Medical cannabis dimethyl ether, ethanol and butane extracts inhibit the in vitro growth of bacteria and dermatophytes causing common skin diseases
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36204633
PubMed Central
PMC9530109
DOI
10.3389/fmicb.2022.953092
Knihovny.cz E-zdroje
- Klíčová slova
- Cannabis sativa, antimicrobial activity, dermatophytes, dimethyl ether, extraction method, skin infection,
- Publikační typ
- časopisecké články MeSH
Cannabis preparations are gaining popularity among patients with various skin diseases. Due to the lack of scientific evidence, dermatologists remain cautious about their prescriptions. So far, only a few studies have been published about the effects of high-potency cannabis extracts on microorganisms (especially dermatophytes) causing skin problems that affect more than 25% of the worldwide population. Even though, the high-potency cannabis extracts prepared by cold extraction are mostly composed of non-psychoactive tetrahydrocannabinolic acid (THCA) and only low amount of THC, their use in topical treatment can be stigmatized. The in vitro antimicrobial and antifungal activity of two high potent cannabis strains extracted by three solvents traditionally or currently used by cannabis users (ethanol; EtOH, butane; BUT, dimethyl ether; DME) was investigated by broth dilution method. The chemical profile of cannabis was determined by high-performance liquid chromatography with ultraviolet detection and gas chromatography with mass spectrometer and flame ionization detector. The extraction methods significantly influenced chemical profile of extracts. The yield of EtOH extracts contained less cannabinoids and terpenes compared to BUT and DME ones. Most of the extracts was predominantly (>60%) composed of various cannabinoids, especially THCA. All of them demonstrated activity against 18 of the 19 microorganisms tested. The minimal inhibitory concentrations (MICs) of the extracts ranged from 4 to 256 μg/mL. In general, the bacteria were more susceptible to the extracts than dermatophytes. Due to the lower content of biologically active substances, the EtOH extracts were less effective against microorganisms. Cannabis extracts may be of value to treat dermatophytosis and other skin diseases caused by various microorganisms. Therefore, they could serve as an alternative or supportive treatment to commonly used antibiotics.
Department of Botany Faculty of Science Charles University Prague Czechia
Department of Food Science Czech University of Life Sciences Prague Prague Czechia
Zobrazit více v PubMed
Appendino G., Gibbons S., Giana A., Pagani A., Grassi G., Stavri M., et al. (2008). Antibacterial cannabinoids from Cannabis sativa: A structure-activity study. J. Nat. Prod. 71 1427–1430. 10.1021/np8002673 PubMed DOI
Alves F. A. R., Morais S. M. de, Nogueira Sobrinho A. C., Silva I. N. G. da, Martins C. G., Silva A. A., et al. (2018). Chemical composition, antioxidant and antifungal activities of essential oils and extracts from Plectranthus s. against dermatophytes fungi. Revista Brasileira de Saúde e Produção Anim. 19 105–115. 10.1590/s1519-99402018000100010 DOI
Al-Zouabi I., Stogner J. M., Miller B. L., Lane E. S. (2018). Butane hash oil and dabbing: Insights into use, amateur production techniques, and potential harm mitigation. Subst. Abuse Rehabil. 9 91–101. 10.2147/sar.s135252 PubMed DOI PMC
Anastassov G. E., Changoer L., Van Damme P. A. (2019). Anti-microbial composition comprising cannabinoids. (U.S. Patent No. 10441552). Alexandria, VA: U.S. Patent and Trademark Office.
Anderson L. L., Low I. K., Banister S. D., McGregor I. S., Arnold J. C. (2019). Pharmacokinetics of Phytocannabinoid Acids and Anticonvulsant Effect of Cannabidiolic Acid in a Mouse Model of Dravet Syndrome. J. Nat. Prod. 82 3047–3055. 10.1021/acs.jnatprod.9b00600 PubMed DOI
Aqil M., Ahad A., Sultana Y., Ali A. (2007). Status of terpenes as skin penetration enhancers. Drug Discov. Today 12 1061–1067. 10.1016/J.DRUDIS.2007.09.001 PubMed DOI
Becker K., Heilmann C., Peters G. (2014). Coagulase-negative staphylococci. Clin. Microbiol. Rev. 27 870–926. 10.1128/CMR.00109-13 PubMed DOI PMC
Begum J., Mir N. A., Lingaraju M. C., Buyamayum B., Dev K. (2020). Recent advances in the diagnosis of dermatophytosis. J. Basic Microbiol. 60 293–303. 10.1002/jobm.201900675 PubMed DOI
Blaskovich M. A. T., Kavanagh A. M., Elliott A. G., Zhang B., Ramu S., Amado M., et al. (2021). The antimicrobial potential of cannabidiol. Commun. Biol. 4:7. 10.1038/s42003-020-01530-y PubMed DOI PMC
Chan G. C. K., Hall W., Freeman T. P., Ferris J., Kelly A. B., Winstock A., et al. (2017). User characteristics and effect profile of Butane Hash Oil: An extremely high-potency cannabis concentrate. Drug Alcohol. Depend. 178 32–38. 10.1016/j.drugalcdep.2017.04.014 PubMed DOI
Cintosun A., Lara-Corrales I., Pope E. (2020). Mechanisms of Cannabinoids and Potential Alicability to Skin Diseases. Clin. Drug Investig. 40 293–304. 10.1007/s40261-020-00894-7 PubMed DOI
CLSI (2008). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Aroved Standard—Second Edition. CLSI document M38-A2. Wayne: Clinical and Laboratory Standards Institute.
CLSI (2009). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Aroved Standard-Eight Ed. CLSI Document M07-A8. Wayne: Clinical and Laboratory Standards Institute.
Dahham S. S., Tabana Y. M., Iqbal M. A., Ahamed M. B., Ezzat M. O., Majid A. S., et al. (2015). The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 20 11808–11829. 10.3390/molecules200711808 PubMed DOI PMC
Danielli L. J., Pippi B., Duarte J. A., Maciel A. J., Lopes W., Machado M. M., et al. (2018). Antifungal mechanism of action of Schinus lentiscifolius Marchand essential oil and its synergistic effect in vitro with terbinafine and ciclopirox against dermatophytes. J. Pharm. Pharmacol. 70 1216–1227. 10.1111/jphp.12949 PubMed DOI
Daniulaityte R., Lamy F. R., Barratt M., Nahhas R. W., Martins S. S., Boyer E. W., et al. (2017). Characterizing marijuana concentrate users: A web-based survey. Drug Alcohol. Depend. 178 399–407. 10.1016/j.drugalcdep.2017.05.034 PubMed DOI PMC
Dhadwal G., Kirchhof M. G. (2018). The risks and benefits of cannabis in the dermatology. J. Cutan. Med. Surg. 22 194–199. 10.1177/1203475417738971 PubMed DOI
EFSA (2009). Scientific Opinion of the Panel on Food Contact Materials, Enzymes, Flavourings and Processing aids (CEF) on dimethyl ether as an extraction solvent. EFSA J. 984 1–13.
EFSA (2015). Scientific Opinion on the safety of use of dimethyl ether as an extraction solvent under the intended conditions of use and the proposed maximum residual limits. EFSA J. 13:4174
Farha M. A., MacNair C. R., Carfrae L. A., Zahed S. S. El, Ellis M. J., Tran H. R., et al. (2020). Uncovering the Hidden Antibiotic Potential of Cannabis. ACS Infect. Dis. 6 338–346. 10.1021/acsinfecdis.9b00419 PubMed DOI
Fischedick J. T. (2017). Identification of Terpenoid Chemotypes Among High (À)-trans-D 9-Tetrahydrocannabinol-Producing Cannabis sativa L Cultivars. Cannabis Cannabinoid Res. 2 34–47. 10.1089/can.2016.0040 PubMed DOI PMC
Gallo-Molina A. C., Castro-vargas H. I., Garzón-méndez W. F., Ramírez J. A., Rivera Monroy Z. J., King J. W., et al. (2019). Extraction, isolation and purification of tetrahydrocannabinol from the Cannabis sativa L. plant using supercritical fluid extraction and solid phase extraction. J. Supercrit. Fluids 146 208–216. 10.1016/j.supflu.2019.01.020 DOI
Garrett E. R., Hunt C. A. (1974). Physicochemical Properties, Solubility, and Protein Binding of Δ9 -Tetrahydrocannabinol. J. Pharm. Sci. 63 1056–1064. 10.1002/jps.2600630705 PubMed DOI
Gnat S., Łagowski D., Nowakiewicz A. (2020). Major challenges and perspectives in the diagnostics and treatment of dermatophyte infections. J. Alied Microbiol. 129 212–232. 10.1111/JAM.14611 PubMed DOI
Han Y., Chen W., Sun Z. (2021). Antimicrobial activity and mechanism of limonene against Staphylococcus aureus. J. Food Saf. 41:e12918. 10.1111/jfs.12918 DOI
Han Y., Sun Z., Chen W. (2020). Antimicrobial susceptibility and antibacterial mechanism of limonene against listeria monocytogenes. Molecules 25:33. 10.3390/molecules25010033 PubMed DOI PMC
Hashim P. W., Cohen J. L., Pompei D. T., Goldenberg G. (2017). Topical cannabinoids in dermatology. Cutis 100 50–52. PubMed
Havlickova B., Czaika V. A., Friedrich M. (2008). Epidemiological trends in skin mycoses worldwide. Mycoses 51 2–15. 10.1111/j.1439-0507.2008.01606.x PubMed DOI
Hay R. J., Johns N. E., Williams H. C., Bolliger I. W., Dellavalle R. P., Margolis D. J., et al. (2014). The global burden of skin disease in 2010: An analysis of the prevalence and impact of skin conditions. J. Invest. Dermatol. 134 1527–1534. 10.1038/jid.2013.446 PubMed DOI
Inoue Y., Shiraishi A., Hada T., Hamashima H. (2004). The Antibacterial Effects of Myrcene on Staphylococcus aureus and Its Role in the Essential Oil of the Tea Tree (Melaleuca alternifolia). Nat. Med. 58 10–14.
Iordache O., Cozea A., Vǎrzaru E., Stoica E., Platon C., Rodino S., et al. (2016). Antimicrobial activity of textiles treated with rosemary and orange essential oils against a selection of pathogenic fungi. Sci. Bull. 20 362–369.
Janatová A., Fraňková A., Tlustoš P., Božik M., Klouček P. (2018). Yield and cannabinoids contents in different cannabis (Cannabis sativa L.) genotypes for medical use. Ind. Crops Prod. 112 363–367. 10.1016/j.indcrop.2017.12.006 DOI
Johansson L., Thulin P., Low D. E., Norrby-Teglund A. (2010). Getting under the skin: The immunopathogenesis of Streptococcus pyogenes deep tissue infections. Clin. Infect. Dis. 51 58–65. 10.1086/653116 PubMed DOI
LaVigne J. E., Hecksel R., Keresztes A., Streicher A. (2021). Cannabis sativa terpenes are cannabimimetic and selectively enhance cannabinoid activity. Sci. Rep. 11:8232. 10.1038/s41598-021-87740-8 PubMed DOI PMC
Lewis M. A., Russo E. B., Smith K. M. (2018). Pharmacological Foundations of Cannabis Chemovars. Planta Med. 84 225–233. 10.1055/s-0043-122240 PubMed DOI
Lim M., Kirchhof M. G. (2019). Dermatology-Related Uses of Medical Cannabis Promoted by Dispensaries in Canada, Europe, and the United States. J. Cutan. Med. Surg. 23 178–184. 10.1177/1203475418808761 PubMed DOI
Mahmood F., Lim M. M., Kirchhof M. G. (2022). A Survey of Topical Cannabis Use in Canada. J. Cutan. Med. Surg. 26 156–161. 10.1177/12034754211059025 PubMed DOI
Martins A. M., Gomes A. L., Boas I. V., Marto J., Ribeiro H. M. (2022). Cannabis-based products for the treatment of skin inflammatory diseases: A timely review. Pharmaceuticals 15:210. 10.3390/ph15020210 PubMed DOI PMC
Orlando G., Adorisio S., Delfino D., Chiavaroli A., Brunetti L., Recinella L., et al. (2021). Comparative investigation of composition, antifungal, and anti-inflammatory effects of the essential oil from three industrial hemp varieties from Italian cultivation. Antibiotics 10:334. 10.3390/antibiotics10030334 PubMed DOI PMC
Orlando G., Recinella L., Chiavaroli A., Brunetti L., Leone S., Carradori S., et al. (2020). Water Extract from Inflorescences of Industrial Hemp Futura 75 Variety as a Source of Anti-Inflammatory, Anti-Proliferative and Antimycotic Agents: Results from In Silico, In Vitro and Ex Vivo Studies. Antioxidants 9:437. 10.3390/antiox9050437 PubMed DOI PMC
Palmieri B., Laurino C., Vadala M. (2019). A therapeutic effect of cbd-enriched ointment in inflammatory skin diseases and cutaneous scars. Clin. Ter. 170 e93–e99. 10.7417/CT.2019.2116 PubMed DOI
Panda S., Verma S. (2017). The menace of dermatophytosis in India: The evidence that we need. Indian J. Dermatol. Venereol. Leprol. 83 281–284. 10.4103/ijdvl.IJDVL_224_17 PubMed DOI
Pasquali F., Schinzari M., Lucchi A., Mandrioli M., Toschi T. G., De Cesare A., et al. (2020). ‘Preliminary data on the antimicrobial effect of Cannabis sativa L. variety Futura 75 against food-borne pathogens in vitro as well as against naturally occurring microbial populations on minced meat during storage. Ital. J. Food Saf. 9 80–87. 10.4081/ijfs.2020.8581 PubMed DOI PMC
Pepeljnjak S., Kosalec I., Kalodera Z., Blazević N. (2005). ‘Antimicrobial activity of juniper berry essential oil (Juniperus communis L Cupressaceae). Acta Pharm. 55 417–422. PubMed
Peschel W. (2016). Quality control of traditional Cannabis tinctures: Pattern, markers, and stability. Sci. Pharm. 84 567–584. 10.3390/scipharm84030567 PubMed DOI PMC
Pinto E., Hrimpeng K., Lopes G., Vaz S., Gonçalves M. J., Cavaleiro C., et al. (2013). Antifungal activity of Ferulago capillaris essential oil against Candida, Cryptococcus, Aspergillus and dermatophyte species. Eur. J. Clin. Microbiol. Infect. Dis. 32 1311–1320. 10.1007/s10096-013-1881-1 PubMed DOI
Politi M., Peschel W., Wilson N., Prieto J. M., Heinrich M. (2008). Direct NMR analysis of cannabis water extracts and tinctures and semi-quantitative data on Δ9-THC and Δ9-THC-acid. Phytochemistry 69 562–570. 10.1016/j.phytochem.2007.07.018 PubMed DOI
Rajagopalan M., Inamadar A., Mittal A., Miskeen A. K., Srinivas C. R., Sardana K., et al. (2018). Expert consensus on the management of dermatophytosis in India (ECTODERM India). BMC Dermatol. 18:6. 10.1186/s12895-018-0073-1 PubMed DOI PMC
Ramaraj V., Vijayaraman R. S., Rangarajan S., Kindo A. J. (2016). Incidence and prevalence of dermatophytosis in and around Chennai, Tamilnadu, India. Int. J. Res. Med. Sci. 4 695–700. 10.18203/2320-6012.ijrms20160483 DOI
Ranarivelo L. R., Randriamialinoro F., Rakotonandrasana S., Ratsimbason M., Vérité P., Lecso-Bornet M., et al. (2020). Chemical Composition and Antimicrobial Activity of Leaf Essential Oil of Tetradenia nervosa Codd from Madagascar, Collected at Different Stages of Vegetative Growth and Age’, in ACS Symposium Series. J. Am. Chem. Soc. 1361 285–296. 10.1021/bk-2020-1361.ch015 DOI
Romano L. L., Hazekamp A. (2013). Cannabis oil: Chemical evaluation of an upcoming cannabis- based medicine. Cannabinoids 1 1–11.
Russo E. B. (2011). Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 163 1344–1364. 10.1111/j.1476-5381.2011.01238.x PubMed DOI PMC
Sanguinetti M., Posteraro B., Romano L., Battaglia F., Lopizzo T., De Carolis E., et al. (2007). In vitro activity of Citrus bergamia (bergamot) oil against clinical isolates of dermatophytes. J. Antimicrob. Chemother. 59 305–308. 10.1093/jac/dkl473 PubMed DOI
Schofs L., Sparo M. D., Sánchez Bruni S. F. (2021). The antimicrobial effect behind Cannabis sativa. Pharmacol. Res. Perspect. 9:e00761. 10.1002/prp2.761 PubMed DOI PMC
Schommer N. N., Gallo R. L. (2013). Structure and function of the human skin microbiome. Trends Microbiol. 21 660–668. 10.1016/j.tim.2013.10.001 PubMed DOI PMC
Singh A., Masih A., Khurana A., Singh P. K., Gupta M., Hagen F., et al. (2018). High terbinafine resistance in Trichophyton interdigitale isolates in Delhi, India harbouring mutations in the squalene epoxidase gene. Mycoses 61 477–484. 10.1111/myc.12772 PubMed DOI
Singh P., Shukla R., Prakash B., Kumar A., Singh S., Mishra P. K., et al. (2010). ‘Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene DL-limonene. Food Chem. Toxicol. 48 1734–1740. 10.1016/j.fct.2010.04.001 PubMed DOI
Tavares A. C., Gonçalves M. J., Cruz M. T., Cavaleiro C., Lopes M. C., Canhoto J., et al. (2010). Essential oils from Distichoselinum tenuifolium: Chemical composition, cytotoxicity, antifungal and anti-inflammatory properties. J. Ethnopharmacol. 130 593–598. 10.1016/j.jep.2010.05.054 PubMed DOI
Turner C. E., Elsohly M. A. (1981). Biological activity of cannabichromene, its homologs and isomers. J. Clin. Pharmacol. 21 283S–291S. 10.1002/j.1552-4604.1981.tb02606.x PubMed DOI
van Klingeren B., Ten Ham M. (1976). Antibacterial activity of Δ9-tetrahydrocannabinol and cannabidiol. Antonie van Leeuwenhoek 42 9–12. 10.1007/BF00399444 PubMed DOI
Wang Y. H., Avula B., ElSohly M. A., Radwan M. M., Wang M., Wanas A. S., et al. (2018). Quantitative Determination of Δ 9 -THC, CBG, CBD, Their Acid Precursors and Five Other Neutral Cannabinoids by UHPLC-UV-MS. Planta Med. 84 260–266. 10.1055/s-0043-124873 PubMed DOI
WHO (2019). Monitoring and Evaluation of the Global Action Plan on Antimicrobial Resistance Framework and Recommended Indicators. Geneva: World Health Organization
Zajicek J. P., Hobart J. C., Slade A., Barnes D., Mattison P. G. Musec Research Group et al. (2012). MUltiple sclerosis and extract of cannabis: Results of the MUSEC trial. J. Neurol. Neurosurg. Psychiatry 83 1125–1132. 10.1136/jnnp-2012-302468 PubMed DOI
Zuardi A. W. (2006). History of cannabis as a medicine: A review. Braz. J. Psychiatry 28 153–157. 10.1590/S1516-44462006000200015 PubMed DOI