Chitosan nanoparticles-encapsulated cannabis extracts and their antimicrobial potential against skin pathogens

. 2025 ; 12 () : 1644502. [epub] 20250821

Status In-Process Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40917837

Cannabis compounds are well-known for their therapeutic applications in the treatment of various health issues. These substances, mainly cannabinoids, are known for their antimicrobial properties and ability to interact with various cells through endocannabinoid receptors. However, the limitations of cannabis extract, particularly its viscosity, stickiness, and low bioavailability when applied topically, limit its use in dermatology. To enhance topical applications for treating bacterial infections and dermatophytosis, cannabis extracts were encapsulated in chitosan nanoparticles, an easily accessible and cost-effective. Cannabis extracts were prepared from three cannabis strains differing in content of major cannabinoids, namely Chocolope (THCA-A), Jonas 1 (CBDA), and Hemp G (CBGA), and subsequently were encapsulated in chitosan nanoparticles. The resulting particles were characterized, and antimicrobial and cytotoxic activity was evaluated. The mean size of particles ranged from 89.1 ± 24.8 nm for empty nanoparticles to 355.6 ± 101.6 nm for particles containing Hemp G extract. Considering the extract:chitosan ratio (1:10 w/w, 1:20 w/w respectively) and the encapsulation efficiency (EE) range from 44.65 ± 4.39% to 94.44 ± 0.93%, total amount of extracts encapsulated in chitosan nanoparticles ranged from 2.96 ± 0.05 to 5.61 ± 0.19% in 1 g of chitosan nanopowder. Most significant antimicrobial effect was observed against the fungi Nannizzia fulva CCF 6025, where the MIC80 of the pure extract from Jonas 1 variety was 256 μg/mL while the encapsulated extract in chitosan nanoparticles (1:10 w/w extract:chitosan ratio) inhibited growth at a concentration of 256 μg/mL of nanoparticles (corresponding to 13.05 ± 0.13 μg/mL of extract). Overall, encapsulation reduced the amount of extract required to inhibit the growth of pathogenic microorganisms by up to several times, notably in case of dermatophytes, compared to non-encapsulated extracts. Encapsulation also reduced the cytotoxic effects of the extracts on human keratinocytes. Furthermore, pure high-THCA-A extract and encapsulated extract in chitosan nanoparticles slightly increased cell viability after 72 h exposure in low concentrations compared to control. These results may suggest the chitosan nanoparticles-encapsulated formulations as a suitable topical delivery form of cannabis extracts, offering a possible adjunctive treatment of dermatophytosis and wound healing.

Zobrazit více v PubMed

Sontheimer RD. Skin is not the largest organ. J Invest Dermatol. (2014) 134:581–2. doi: 10.1038/jid.2013.335, PMID: PubMed DOI

Schommer NN, Gallo RL. Structure and function of the human skin microbiome. Trends Microbiol. (2013) 21:660–8. doi: 10.1016/j.tim.2013.10.001, PMID: PubMed DOI PMC

Hay RJ, Johns NE, Williams HC, Bolliger IW, Dellavalle RP, Margolis DJ, et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. J Invest Dermatol. (2014) 134:1527–34. doi: 10.1038/jid.2013.446, PMID: PubMed DOI

Sharma S, Verma KK. Skin and soft tissue infection. Indian J Pediatr. (2001) 68:S46–50. PubMed

Giudice P. Skin infections caused by PubMed DOI PMC

Faure-Cognet O, Fricker-Hidalgo H, Pelloux H, Leccia MT. Superficial fungal infections in a French teaching Hospital in Grenoble Area: retrospective study on 5470 samples from 2001 to 2011. Mycopathologia. (2016) 181:59–66. doi: 10.1007/s11046-015-9953-7, PMID: PubMed DOI

Panda S, Verma S. The menace of dermatophytosis in India: the evidence that we need. Indian J Dermatol Venereol Leprol. (2017) 83:281–4. doi: 10.4103/ijdvl.IJDVL_224_17, PMID: PubMed DOI

Begum J, Mir NA, Lingaraju MC, Buyamayum B, Dev K. Recent advances in the diagnosis of dermatophytosis. J Basic Microbiol. (2020) 60:293–303. doi: 10.1002/jobm.201900675, PMID: PubMed DOI

Ramaraj V, Vijayaraman R, Rangarajan S, Kindo A. Incidence and prevalence of dermatophytosis in and around Chennai, Tamilnadu, India. Int J Res Med Sci. (2016) 4:695–700. doi: 10.18203/2320-6012.ijrms20160483 DOI

Handa S, Villasis-Keever A, Shenoy M, Anandan S, Bhrushundi M, Garodia N, et al. No evidence of resistance to itraconazole in a prospective real-world trial of dermatomycosis in India. PLoS One. (2023) 18:e0281514. doi: 10.1371/journal.pone.0281514, PMID: PubMed DOI PMC

Heckler I, Sabalza M, Bojmehrani A, Venkataraman I, Thompson C. The need for fast and accurate detection of dermatomycosis. Med Mycol. (2023) 61. doi: 10.1093/mmy/myad037, PMID: PubMed DOI

Endale H, Mathewos M, Abdeta D. Potential causes of spread of antimicrobial resistance and preventive measures in one health perspective-A review. Infect Drug Resist. (2023) 16:7515–45. doi: 10.2147/IDR.S428837, PMID: PubMed DOI PMC

Alves FAR, de Morais SM, Sobrinho ACN, da Silva ING, Martins CG, Silva AA d S, et al. Chemical composition, antioxidant and antifungal activities of essential oils and extracts from DOI

Dadgostar P. Antimicrobial resistance: implications and costs. Infect Drug Resist. (2019) 12:3903–10. doi: 10.2147/IDR.S234610, PMID: PubMed DOI PMC

Ebert A, Monod M, Salamin K, Burmester A, Uhrlaß S, Wiegand C, et al. Alarming India-wide phenomenon of antifungal resistance in dermatophytes: a multicentre study. Mycoses. (2020) 63:717–28. doi: 10.1111/myc.13091, PMID: PubMed DOI

Nenoff P, Verma SB, Ebert A, Süß A, Fischer E, Auerswald E, et al. Spread of Terbinafine-resistant Trichophyton mentagrophytes type VIII (India) in Germany–“the tip of the iceberg?”. J. Fungi. (2020) 6:207. doi: 10.3390/jof6040207, PMID: PubMed DOI PMC

Zuardi AW. History of cannabis as a medicine: a review. Rev Bras Psiquiatr. (2006) 28:153–7. doi: 10.1590/S1516-44462006000200015, PMID: PubMed DOI

Dhadwal G, Kirchhof MG. The risks and benefits of Cannabis in the dermatology clinic. J Cutan Med Surg. (2018) 22:194–9. doi: 10.1177/1203475417738971, PMID: PubMed DOI

Wroński A, Jarocka-Karpowicz I, Stasiewicz A, Skrzydlewska E. Phytocannabinoids in the pharmacotherapy of psoriasis. Molecules. (2023) 28:1192. doi: 10.3390/molecules28031192, PMID: PubMed DOI PMC

Peyravian N, Deo S, Daunert S, Jimenez JJ. The anti-inflammatory effects of Cannabidiol (CBD) on acne. J Inflamm Res. (2022) 15:2795–801. doi: 10.2147/JIR.S355489, PMID: PubMed DOI PMC

Appendino G, Gibbons S, Giana A, Pagani A, Grassi G, Stavri M, et al. Antibacterial cannabinoids from PubMed DOI

Luz-Veiga M, Amorim M, Pinto-Ribeiro I, Oliveira ALS, Silva S, Pimentel LL, et al. Cannabidiol and Cannabigerol exert antimicrobial activity without compromising skin microbiota. Int J Mol Sci. (2023) 24:2389. doi: 10.3390/ijms24032389, PMID: PubMed DOI PMC

Mechoulam R, Gaoni Y. Hashish—IV. Tetrahedron. (1965) 21:1223–9. doi: 10.1016/0040-4020(65)80064-3, PMID: PubMed DOI

Blaskovich MAT, Kavanagh AM, Elliott AG, Zhang B, Ramu S, Amado M, et al. The antimicrobial potential of cannabidiol. Commun Biol. (2021) 4:7. doi: 10.1038/s42003-020-01530-y, PMID: PubMed DOI PMC

Harpaz D, Veltman B, Sadeh Y, Marks RS, Bernstein N, Eltzov E. The effect of cannabis toxicity on a model microbiome bacterium epitomized by a panel of bioluminescent PubMed DOI

Iseppi R, Brighenti V, Licata M, Lambertini A, Sabia C, Messi P, et al. Chemical characterization and evaluation of the antibacterial activity of essential oils from fibre-type PubMed DOI PMC

Jokić S, Jerković I, Pavić V, Aladić K, Molnar M, Kovač MJ, et al. Terpenes and cannabinoids in supercritical CO2 extracts of industrial hemp inflorescences: optimization of extraction. Antiradical Antibacterial Activity PubMed DOI PMC

Russo EB. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br J Pharmacol. (2011) 163:1344–64. doi: 10.1111/j.1476-5381.2011.01238.x, PMID: PubMed DOI PMC

Moreno T, Dyer P, Tallon S. Cannabinoid decarboxylation: A comparative kinetic study. Ind Eng Chem Res. (2020) 59:20307–15. doi: 10.1021/acs.iecr.0c03791 DOI

Anderson LL, Low IK, Banister SD, McGregor IS, Arnold JC. Pharmacokinetics of phytocannabinoid acids and anticonvulsant effect of cannabidiolic acid in a mouse model of Dravet syndrome. J Nat Prod. (2019) 82:3047–55. doi: 10.1021/acs.jnatprod.9b00600, PMID: PubMed DOI

MacCallum CA, Russo EB. Practical considerations in medical cannabis administration and dosing. Eur J Intern Med. (2018) 49:12–9. doi: 10.1016/j.ejim.2018.01.004, PMID: PubMed DOI

Stinchcomb AL, Valiveti S, Hammell DC, Ramsey DR. Human skin permeation of Δ8-tetrahydrocannabinol, cannabidiol and cannabinol. J Pharm Pharmacol. (2010) 56:291–7. doi: 10.1211/0022357022791 PubMed DOI

Aljawish A, Chevalot I, Jasniewski J, Scher J, Muniglia L. Enzymatic synthesis of chitosan derivatives and their potential applications. J Mol Catal B Enzym. (2015) 112:25–39. doi: 10.1016/j.molcatb.2014.10.014 DOI

Leonida MD, Belbekhouche S, Benzecry A, Peddineni M, Suria A, Carbonnier B. Antibacterial hop extracts encapsulated in nanochitosan matrices. Int J Biol Macromol. (2018) 120:1335–43. doi: 10.1016/j.ijbiomac.2018.09.003, PMID: PubMed DOI

AE-A ARM, A-O MR, Mahmoud MA, Shehata SM, Abdelazim NS. Chitosan nanoparticles as a carrier for DOI

Hassan EE, Parish RC, Gallo JM. Optimized formulation of magnetic chitosan microspheres containing the anticancer agent, oxantrazole. Pharm Res. (1992) 9:390–7. doi: 10.1023/A:1015803321609, PMID: PubMed DOI

Skala T, Kahánková Z, Tauchen J, Janatová A, Klouček P, Hubka V, et al. Medical cannabis dimethyl ether, ethanol and butane extracts inhibit the in vitro growth of bacteria and dermatophytes causing common skin diseases. Front Microbiol. (2022) 13:953092. doi: 10.3389/fmicb.2022.953092 PubMed DOI PMC

Qi L, Xu Z, Jiang X, Hu C, Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res. (2004) 339:2693–700. doi: 10.1016/j.carres.2004.09.007, PMID: PubMed DOI

CLSI Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Aroved Standard-Eight Ed. CLSI Document M07-A8 Clinical and Laboratory Standards Institute; Wayne: (2009)

CLSI . Reference method for broth dilution antifungal susceptibility testing of filamentous Fungi; Aroved standard—second edition In: CLSI document M38-A2. Wayne: Clinical and Laboratory Standards Institute; (2008).

Fouché M, Willers C, Hamman S, Malherbe C, Steenekamp J. Wound healing effects of Aloe muth-muth: in vitro investigations using immortalized human keratinocytes (HaCaT). Biology (Basel). (2020) 9:350. doi: 10.3390/biology9110350, PMID: PubMed DOI PMC

Srisawat T, Chumkaew P, Heed-Chim W, Sukpondma Y, Kanokwiroon K. Phytochemical screening and cytotoxicity of crude extracts of Vatica diospyroides; Symington type LS. Trop J Pharm Res. (2013) 12:71–76. doi: 10.4314/tjpr.v12i1.12 DOI

Jain A, Thakur K, Sharma G, Kush P, Jain UK. Fabrication, characterization and cytotoxicity studies of ionically cross-linked docetaxel loaded chitosan nanoparticles. Carbohydr Polym. (2016) 137:65–74. doi: 10.1016/j.carbpol.2015.10.012, PMID: PubMed DOI

Bugnicourt L, Alcouffe P, Ladavière C. Elaboration of chitosan nanoparticles: favorable impact of a mild thermal treatment to obtain finely divided, spherical, and colloidally stable objects. Colloids Surf A Physicochem Eng Asp. (2014) 457:476–86. doi: 10.1016/j.colsurfa.2014.06.029 DOI

Pauluk D, Padilha AK, Khalil NM, Mainardes RM. Chitosan-coated zein nanoparticles for oral delivery of resveratrol: formation, characterization, stability, mucoadhesive properties and antioxidant activity. Food Hydrocoll. (2019) 94:411–7. doi: 10.1016/j.foodhyd.2019.03.042 DOI

Jeong M, Lee S, Seo C, Kwon E, Rho S, Cho M, et al. Chemical transformation of cannabidiol into psychotropic cannabinoids under acidic reaction conditions: identification of transformed products by GC-MS. J Food Drug Anal. (2023) 31:165–76. doi: 10.38212/2224-6614.3452, PMID: PubMed DOI PMC

Schofs L, Sparo MD, Sánchez Bruni SF. The antimicrobial effect behind PubMed DOI PMC

Ranarivelo LR, Randriamialinoro F, Rakotonandrasana S, Ratsimbason M, Vérité P, Lecso-Bornet M, et al. “Chemical composition and antimicrobial activity of leaf essential oil of

Du W-L, Niu S-S, Xu Y-L, Xu Z-R, Fan C-L. Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr Polym. (2009) 75:385–9. doi: 10.1016/j.carbpol.2008.07.039 DOI

Rudramurthy SM, Shankarnarayan SA, Dogra S, Shaw D, Mushtaq K, Paul RA, et al. Mutation in the squalene epoxidase gene of Trichophyton interdigitale and Trichophyton rubrum associated with Allylamine resistance. Antimicrob Agents Chemother. (2018) 62:e02522–e02517. doi: 10.1128/AAC.02522-17, PMID: PubMed DOI PMC

Turner CE, Elsohly MA. Biological activity of Cannabichromene, its homologs and isomers. J Clin Pharmacol. (1981) 21:283S–91S. doi: 10.1002/j.1552-4604.1981.tb02606.x, PMID: PubMed DOI

Pino S, Espinoza L, Jara-Gutiérrez C, Villena J, Olea AF, Díaz K. Study of Cannabis oils obtained from three varieties of C. Sativa and by two different extraction methods: phytochemical characterization and biological activities. Plants. (2023) 12:1772. doi: 10.3390/plants12091772, PMID: PubMed DOI PMC

Elshaer EE, Elwakil BH, Eskandrani A, Elshewemi SS, Olama ZA. Novel Clotrimazole and PubMed DOI PMC

de Carvalho SYB, Almeida RR, Pinto NAR, de Mayrinck C, Vieira SS, Haddad JF, et al. Encapsulation of essential oils using cinnamic acid grafted chitosan nanogel: preparation, characterization and antifungal activity. Int J Biol Macromol. (2021) 166:902–12. doi: 10.1016/j.ijbiomac.2020.10.247 PubMed DOI

Josiah AJ, Pillai SK, Cordier W, Nell M, Twilley D, Lall N, et al. Cannabidiol-mediated green synthesis, characterization, and cytotoxicity of metal nanoparticles in human keratinocyte cells. ACS Omega. (2021) 6:29078–90. doi: 10.1021/acsomega.1c04303, PMID: PubMed DOI PMC

Di Meo C, Tortolani D, Standoli S, Angelucci CB, Fanti F, Leuti A, et al. Effects of rare Phytocannabinoids on the endocannabinoid system of human keratinocytes. Int J Mol Sci. (2022) 23:5430. doi: 10.3390/ijms23105430, PMID: PubMed DOI PMC

Janatová A, Doskočil I, Božik M, Fraňková A, Tlustoš P, Klouček P. The chemical composition of ethanolic extracts from six genotypes of medical cannabis ( PubMed DOI

Muhammad Zen NA, Kobtrakul K, Khositanon P, Sanookpan K, Buranasudja V, Vimolmangkang S. Vegetable oil-based Cannabis: its cannabinoid profiling and Photoprotective effect on UVA-irradiated human skin keratinocytes. Thai J. Pharmaceut. Sci. (2023) 46:720–33. doi: 10.56808/3027-7922.2658 DOI

Ridolfi DM, Marcato PD, Justo GZ, Cordi L, Machado D, Durán N. Chitosan-solid lipid nanoparticles as carriers for topical delivery of tretinoin. Colloids Surf B Biointerfaces. (2012) 93:36–40. doi: 10.1016/j.colsurfb.2011.11.051, PMID: PubMed DOI

Wang L-L, Zhao R, Li J-Y, Li S-S, Liu M, Wang M, et al. Pharmacological activation of cannabinoid 2 receptor attenuates inflammation, fibrogenesis, and promotes re-epithelialization during skin wound healing. Eur J Pharmacol. (2016) 786:128–36. doi: 10.1016/j.ejphar.2016.06.006, PMID: PubMed DOI

LaVigne JE, Hecksel R, Keresztes A, Streicher JM. PubMed DOI PMC

Weigelt MA, Sivamani R, Lev-Tov H. The therapeutic potential of cannabinoids for integumentary wound management. Exp Dermatol. (2021) 30:201–11. doi: 10.1111/exd.14241, PMID: PubMed DOI

Martins AM, Gomes AL, Vilas Boas I, Marto J, Ribeiro HM. Cannabis-based products for the treatment of skin inflammatory diseases: A timely review. Pharmaceuticals. (2022) 15:210. doi: 10.3390/ph15020210, PMID: PubMed DOI PMC

Sezer AD, Cevher E. Topical drug delivery using chitosan nano- and microparticles. Expert Opin Drug Deliv. (2012) 9:1129–46. doi: 10.1517/17425247.2012.702752, PMID: PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...