Genetic data and meteorological conditions suggesting windborne transmission of H5N1 high-pathogenicity avian influenza between commercial poultry outbreaks

. 2025 ; 20 (9) : e0319880. [epub] 20250905

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40911554

Understanding the transmission routes of high-pathogenicity avian influenza (HPAI) is crucial for developing effective control measures to prevent its spread. In this context, windborne transmission, the idea that the virus could travel through the air over considerable distances, is a contentious concept, and documented cases have been rare. Here, though, we provide genetic evidence supporting the feasibility of windborne transmission. During the 2023-24 HPAI season, molecular surveillance identified identical H5N1 strains among a cluster of unrelated commercial farms about 8 km apart in the Czech Republic. The episode started with the abrupt mortality of fattening ducks on one farm. This was followed by disease outbreaks at two nearby high-biosecurity chicken farms. Using genetic, epizootiological, meteorological and geographical data, we reconstructed a mosaic of events strongly suggesting wind was the most probable mechanism of infection transmission between poultry in at least two independent cases. By aligning the genetic and meteorological data with critical outbreak events, we determined the most likely time window during which the transmission occurred and inferred the sequence of infected houses at the recipient sites. Our results suggest that the contaminated plume emitted from the infected fattening duck farm was the critical medium of HPAI transmission, rather than the dust generated during depopulation. Furthermore, our results also strongly implicate the role of confined mechanically-ventilated buildings with high population densities in facilitating windborne transmission and propagating virus concentrations below the minimum infectious dose at the recipient sites. These findings underscore the importance of considering windborne spread in future outbreak mitigation strategies.

Zobrazit více v PubMed

Cambra-López M, Aarnink AJA, Zhao Y, Calvet S, Torres AG. Airborne particulate matter from livestock production systems: a review of an air pollution problem. Environ Pollut. 2010;158(1):1–17. doi: 10.1016/j.envpol.2009.07.011 PubMed DOI

Le Bouquin S, Huneau-Salaün A, Huonnic D, Balaine L, Martin S, Michel V. Aerial dust concentration in cage-housed, floor-housed, and aviary facilities for laying hens. Poult Sci. 2013;92(11):2827–33. doi: 10.3382/ps.2013-03032 PubMed DOI

Bist RB, Chai L. Advanced Strategies for Mitigating Particulate Matter Generations in Poultry Houses. Appl Sci. 2022;12(22):11323. doi: 10.3390/app122211323 DOI

Jonges M, van Leuken J, Wouters I, Koch G, Meijer A, Koopmans M. Wind-Mediated Spread of Low-Pathogenic Avian Influenza Virus into the Environment during Outbreaks at Commercial Poultry Farms. PLoS One. 2015;10(5):e0125401. doi: 10.1371/journal.pone.0125401 PubMed DOI PMC

Torremorell M, Alonso C, Davies PR, Raynor PC, Patnayak D, Torchetti M, et al. Investigation into the Airborne Dissemination of H5N2 Highly Pathogenic Avian Influenza Virus During the 2015 Spring Outbreaks in the Midwestern United States. Avian Dis. 2016;60(3):637–43. doi: 10.1637/11395-021816-Reg.1 PubMed DOI

Zhou J, Wu J, Zeng X, Huang G, Zou L, Song Y, et al. Isolation of H5N6, H7N9 and H9N2 avian influenza A viruses from air sampled at live poultry markets in China, 2014 and 2015. Euro Surveill. 2016;21(35):30331. doi: 10.2807/1560-7917.ES.2016.21.35.30331 PubMed DOI PMC

Scoizec A, Niqueux E, Thomas R, Daniel P, Schmitz A, Le Bouquin S. Airborne Detection of H5N8 Highly Pathogenic Avian Influenza Virus Genome in Poultry Farms, France. Front Vet Sci. 2018;5:15. doi: 10.3389/fvets.2018.00015 PubMed DOI PMC

Wei J, Zhou J, Cheng K, Wu J, Zhong Z, Song Y, et al. Assessing the risk of downwind spread of avian influenza virus via airborne particles from an urban wholesale poultry market. Build Environ. 2018;127:120–6. doi: 10.1016/j.buildenv.2017.10.037 PubMed DOI PMC

Filaire F, Lebre L, Foret-Lucas C, Vergne T, Daniel P, Lelièvre A, et al. Highly Pathogenic Avian Influenza A(H5N8) Clade 2.3.4.4b Virus in Dust Samples from Poultry Farms, France, 2021. Emerg Infect Dis. 2022;28(7):1446–50. doi: 10.3201/eid2807.212247 PubMed DOI PMC

James J, Warren CJ, De Silva D, Lewis T, Grace K, Reid SM, et al. The Role of Airborne Particles in the Epidemiology of Clade 2.3.4.4b H5N1 High Pathogenicity Avian Influenza Virus in Commercial Poultry Production Units. Viruses. 2023;15(4):1002. doi: 10.3390/v15041002 PubMed DOI PMC

Spekreijse D, Bouma A, Koch G, Stegeman JA. Airborne transmission of a highly pathogenic avian influenza virus strain H5N1 between groups of chickens quantified in an experimental setting. Vet Microbiol. 2011;152(1–2):88–95. doi: 10.1016/j.vetmic.2011.04.024 PubMed DOI

Tsukamoto K, Imada T, Tanimura N, Okamatsu M, Mase M, Mizuhara T, et al. Impact of Different Husbandry Conditions on Contact and Airborne Transmission of H5N1 Highly Pathogenic Avian Influenza Virus to Chickens. Avian Diseases. 2007;51(1):129–32. doi: 10.1637/0005-2086(2007)051[0129:iodhco]2.0.co;2 PubMed DOI

Yee KS, Carpenter TE, Farver TB, Cardona CJ. An evaluation of transmission routes for low pathogenicity avian influenza virus among chickens sold in live bird markets. Virology. 2009;394(1):19–27. doi: 10.1016/j.virol.2009.08.017 PubMed DOI

Spekreijse D, Bouma A, Koch G, Stegeman A. Quantification of dust-borne transmission of highly pathogenic avian influenza virus between chickens. Influenza Other Respir Viruses. 2013;7(2):132–8. doi: 10.1111/j.1750-2659.2012.00362.x PubMed DOI PMC

Bertran K, Balzli C, Kwon Y-K, Tumpey TM, Clark A, Swayne DE. Airborne Transmission of Highly Pathogenic Influenza Virus during Processing of Infected Poultry. Emerg Infect Dis. 2017;23(11):1806–14. doi: 10.3201/eid2311.170672 PubMed DOI PMC

Davison S, Eckroade RJ, Ziegler AF. A review of the 1996-98 nonpathogenic H7N2 avian influenza outbreak in Pennsylvania. Avian Dis. 2003;47(3 Suppl):823–7. doi: 10.1637/0005-2086-47.s3.823 PubMed DOI

Corzo CA, Culhane M, Dee S, Morrison RB, Torremorell M. Airborne detection and quantification of swine influenza a virus in air samples collected inside, outside and downwind from swine barns. PLoS One. 2013;8(8):e71444. doi: 10.1371/journal.pone.0071444 PubMed DOI PMC

Boender GJ, Hagenaars TJ, Bouma A, Nodelijk G, Elbers ARW, de Jong MCM, et al. Risk maps for the spread of highly pathogenic avian influenza in poultry. PLoS Comput Biol. 2007;3(4):e71. doi: 10.1371/journal.pcbi.0030071 PubMed DOI PMC

Ypma RJF, Jonges M, Bataille A, Stegeman A, Koch G, van Boven M, et al. Genetic data provide evidence for wind-mediated transmission of highly pathogenic avian influenza. J Infect Dis. 2013;207(5):730–5. doi: 10.1093/infdis/jis757 PubMed DOI

Longest AK, Rockey NC, Lakdawala SS, Marr LC. Review of factors affecting virus inactivation in aerosols and droplets. J R Soc Interface. 2024;21(215):18. doi: 10.1098/rsif.2024.0018 PubMed DOI PMC

Ssematimba A, Hagenaars TJ, de Jong MCM. Modelling the wind-borne spread of highly pathogenic avian influenza virus between farms. PLoS One. 2012;7(2):e31114. doi: 10.1371/journal.pone.0031114 PubMed DOI PMC

Davis J, Garner MG, East IJ. Analysis of local spread of equine influenza in the Park Ridge region of Queensland. Transbound Emerg Dis. 2009;56(1–2):31–8. doi: 10.1111/j.1865-1682.2008.01060.x PubMed DOI

Corzo CA, Gramer M, Lauer D, Davies PR. Prevalence and risk factors for H1N1 and H3N2 influenza A virus infections in Minnesota turkey premises. Avian Dis. 2012;56(3):488–93. doi: 10.1637/10037-121211-Reg.1 PubMed DOI

Zhao Y, Richardson B, Takle E, Chai L, Schmitt D, Xin H. Airborne transmission may have played a role in the spread of 2015 highly pathogenic avian influenza outbreaks in the United States. Sci Rep. 2019;9(1):11755. doi: 10.1038/s41598-019-47788-z PubMed DOI PMC

Bataille A, van der Meer F, Stegeman A, Koch G. Evolutionary analysis of inter-farm transmission dynamics in a highly pathogenic avian influenza epidemic. PLoS Pathog. 2011;7(6):e1002094. doi: 10.1371/journal.ppat.1002094 PubMed DOI PMC

von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61(4):344–9. doi: 10.1016/j.jclinepi.2007.11.008 PubMed DOI

Arctic Network. Available from: https://web.archive.org/web/20221021094307/ https://artic.network

Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10(2):giab008. doi: 10.1093/gigascience/giab008 PubMed DOI PMC

Sahlin K, Lim MCW, Prost S. NGSpeciesID: DNA barcode and amplicon consensus generation from long‐read sequencing data. Ecol Evol. 2021;1–7. PubMed PMC

Oosterbroek S, Doorenspleet K, Nijland R, Jansen L. Decona: From demultiplexing to consensus for Nanopore amplicon data. ARPHA Conference Abstracts. 2021;4:e65029. doi: 10.3897/aca.4.e65029 DOI

Vierstraete AR, Braeckman BP. Amplicon_sorter: A tool for reference-free amplicon sorting based on sequence similarity and for building consensus sequences. Ecol Evol. 2022;12(3):e8603. doi: 10.1002/ece3.8603 PubMed DOI PMC

Moshiri N. ViralConsensus: a fast and memory-efficient tool for calling viral consensus genome sequences directly from read alignment data. Bioinformatics. 2023;39(5):btad317. doi: 10.1093/bioinformatics/btad317 PubMed DOI PMC

Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20(4):1160–6. doi: 10.1093/bib/bbx108 PubMed DOI PMC

Hatcher EL, Zhdanov SA, Bao Y, Blinkova O, Nawrocki EP, Ostapchuck Y, et al. Virus Variation Resource - improved response to emergent viral outbreaks. Nucleic Acids Res. 2017;45(D1):D482–90. doi: 10.1093/nar/gkw1065 PubMed DOI PMC

Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro Surveill. 2017;22(13):30494. doi: 10.2807/1560-7917.ES.2017.22.13.30494 PubMed DOI PMC

Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30(22):3276–8. doi: 10.1093/bioinformatics/btu531 PubMed DOI PMC

Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44(W1):W232-5. doi: 10.1093/nar/gkw256 PubMed DOI PMC

Rice P, Longden I, Bleasby A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000;16:276–7. PubMed

PopART. [cited 29 November 2024]. Available from: https://popart.maths.otago.ac.nz/download/

Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16(1):37–48. doi: 10.1093/oxfordjournals.molbev.a026036 PubMed DOI

Opatsky Rybnik. Available from: https://www.virtualtravel.cz/valdikov/opatsky-rybnik

Fusaro A, Zecchin B, Giussani E, Palumbo E, Agüero-García M, Bachofen C, et al. High pathogenic avian influenza A(H5) viruses of clade 2.3.4.4b in Europe-Why trends of virus evolution are more difficult to predict. Virus Evol. 2024;10(1):veae027. doi: 10.1093/ve/veae027 PubMed DOI PMC

Romero Tejeda A, Aiello R, Salomoni A, Berton V, Vascellari M, Cattoli G. Susceptibility to and transmission of H5N1 and H7N1 highly pathogenic avian influenza viruses in bank voles (Myodes glareolus). Vet Res. 2015;46(1):51. doi: 10.1186/s13567-015-0184-1 PubMed DOI PMC

Root J, Shriner S. Avian Influenza A Virus Associations in Wild, Terrestrial Mammals: A Review of Potential Synanthropic Vectors to Poultry Facilities. Viruses. 2020;12(12):1352. doi: 10.3390/v12121352 PubMed DOI PMC

Chestakova IV, van der Linden A, Bellido Martin B, Caliendo V, Vuong O, Thewessen S, et al. High number of HPAI H5 virus infections and antibodies in wild carnivores in the Netherlands, 2020-2022. Emerg Microbes Infect. 2023;12(2):2270068. doi: 10.1080/22221751.2023.2270068 PubMed DOI PMC

Kutkat O, Gomaa M, Moatasim Y, El Taweel A, Kamel MN, El Sayes M, et al. Highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b in wild rats in Egypt during 2023. Emerg Microbes Infect. 2024;13(1):2396874. doi: 10.1080/22221751.2024.2396874 PubMed DOI PMC

Guinat C, Rouchy N, Camy F, Guérin JL, Paul MC. Exploring the Wind-Borne Spread of Highly Pathogenic Avian Influenza H5N8 During the 2016-2017 Epizootic in France. Avian Dis. 2019;63(sp1):246–8. doi: 10.1637/11881-042718-ResNote.1 PubMed DOI

Nguyen XD, Zhao Y, Lin J, Purswell JL, Tabler T, Voy B, et al. Modeling long-distance airborne transmission of highly pathogenic avian influenza carried by dust particles. Sci Rep. 2023;13(1):16255. doi: 10.1038/s41598-023-42897-2 PubMed DOI PMC

The Poultry Site. Key Factors for Poultry House Ventilation. Available from: https://www.thepoultrysite.com/articles/key-factors-for-poultry-house-ventilation

Poultry World. Tips and tricks for proper ventilation. Available from: https://www.poultryworld.net/specials/tips-and-tricks-for-proper-ventilation

Elbers ARW, Gonzales JL, Koene MGJ, Germeraad EA, Hakze-van der Honing RW, van der Most M, et al. Monitoring Wind-Borne Particle Matter Entering Poultry Farms via the Air-Inlet: Highly Pathogenic Avian Influenza Virus and Other Pathogens Risk. Pathogens. 2022;11(12):1534. doi: 10.3390/pathogens11121534 PubMed DOI PMC

Bossers A, de Rooij MM, van Schothorst I, Velkers FC, Smit LA. Detection of airborne wild waterbird-derived DNA demonstrates potential for transmission of avian influenza virus via air inlets into poultry houses, the Netherlands, 2021 to 2022. Euro Surveill. 2024;29(40):2400350. doi: 10.2807/1560-7917.ES.2024.29.40.2400350 PubMed DOI PMC

Adlhoch C, Fusaro A, Gonzales JL, EFSA (European Food Safety Authority), ECDC (European Centre for Disease Prevention and Control), EURL (European Reference Laboratory for Avian Influenza). Scientific report: Avian influenza overview September–December 2022. EFSA J. 2023;21(1):7786. doi: 10.2903/j.efsa.2022.7786 PubMed DOI PMC

Bowes VA, Ritchie SJ, Byrne S, Sojonky K, Bidulka JJ, Robinson JH. Virus characterization, clinical presentation, and pathology associated with H7N3 avian influenza in British Columbia broiler breeder chickens in 2004. Avian Dis. 2004;48(4):928–34. doi: 10.1637/7218-060304R PubMed DOI

Swayne D. Epidemiology of Avian Influenza in Agricultural and Other Man-Made Systems. In: Swayne DE, editor. Avian Influenza. 1st edition. Ames: Blackwell Publishing; 2008. p. 59–85.

World Organisation for Animal Health. Biosecurity procedures in poultry production. World Organisation for Animal Health. 2022.

Ouyang H, Wang L, Sapkota D, Yang M, Morán J, Li L, et al. Control technologies to prevent aerosol-based disease transmission in animal agriculture production settings: a review of established and emerging approaches. Front Vet Sci. 2023;10:1291312. doi: 10.3389/fvets.2023.1291312 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...