbons Evolve? Physiological Constraints and Climatic and Biotic Selection Pressures Act on a Complex Functional Trait.” Proceedings of the Royal Society B: Biological Sciences 284, no. 1850: 20161727. 10.1098/rspb.2016.1727. PubMed DOI PMC

Minter, M. , Dasmahapatra K. K., Thomas C. D., et al. 2020. “Past, Current, and Potential Future Distributions of Unique Genetic Diversity in a Cold‐Adapted Mountain Butterfly.” Ecology and Evolution 10, no. 20: 11155–11168. 10.1002/ece3.6755. PubMed DOI PMC

Moris, V. , Podsiadlowski L., Martin S., et al. 2023. “Intrasexual Cuticular Hydrocarbon Dimorphism in a Wasp Sheds Light on Hydrocarbon Biosynthesis Genes in Hymenoptera.” Communications Biology 6: 1–15. 10.1038/s42003-022-04370-0. PubMed DOI PMC

Neems, R. M. , and Butlin R. K.. 1997. “Variation in Cuticular Hydrocarbons Across a Hybrid Zone in the Grasshopper DOI

Nice, C. C. , Gompert Z., Fordyce J. A., Forister M. L., Lucas L. K., and Buerkle C. A.. 2013. “Hybrid Speciation and Independent Evolution in Lineages of Alpine Butterflies.” Evolution 67, no. 4: 1055–1068. 10.1111/evo.12019. PubMed DOI

Oksanen, J. , Simpson G., Blanchet F., et al. 2022. “vegan: Community Ecology Package_.” R package version 2.6‐4. https://CRAN.R‐project.org/package=vegan.

Ômura, H. , Noguchi T., and Ohta S.. 2020. “The Male Swallowtail Butterfly, DOI

Ômura, H. , Noguchi T., and Ohta S.. 2022. “Chemical Identity of Cuticular Lipid Components in the Mimetic Swallowtail Butterfly PubMed DOI

Ômura, H. , Yanai N., and Honda K.. 2012. “Sexual Dimorphism in Scent Substances and Cuticular Lipids of Adult PubMed DOI

Ômura, H. , and Yotsuzuka S.. 2015. “Male‐Specific Epicuticular Compounds of the Sulfur Butterfly DOI

Parkash, R. , Kalra B., and Sharma V.. 2008. “Changes in Cuticular Lipids, Water Loss and Desiccation Resistance in a Tropical Drosophilid: Analysis of Variation Between and Within Populations.” Fly 2, no. 4: 189–197. 10.4161/fly.6619. PubMed DOI

R Core Team . 2024. “R: A Language and Environment for Statistical Computing_.” R foundation for statistical computing, Vienna, Austria. https://www.R‐project.org/.

Redjdal, A. , Sahnoune M., Moali A., and De Biseau J.‐C.. 2023. “High Divergence of Cuticular Hydrocarbons and Hybridization Success in Two Allopatric Seven‐Spot Ladybugs.” Journal of Chemical Ecology 49, no. 3: 103–115. 10.1007/s10886-023-01406-5. PubMed DOI

Riesch, R. , Muschick M., Lindtke D., et al. 2017. “Transitions Between Phases of Genomic Differentiation During Stick‐Insect Speciation.” Nature Ecology & Evolution 1, no. 4: 82. 10.1038/s41559-017-0082. PubMed DOI

Rödder, D. , Schmitt T., Gros P., Ulrich W., and Habel J. C.. 2021. “Climate Change Drives Mountain Butterflies Towards the Summits.” Scientific Reports 11, no. 1: 14382. 10.1038/s41598-021-93826-0. PubMed DOI PMC

Rusuwa, B. B. , Chung H., Allen S. L., Frentiu F. D., and Chenoweth S. F.. 2022. “Natural Variation at a Single Gene Generates Sexual Antagonism Across Fitness Components in PubMed DOI

Schmid, R. , Heuckeroth S., Korf A., et al. 2023. “Integrative Analysis of Multimodal Mass Spectrometry Data in MZmine 3.” Nature Biotechnology 41, no. 4: 449. 10.1038/s41587-023-01690-2. PubMed DOI PMC

Schmitt, T. , Louy D., Zimmermann E., and Habel J. C.. 2016. “Species Radiation in the Alps: Multiple Range Shifts Caused Diversification in Ringlet Butterflies in the European High Mountains.” Organisms Diversity & Evolution 16, no. 4: 791–808. 10.1007/s13127-016-0282-6. DOI

Schwander, T. , Arbuthnott D., Gries R., Gries G., Nosil P., and Crespi B. J.. 2013. “Hydrocarbon Divergence and Reproductive Isolation in PubMed DOI PMC

Silberglied, R. E. 1984. “Visual Communication and Sexual Selection Among Butterflies.” In The Biology of Butterflies, edited by Vane‐Wright R. I. and Ackery P. R., 207–223. Academic Press.

Singleton, K. , Gries R., van Herk W. G., et al. 2022. “Identification of the Major Sex Pheromone Component of the Click Beetle PubMed DOI PMC

Sistri, G. , Menchetti M., Santini L., et al. 2022. “The Isolated DOI

Slone, J. D. , Pask G. M., Ferguson S. T., et al. 2017. “Functional Characterization of Odorant Receptors in the Ponerine Ant, PubMed DOI PMC

Sonderegger, P. 2005. “Die Erebien Der Schweiz (Lepidoptera: Satyrinae, Genus DOI

Steiger, S. , and Stökl J.. 2014. “The Role of Sexual Selection in the Evolution of Chemical Signals in Insects.” Insects 5: 423–438. 10.3390/insects5020423. PubMed DOI PMC

Sun, X. , Zhang X., Wu G., et al. 2017. “N‐Pentacosane Acts as Both Contact and Volatile Pheromone in the Tea Weevil, PubMed DOI

Todesco, M. , Pascual M. A., Owens G. L., et al. 2016. “Hybridization and Extinction.” Evolutionary Applications 9, no. 7: 892–908. 10.1111/eva.12367. PubMed DOI PMC

Torres‐Oliva, M. , Almeida F. C., Sánchez‐Gracia A., and Rozas J.. 2016. “Comparative Genomics Uncovers Unique Gene Turnover and Evolutionary Rates in a Gene Family Involved in the Detection of Insect Cuticular Pheromones.” Genome Biology and Evolution 8, no. 6: 1734–1747. 10.1093/gbe/evw108. DOI

van Zweden, J. S. , Dreier S., and d'Ettorre P.. 2009. “Disentangling Environmental and Heritable Nestmate Recognition Cues in a Carpenter Ant.” Journal of Insect Physiology 55, no. 2: 159–164. 10.1016/j.jinsphys.2008.11.001. PubMed DOI

Wicker‐Thomas, C. , Garrido D., Bontonou G., et al. 2015. “Flexible Origin of Hydrocarbon/Pheromone Precursors in PubMed DOI PMC

Wilby, A. , Grubb L. A., Burrows J., and Menéndez R.. 2024. “Contrasting Responses to Microhabitat and Temperature Determine Breeding Habitat Differentiation Between Two Viola‐Feeding Butterflies.” Ecological Entomology 49, no. 3: 407–417. 10.1111/een.13312. DOI

Wu, N. , Evans E., Van Schooten B., et al. 2022. “Widespread Gene Expression Divergence in Butterfly Sensory Tissues Plays a Fundamental Role During Reproductive Isolation and Speciation.” Molecular Biology and Evolution 39, no. 11: msac225. 10.1093/molbev/msac225. PubMed DOI PMC

See more in PubMed

figshare
10.6084/m9.figshare.28070693.v1

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...