Language dysfunction as a primary feature of cognitive decline in neurological populations
Status Publisher Language English Country Austria Media print-electronic
Document type Journal Article, Review
PubMed
40913642
DOI
10.1007/s00702-025-03015-w
PII: 10.1007/s00702-025-03015-w
Knihovny.cz E-resources
- Keywords
- Cognition, Cognitive impairment, Language, Neurodegenerative, Neurological,
- Publication type
- Journal Article MeSH
- Review MeSH
Cognitive decline is a common feature of neurologic conditions, with language functions often affected. Word finding difficulties are commonly reported to neurologists in clinic. Receptive language dysfunction (i.e., comprehension) tends to be more difficult to recognize for both the patient and the clinician. Subtle yet pervasive decrements in language may be a key feature (and potential driver) of pathological cognitive decline inherent to neurologic diseases involving a primary or secondary neurodegenerative process. While severe language impairment such as aphasia presenting in the context of stroke or dementia has been studied in detail, mild or insidious presentations remain relatively understudied. In this review, we evaluate neural substrates and clinical manifestations of language deficits noted in four neurologic populations: Alzheimer's disease (AD), stroke, multiple sclerosis (MS), and Parkinson's disease (PD). Despite differences in etiology and pathophysiology, these four neurologic populations each present with prominent language dysfunction. For each, we describe neuroanatomical substrates and networks underlying language dysfunction. We then describe current observations of language dysfunction in each population. We incorporate a discussion of emerging speech measurement tools employing machine learning (ML) and artificial intelligence (AI). Overall, we provide evidence to support a nascent hypothesis of language dysfunction as a potential driver of cognitive decline across neurologic populations with the aim of motivating novel research insights and informing clinical care.
Clinical Neurology Research Center Shiraz University of Medical Sciences Shiraz Iran
Deakin University Geelong VIC Australia
See more in PubMed
Aabedi AA, Kakaizada S, Young JS et al (2021) Convergence of heteromodal lexical retrieval in the lateral prefrontal cortex. Sci Rep 11(1):6305. https://doi.org/10.1038/S41598-021-85802-5 PubMed DOI PMC
Aarsland D, Batzu L, Halliday GM et al (2021) Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers 7(1):1–21. https://doi.org/10.1038/S41572-021-00280-3 DOI
Aryal SK, Prioleau H, Burge L (2023) Acoustic-linguistic features for modeling neurological task score in alzheimers. Pac Symp Biocomput 2023:335–346. https://doi.org/10.1142/9789811270611_0031 DOI
Baddeley A, Gathercole S, Papagno C (1998) The phonological loop as a language learning device. Psychol Rev 105(1):158–173. https://doi.org/10.1037/0033-295X.105.1.158 PubMed DOI
Baiano C, Barone P, Trojano L, Santangelo G (2020) Prevalence and clinical aspects of mild cognitive impairment in Parkinson’s disease: a meta-analysis. Mov Disord 35(1):45–54. https://doi.org/10.1002/MDS.27902 PubMed DOI
Benítez-Burraco A, Ivanova O (2024) Language in healthy and pathological ageing: methodological milestones and challenges. Int J Lang Commun Disord 59(1):4–12. https://doi.org/10.1111/1460-6984.13003 PubMed DOI
Bernardes R, da Silva FS, Oliveira Barbosa JH, Rondinoni C et al (2017) Neuro-degeneration profile of Alzheimer’s patients: a brain morphometry study. Neuroimage Clin 15:15–24. https://doi.org/10.1016/J.NICL.2017.04.001 DOI
Biesbroek JM, Lim JS, Weaver NA et al (2021) Anatomy of phonemic and semantic fluency: a lesion and disconnectome study in 1231 stroke patients. Cortex 143:148–163. https://doi.org/10.1016/J.CORTEX.2021.06.019 PubMed DOI
Billot A, Thiebaut de Schotten M, Parrish TB et al (2022) Structural disconnections associated with language impairments in chronic post-stroke aphasia using disconnectome maps. Cortex. 55:90–106. https://doi.org/10.1016/j.cortex.2022.06.016 DOI
Blasi DE, Henrich J, Adamou E, Kemmerer D, Majid A (2022) Over-reliance on English hinders cognitive science. Trends Cogn Sci 26(12):1153–1170. https://doi.org/10.1016/j.tics.2022.09.015 PubMed DOI
Bolhuis JJ, Tattersall I, Chomsky N, Berwick RC (2014a) How could language have evolved? PLoS Biol. https://doi.org/10.1371/JOURNAL.PBIO.1001934 PubMed DOI PMC
Bolhuis JJ, Tattersall I, Chomsky N, Berwick RC (2014b) How could language have evolved? PLoS Biol 12(8):e1001934. https://doi.org/10.1371/JOURNAL.PBIO.1001934 PubMed DOI PMC
Bonilha L, Hillis AE, Wilmskoetter J et al (2019) Neural structures supporting spontaneous and assisted (entrained) speech fluency. Brain 142(12):3951–3962. https://doi.org/10.1093/brain/awz309 PubMed DOI PMC
Bouvier L, Groulx B, Martel-Sauvageau V, Monetta L (2017) Language disturbances after non-thalamic subcortical stroke: a review of the literature. Geriatr Psychol Neuropsychiatr Vieil 15(2):173–184. https://doi.org/10.1684/PNV.2017.0666 PubMed DOI
Burke DM, Shafto MA (2004) Aging and language production. Curr Dir Psychol Sci 13(1):21. https://doi.org/10.1111/J.0963-7214.2004.01301006.X PubMed DOI PMC
Burke DM, Locantore JK, Austin AA, Chae B (2004) Cherry pit primes brad pitt: homophone priming effects on young and older adults’ production of proper names. Psychol Sci 15(3):164–170. https://doi.org/10.1111/J.0956-7976.2004.01503004.X PubMed DOI
Burke E, Gunstad J, Pavlenko O, Hamrick P (2024) Distinguishable features of spontaneous speech in Alzheimer’s clinical syndrome and healthy controls. Aging Neuropsychol Cogn 31(3):575–586. https://doi.org/10.1080/13825585.2023.2221020 DOI
Butler CR, Brambati SM, Miller BL, Gorno-Tempini ML (2009) The neural correlates of verbal and nonverbal semantic processing deficits in neurodegenerative disease. Cogn Behav Neurol 22(2):73–80. https://doi.org/10.1097/WNN.0B013E318197925D PubMed DOI PMC
Camerino I, Ferreira J, Vonk JM et al (2024) Systematic review and meta-analyses of word production abilities in dysfunction of the basal ganglia: stroke, small vessel disease, Parkinson’s disease, and Huntington’s disease. Neuropsychol Rev 34(1):1–26. https://doi.org/10.1007/S11065-022-09570-3 PubMed DOI
Chapin K, Clarke N, Garrard P, Hinzen W (2022) A finer-grained linguistic profile of Alzheimer’s disease and Mild Cognitive Impairment. J Neurolinguistics. https://doi.org/10.1016/J.JNEUROLING.2022.101069 DOI
Cho S, Agmon G, Shellikeri S, et al. (2022) Prosodic characteristics of prepausal words produced by patients with neurodegenerative disease. In: Proceedings of the International Conference on Speech Prosody. https://doi.org/10.21437/SPEECHPROSODY.2022-25 ,
Dadario NB, Piper K, Young IM, Sherman JH, Sughrue ME (2023) Functional connectivity reveals different brain networks underlying the idiopathic foreign accent syndrome. Neurol Sci 44(9):3087–3097. https://doi.org/10.1007/S10072-023-06762-4 PubMed DOI
Dash D, Ferrari P, Wanga J (2024) Neural decoding of spontaneous overt and intended speech. J Speech Lang Hear Res 67(11):4216–4225. https://doi.org/10.1044/2024_JSLHR-24-00046 PubMed DOI PMC
Delgado-Álvarez A, Matias-Guiu JA, Delgado-Alonso C et al (2021) Cognitive processes underlying verbal fluency in multiple sclerosis. Front Neurol. https://doi.org/10.3389/FNEUR.2020.629183 PubMed DOI PMC
Di Cesare MG, Perpetuini D, Cardone D, Merla A (2024) Machine learning-assisted speech analysis for early detection of Parkinson’s disease: a study on speaker diarization and classification techniques. Sensors. https://doi.org/10.3390/s24051499 PubMed DOI PMC
Duong A, Whitehead V, Hanratty K, Chertkow H (2006) The nature of lexico-semantic processing deficits in mild cognitive impairment. Neuropsychologia 44(10):1928–1935. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2006.01.034 PubMed DOI
Favaro A, Tsai YT, Butala A et al (2023) Interpretable speech features vs. DNN embeddings: what to use in the automatic assessment of Parkinson’s disease in multi-lingual scenarios. Comput Biol Med 166:107559. https://doi.org/10.1016/J.COMPBIOMED.2023.107559 PubMed DOI
Ferris SH, Farlow M (2013) Language impairment in alzheimer’s disease and benefits of acetylcholinesterase inhibitors. Clin Interv Aging 8:1007–1014. https://doi.org/10.2147/CIA.S39959 PubMed DOI PMC
Ferstl EC, Neumann J, Bogler C, Von Cramon DY (2008) The extended language network: a meta-analysis of neuroimaging studies on text comprehension. Hum Brain Mapp 29(5):581–593. https://doi.org/10.1002/HBM.20422 PubMed DOI
Feyereisen P (1997) A meta-analytic procedure shows an age-related decline in picture naming: comments on Goulet, Ska, and Kahn (1994). J Speech Lang Hear Res 40(6):1328–1333. https://doi.org/10.1044/JSLHR.4006.1328 PubMed DOI
Galtier I, Nieto A, Mata M, Lorenzo JN, Barroso J (2023) Specific pattern of linguistic impairment in Parkinson’s disease patients with subjective cognitive decline and mild cognitive impairment predicts dementia. J Int Neuropsychol Soc 29(7):632–640. https://doi.org/10.1017/S1355617722000571 PubMed DOI
García AM, Escobar-Grisales D, Vásquez Correa JC et al (2022) Detecting Parkinson’s disease and its cognitive phenotypes via automated semantic analyses of action stories. NPJ Parkinsons Dis 8(1):1–10. https://doi.org/10.1038/S41531-022-00422-8 DOI
García-Gutiérrez F, Marquié M, Muñoz N et al (2023) Harnessing acoustic speech parameters to decipher amyloid status in individuals with mild cognitive impairment. Front Neurosci 17:1221401. https://doi.org/10.3389/FNINS.2023.1221401/BIBTEX PubMed DOI PMC
Giglio L, Ostarek M, Weber K, Hagoort P (2022a) Commonalities and asymmetries in the neurobiological infrastructure for language production and comprehension. Cereb Cortex 32(7):1405–1418. https://doi.org/10.1093/CERCOR/BHAB287 PubMed DOI
Giglio L, Ostarek M, Weber K, Hagoort P (2022b) Commonalities and asymmetries in the neurobiological infrastructure for language production and comprehension. Cereb Cortex 32(7):1405–1418. https://doi.org/10.1093/CERCOR/BHAB287 PubMed DOI
Gosztolya G, Svindt V, Bona J, Hoffmann I (2023) Extracting phonetic posterior-based features for detecting multiple sclerosis from speech. IEEE Trans Neural Syst Rehabil Eng 31:3234–3244. https://doi.org/10.1109/TNSRE.2023.3300532 PubMed DOI
Hajjar I, Okafor M, Choi JD et al (2023) Development of digital voice biomarkers and associations with cognition, cerebrospinal biomarkers, and neural representation in early Alzheimer’s disease. Alzheimer’s Dement Diagnos Assess Dis Monitor. https://doi.org/10.1002/DAD2.12393 DOI
Hajjar I, Okafor M, Choi JD et al (2023) Development of digital voice biomarkers and associations with cognition, cerebrospinal biomarkers, and neural representation in early Alzheimer’s disease. Alzheimer’s Dement Diagno Assess Dis Monit 15(1):e12393. https://doi.org/10.1002/DAD2.12393 DOI
Heine MK, Ober BA, Shenaut GK (1999) Naturally occurring and experimentally induced tip-of-the-tongue experiences in three adult age groups. Psychol Aging 14(3):445–457. https://doi.org/10.1037/0882-7974.14.3.445 PubMed DOI
Henry JD, Beatty WW (2006) Verbal fluency deficits in multiple sclerosis. Neuropsychologia 44(7):1166–1174. https://doi.org/10.1016/j.neuropsychologia.2005.10.006 PubMed DOI
Hodges JR, Salmon DP, Butters N (1991) The nature of the naming deficit in Alzheimer’s and Huntington’s disease. Brain 114(4):1547–1558. https://doi.org/10.1093/BRAIN/114.4.1547 PubMed DOI
Hu J, Small H, Kean H et al (2023) Precision fMRI reveals that the language-selective network supports both phrase-structure building and lexical access during language production. Cereb Cortex 33(8):4384–4404. https://doi.org/10.1093/CERCOR/BHAC350 PubMed DOI
Indefrey P, Levelt W (2025) The neural correlates of language production | Max Planck Institute. In: Gazzaniga M (ed) The new cognitive neurosciences, 2nd edition. MIT Press, pp. 845–865. https://www.mpi.nl/publications/item148271/neural-correlates-language-production . Accessed April 21, 2025
James LE, Burke DM (2000) Phonological priming effects on word retrieval and tip-of-the-tongue experiences in young and older adults. J Exp Psychol Learn Mem Cogn 26(6):1378–1391. https://doi.org/10.1037/0278-7393.26.6.1378 PubMed DOI
James C, Ranson JM, Everson R, Llewellyn DJ (2021) Performance of machine learning algorithms for predicting progression to dementia in memory clinic patients. JAMA Netw Open. https://doi.org/10.1001/JAMANETWORKOPEN.2021.36553 PubMed DOI PMC
Kemper S, Thompson M, Marquis J (2001) Longitudinal change in language production: effects of aging and dementia on grammatical complexity and propositional content. Psychol Aging 16(4):600–614. https://doi.org/10.1037/0882-7974.16.4.600 PubMed DOI
Kim C, Zhu V, Obeid J, Lenert L (2019) Natural language processing and machine learning algorithm to identify brain MRI reports with acute ischemic stroke. PLoS One 14(2):e0212778. https://doi.org/10.1371/JOURNAL.PONE.0212778 PubMed DOI PMC
Kirshner HS, Webb WG, Kelly MP (1984) The naming disorder of dementia. Neuropsychologia 22(1):23–30. https://doi.org/10.1016/0028-3932(84)90004-6 PubMed DOI
Klimova B, Maresova P, Valis M, Hort J, Kuca K (2015) Alzheimer’s disease and language impairments: Social intervention and medical treatment. Clin Interv Aging 10:1401–1408. https://doi.org/10.2147/CIA.S89714 PubMed DOI PMC
König A, Linz N, Baykara E et al (2023) Screening over speech in unselected populations for clinical trials in AD (PROSPECT-AD): study design and protocol. J Prevent Alzheimer’s Dis 10(2):314–321. https://doi.org/10.14283/JPAD.2023.11 DOI
König A, Linz N, Tröger J (2025) Novel digital speech biomarker for early detection of Alzheimer’s disease. Alzheimer’s Dement 20(Suppl 3):e083421. https://doi.org/10.1002/ALZ.083421 DOI
Lassmann H (2012) Cortical lesions in multiple sclerosis: inflammation versus neurodegeneration. Brain 135(10):2904–2905. https://doi.org/10.1093/BRAIN/AWS260 PubMed DOI
Lawrence A, Carvajal M, Ormsby J (2023) Beyond Broca’s and Wernicke’s: functional mapping of ancillary language centers prior to brain tumor surgery. Tomography 9(4):1254. https://doi.org/10.3390/TOMOGRAPHY9040100 PubMed DOI PMC
Leavitt VM, Tosto G, Riley CS (2018) Cognitive phenotypes in multiple sclerosis. J Neurol. https://doi.org/10.1007/s00415-018-8747-5 PubMed DOI
Levelt WJM (2001) Spoken word production: a theory of lexical access. Proc Natl Acad Sci USA 98(23):13464–13471. https://doi.org/10.1073/PNAS.231459498 PubMed DOI PMC
Lindsay H, Tröger J, König A (2021) Language impairment in Alzheimer’s disease-robust and explainable evidence for AD-related deterioration of spontaneous speech through multilingual machine learning. Front Aging Neurosci 13:642033. https://doi.org/10.3389/fnagi.2021.642033 PubMed DOI PMC
Liu L, Luo XG, Dy CL et al (2015) Characteristics of language impairment in Parkinson’s disease and its influencing factors. Transl Neurodegen. https://doi.org/10.1186/2047-9158-4-2 DOI
Liu N, Luo K, Yuan Z, Chen Y (2022) A transfer learning method for detecting alzheimer’s disease based on speech and natural language processing. Front Public Health. https://doi.org/10.3389/fpubh.2022.772592 PubMed DOI PMC
Liu J, Fu F, Li L et al (2023) Efficient pause extraction and encode strategy for Alzheimer’s disease detection using only acoustic features from spontaneous speech. Brain Sci. https://doi.org/10.3390/brainsci13030477 PubMed DOI PMC
Lowit A, Thies T, Steffen J et al (2022) Task-based profiles of language impairment and their relationship to cognitive dysfunction in Parkinson’s disease. PLoS One. https://doi.org/10.1371/JOURNAL.PONE.0276218 PubMed DOI PMC
MacKay DG, Abrams L (1998) Age-linked declines in retrieving orthographic knowledge: empirical, practical, and theoretical implications. Psychol Aging 13(4):647–662. https://doi.org/10.1037/0882-7974.13.4.647 PubMed DOI
MacKay DG, James LE (2004) Sequencing, speech production, and selective effects of aging on phonological and morphological speech errors. Psychol Aging 19(1):93–107. https://doi.org/10.1037/0882-7974.19.1.93 PubMed DOI
MacOir J, Routhier S, Auclair-Ouellet N, Wilson MA, Hudon C (2023) Validation of and normative data of the DVAQ-30, a new video-naming test for assessing verb anomia. Arch Clin Neuropsychol 38(1):80–90. https://doi.org/10.1093/ARCLIN/ACAC052 PubMed DOI
Mahajan P, Baths V (2021) Acoustic and language based deep learning approaches for Alzheimer’s dementia detection from Spontaneous speech. Front Aging Neurosci 13:623607. https://doi.org/10.3389/FNAGI.2021.623607/BIBTEX PubMed DOI PMC
Mainela-Arnold E, Evans JL, Coady J (2010) Beyond capacity limitations II: Effects of lexical processes on word recall in verbal working memory tasks in children with and without specific language impairment. J Speech Lang Hear Res 53(6):1656. https://doi.org/10.1044/1092-4388(2010/08-0240) PubMed DOI
Matias-Guiu JA, Suárez-Coalla P, Yus M et al (2022) Identification of the main components of spontaneous speech in primary progressive aphasia and their neural underpinnings using multimodal MRI and FDG-PET imaging. Cortex 146:141–160. https://doi.org/10.1016/j.cortex.2021.10.010 PubMed DOI
Matotek K, Saling MM, Gates P, Sedal L (2001) Subjective complaints, verbal fluency, and working memory in mild multiple sclerosis. Appl Neuropsychol 8(4):204–210. https://doi.org/10.1207/S15324826AN0804_2 PubMed DOI
Maylor EA (1990) Age, blocking and the tip of the tongue state. Br J Psychol 81(2):123–134. https://doi.org/10.1111/J.2044-8295.1990.TB02350.X PubMed DOI
McKay KA, Manouchehrinia A, Berrigan L, Fisk JD, Olsson T, Hillert J (2019) Long-term cognitive outcomes in patients with pediatric-onset vs adult-onset multiple sclerosis. JAMA Neurol 76(9):1028–1034. https://doi.org/10.1001/JAMANEUROL.2019.1546 PubMed DOI PMC
Melrose RJ, Campa OM, Harwood DG, Osato S, Mandelkern MA, Sultzer DL (2009) The neural correlates of naming and fluency deficits in Alzheimer’s disease: an FDG-PET study. Int J Geriatr Psychiatry 24(8):885. https://doi.org/10.1002/GPS.2229 PubMed DOI PMC
Minga J, Johnson M, Blake ML, Fromm D, MacWhinney B (2021) Making sense of right hemisphere discourse using RHDBank. Top Lang Disord 41(1):99–122. https://doi.org/10.1097/TLD.0000000000000244 PubMed DOI PMC
Noffs G, Boonstra FMC, Perera T et al (2021) Speech metrics, general disability, brain imaging and quality of life in multiple sclerosis. Eur J Neurol 28(1):259–268. https://doi.org/10.1111/ENE.14523 PubMed DOI
Novakova L, Gajdos M, Markova J et al (2023) Language impairment in Parkinson’s disease: fMRI study of sentence reading comprehension. Front Aging Neurosci. https://doi.org/10.3389/FNAGI.2023.1117473 PubMed DOI PMC
Parsapoor M (2023) AI-based assessments of speech and language impairments in dementia. Alzheimer’s Dementia 19(10):4675–4687. https://doi.org/10.1002/ALZ.13395 PubMed DOI
Plotas P, Nanousi V, Kantanis A et al (2023) Speech deficits in multiple sclerosis: a narrative review of the existing literature. Eur J Med Res. https://doi.org/10.1186/S40001-023-01230-3 PubMed DOI PMC
Rao SM, Leo GJ, Bernardin L, Unverzagt F (1991) Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology 41(5):685–691. http://www.ncbi.nlm.nih.gov/pubmed/2027484 . Accessed July 19, 2016
Robin J, Xu M, Balagopalan A et al (2023) Automated detection of progressive speech changes in early Alzheimer’s disease. Alzheimer’s and Dement Diagnos Assess Dis Monit. https://doi.org/10.1002/DAD2.12445 DOI
Rusz J, Tykalová T (2021) Does cognitive impairment influence motor speech performance in de novo Parkinson’s disease? Mov Disord 36(12):2980–2982. https://doi.org/10.1002/MDS.28836 PubMed DOI
Rusz J, Tykalova T, Ramig LO, Tripoliti E (2021) Guidelines for speech recording and acoustic analyses in dysarthrias of movement disorders. Mov Disord 36(4):803–814. https://doi.org/10.1002/MDS.28465 PubMed DOI
Sandry J, Simonet DV, Brandstadter R et al (2021) The Symbol Digit Modalities Test (SDMT) is sensitive but non-specific in MS: Lexical access speed, memory, and information processing speed independently contribute to SDMT performance. Mult Scler Relat Disord. https://doi.org/10.1016/J.MSARD.2021.102950 PubMed DOI
Sapir E (1929) The status of linguistics as a science. Language (Baltim) 5(4):207. https://doi.org/10.2307/409588 DOI
Soroski T, da Cunha Vasco T, Newton-Mason S et al (2022) Evaluating web-based automatic transcription for Alzheimer speech data: transcript comparison and machine learning analysis. JMIR Aging 5(3):e33460. https://doi.org/10.2196/33460 PubMed DOI PMC
Šubert M, Šimek M, Novotný M et al (2022a) Linguistic abnormalities in isolated rapid eye movement sleep behavior disorder. Mov Disord 37(9):1872–1882. https://doi.org/10.1002/MDS.29140;PAGE:STRING:ARTICLE/CHAPTER PubMed DOI
Šubert M, Šimek M, Novotný M et al (2022b) Linguistic abnormalities in isolated rapid eye movement sleep behavior disorder. Mov Disord 37(9):1872–1882. https://doi.org/10.1002/MDS.29140 PubMed DOI
Šubert M, Novotný M, Tykalová T et al (2023) Lexical and syntactic deficits analyzed via automated natural language processing: the new monitoring tool in multiple sclerosis. Ther Adv Neurol Disord. https://doi.org/10.1177/17562864231180719 PubMed DOI PMC
Šubert M, Novotný M, Tykalová T et al (2024) Spoken language alterations can predict phenoconversion in isolated rapid eye movement sleep behavior disorder: a multicenter study. Ann Neurol 95(3):530–543. https://doi.org/10.1002/ANA.26835 PubMed DOI
Taler V, Phillips NA (2008) Language performance in Alzheimer’s disease and mild cognitive impairment: a comparative review. J Clin Exp Neuropsychol 30(5):501–556. https://doi.org/10.1080/13803390701550128 PubMed DOI
Tamnes CK, Walhovd KB, Dale AM et al (2013) Brain development and aging: Overlapping and unique patterns of change. Neuroimage 68:63–74. https://doi.org/10.1016/j.neuroimage.2012.11.039 PubMed DOI
Taranu D, Tumani H, Holbrook J, Tumani V, Uttner I, Fissler P (2022) The TRACK-MS test battery: a very brief tool to track multiple sclerosis-related cognitive impairment. Biomedicines 10(11):2975. https://doi.org/10.3390/BIOMEDICINES10112975 PubMed DOI PMC
Ter Huurne D, Possemis N, Banning L et al (2023) Validation of an automated speech analysis of cognitive tasks within a semiautomated phone assessment. Digit Biomark 7(1):115–123. https://doi.org/10.1159/000533188 PubMed DOI PMC
Tomasi D, Volkow ND (2012) Resting functional connectivity of language networks: characterization and reproducibility. Mol Psychiatry 17(8):841–854. https://doi.org/10.1038/MP.2011.177 PubMed DOI PMC
Tomasi D, Volkow ND (2020) Network connectivity predicts language processing in healthy adults. Hum Brain Mapp 41(13):3696. https://doi.org/10.1002/HBM.25042 PubMed DOI PMC
Venneri A, Jahn-Carta C, De Marco M, Quaranta D, Marra C (2018) Diagnostic and prognostic role of semantic processing in preclinical Alzheimer’s disease. Biomark Med 12(6):637–651. https://doi.org/10.2217/BMM-2017-0324 PubMed DOI
Vigo I, Coelho L, Reis S (2022) Speech- and language-based classification of Alzheimer’s disease: a systematic review. Bioengineering 9(1):27. https://doi.org/10.3390/BIOENGINEERING9010027 PubMed DOI PMC
Walker LC (1981) The ontogeny of the neural substrate for language. J Hum Evol 10(5):429. https://doi.org/10.1016/S0047-2484(81)80007-3 PubMed DOI PMC
Woodruff-Pak DS (2008) Animal models of Alzheimer’s disease: therapeutic implications. J Alzheimer’s Dis 15(4):507–521. https://doi.org/10.3233/JAD-2008-15401 DOI
Yamada Y, Shinkawa K, Nemoto M, Nemoto K, Arai T (2023) A mobile application using automatic speech analysis for classifying Alzheimer’s disease and mild cognitive impairment. Comput Speech Lang 81:101514. https://doi.org/10.1016/J.CSL.2023.101514 DOI
Yokoi K, Iribe Y, Kitaoka N et al (2023) Analysis of spontaneous speech in Parkinson’s disease by natural language processing. Parkinsonism Relat Disord. https://doi.org/10.1016/j.parkreldis.2023.105411 PubMed DOI