Medical cannabis dimethyl ether, ethanol and butane extracts inhibit the in vitro growth of bacteria and dermatophytes causing common skin diseases
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
36204633
PubMed Central
PMC9530109
DOI
10.3389/fmicb.2022.953092
Knihovny.cz E-resources
- Keywords
- Cannabis sativa, antimicrobial activity, dermatophytes, dimethyl ether, extraction method, skin infection,
- Publication type
- Journal Article MeSH
Cannabis preparations are gaining popularity among patients with various skin diseases. Due to the lack of scientific evidence, dermatologists remain cautious about their prescriptions. So far, only a few studies have been published about the effects of high-potency cannabis extracts on microorganisms (especially dermatophytes) causing skin problems that affect more than 25% of the worldwide population. Even though, the high-potency cannabis extracts prepared by cold extraction are mostly composed of non-psychoactive tetrahydrocannabinolic acid (THCA) and only low amount of THC, their use in topical treatment can be stigmatized. The in vitro antimicrobial and antifungal activity of two high potent cannabis strains extracted by three solvents traditionally or currently used by cannabis users (ethanol; EtOH, butane; BUT, dimethyl ether; DME) was investigated by broth dilution method. The chemical profile of cannabis was determined by high-performance liquid chromatography with ultraviolet detection and gas chromatography with mass spectrometer and flame ionization detector. The extraction methods significantly influenced chemical profile of extracts. The yield of EtOH extracts contained less cannabinoids and terpenes compared to BUT and DME ones. Most of the extracts was predominantly (>60%) composed of various cannabinoids, especially THCA. All of them demonstrated activity against 18 of the 19 microorganisms tested. The minimal inhibitory concentrations (MICs) of the extracts ranged from 4 to 256 μg/mL. In general, the bacteria were more susceptible to the extracts than dermatophytes. Due to the lower content of biologically active substances, the EtOH extracts were less effective against microorganisms. Cannabis extracts may be of value to treat dermatophytosis and other skin diseases caused by various microorganisms. Therefore, they could serve as an alternative or supportive treatment to commonly used antibiotics.
Department of Botany Faculty of Science Charles University Prague Czechia
Department of Food Science Czech University of Life Sciences Prague Prague Czechia
See more in PubMed
Appendino G., Gibbons S., Giana A., Pagani A., Grassi G., Stavri M., et al. (2008). Antibacterial cannabinoids from PubMed DOI
Alves F. A. R., Morais S. M. de, Nogueira Sobrinho A. C., Silva I. N. G. da, Martins C. G., Silva A. A., et al. (2018). Chemical composition, antioxidant and antifungal activities of essential oils and extracts from DOI
Al-Zouabi I., Stogner J. M., Miller B. L., Lane E. S. (2018). Butane hash oil and dabbing: Insights into use, amateur production techniques, and potential harm mitigation. PubMed DOI PMC
Anastassov G. E., Changoer L., Van Damme P. A. (2019).
Anderson L. L., Low I. K., Banister S. D., McGregor I. S., Arnold J. C. (2019). Pharmacokinetics of Phytocannabinoid Acids and Anticonvulsant Effect of Cannabidiolic Acid in a Mouse Model of Dravet Syndrome. PubMed DOI
Aqil M., Ahad A., Sultana Y., Ali A. (2007). Status of terpenes as skin penetration enhancers. PubMed DOI
Becker K., Heilmann C., Peters G. (2014). Coagulase-negative staphylococci. PubMed DOI PMC
Begum J., Mir N. A., Lingaraju M. C., Buyamayum B., Dev K. (2020). Recent advances in the diagnosis of dermatophytosis. PubMed DOI
Blaskovich M. A. T., Kavanagh A. M., Elliott A. G., Zhang B., Ramu S., Amado M., et al. (2021). The antimicrobial potential of cannabidiol. PubMed DOI PMC
Chan G. C. K., Hall W., Freeman T. P., Ferris J., Kelly A. B., Winstock A., et al. (2017). User characteristics and effect profile of Butane Hash Oil: An extremely high-potency cannabis concentrate. PubMed DOI
Cintosun A., Lara-Corrales I., Pope E. (2020). Mechanisms of Cannabinoids and Potential Alicability to Skin Diseases. PubMed DOI
CLSI (2008).
CLSI (2009).
Dahham S. S., Tabana Y. M., Iqbal M. A., Ahamed M. B., Ezzat M. O., Majid A. S., et al. (2015). The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of PubMed DOI PMC
Danielli L. J., Pippi B., Duarte J. A., Maciel A. J., Lopes W., Machado M. M., et al. (2018). Antifungal mechanism of action of PubMed DOI
Daniulaityte R., Lamy F. R., Barratt M., Nahhas R. W., Martins S. S., Boyer E. W., et al. (2017). Characterizing marijuana concentrate users: A web-based survey. PubMed DOI PMC
Dhadwal G., Kirchhof M. G. (2018). The risks and benefits of cannabis in the dermatology. PubMed DOI
EFSA (2009). Scientific Opinion of the Panel on Food Contact Materials, Enzymes, Flavourings and Processing aids (CEF) on dimethyl ether as an extraction solvent.
EFSA (2015). Scientific Opinion on the safety of use of dimethyl ether as an extraction solvent under the intended conditions of use and the proposed maximum residual limits.
Farha M. A., MacNair C. R., Carfrae L. A., Zahed S. S. El, Ellis M. J., Tran H. R., et al. (2020). Uncovering the Hidden Antibiotic Potential of Cannabis. PubMed DOI
Fischedick J. T. (2017). Identification of Terpenoid Chemotypes Among High PubMed DOI PMC
Gallo-Molina A. C., Castro-vargas H. I., Garzón-méndez W. F., Ramírez J. A., Rivera Monroy Z. J., King J. W., et al. (2019). Extraction, isolation and purification of tetrahydrocannabinol from the DOI
Garrett E. R., Hunt C. A. (1974). Physicochemical Properties, Solubility, and Protein Binding of Δ9 -Tetrahydrocannabinol. PubMed DOI
Gnat S., Łagowski D., Nowakiewicz A. (2020). Major challenges and perspectives in the diagnostics and treatment of dermatophyte infections. PubMed DOI
Han Y., Chen W., Sun Z. (2021). Antimicrobial activity and mechanism of limonene against DOI
Han Y., Sun Z., Chen W. (2020). Antimicrobial susceptibility and antibacterial mechanism of limonene against PubMed DOI PMC
Hashim P. W., Cohen J. L., Pompei D. T., Goldenberg G. (2017). Topical cannabinoids in dermatology. PubMed
Havlickova B., Czaika V. A., Friedrich M. (2008). Epidemiological trends in skin mycoses worldwide. PubMed DOI
Hay R. J., Johns N. E., Williams H. C., Bolliger I. W., Dellavalle R. P., Margolis D. J., et al. (2014). The global burden of skin disease in 2010: An analysis of the prevalence and impact of skin conditions. PubMed DOI
Inoue Y., Shiraishi A., Hada T., Hamashima H. (2004). The Antibacterial Effects of Myrcene on Staphylococcus aureus and Its Role in the Essential Oil of the Tea Tree (Melaleuca alternifolia).
Iordache O., Cozea A., Vǎrzaru E., Stoica E., Platon C., Rodino S., et al. (2016). Antimicrobial activity of textiles treated with rosemary and orange essential oils against a selection of pathogenic fungi.
Janatová A., Fraňková A., Tlustoš P., Božik M., Klouček P. (2018). Yield and cannabinoids contents in different cannabis ( DOI
Johansson L., Thulin P., Low D. E., Norrby-Teglund A. (2010). Getting under the skin: The immunopathogenesis of PubMed DOI
LaVigne J. E., Hecksel R., Keresztes A., Streicher A. (2021). PubMed DOI PMC
Lewis M. A., Russo E. B., Smith K. M. (2018). Pharmacological Foundations of Cannabis Chemovars. PubMed DOI
Lim M., Kirchhof M. G. (2019). Dermatology-Related Uses of Medical Cannabis Promoted by Dispensaries in Canada, Europe, and the United States. PubMed DOI
Mahmood F., Lim M. M., Kirchhof M. G. (2022). A Survey of Topical Cannabis Use in Canada. PubMed DOI
Martins A. M., Gomes A. L., Boas I. V., Marto J., Ribeiro H. M. (2022). Cannabis-based products for the treatment of skin inflammatory diseases: A timely review. PubMed DOI PMC
Orlando G., Adorisio S., Delfino D., Chiavaroli A., Brunetti L., Recinella L., et al. (2021). Comparative investigation of composition, antifungal, and anti-inflammatory effects of the essential oil from three industrial hemp varieties from Italian cultivation. PubMed DOI PMC
Orlando G., Recinella L., Chiavaroli A., Brunetti L., Leone S., Carradori S., et al. (2020). Water Extract from Inflorescences of Industrial Hemp Futura 75 Variety as a Source of Anti-Inflammatory, Anti-Proliferative and Antimycotic Agents: Results from In Silico, PubMed DOI PMC
Palmieri B., Laurino C., Vadala M. (2019). A therapeutic effect of cbd-enriched ointment in inflammatory skin diseases and cutaneous scars. PubMed DOI
Panda S., Verma S. (2017). The menace of dermatophytosis in India: The evidence that we need. PubMed DOI
Pasquali F., Schinzari M., Lucchi A., Mandrioli M., Toschi T. G., De Cesare A., et al. (2020). ‘Preliminary data on the antimicrobial effect of PubMed DOI PMC
Pepeljnjak S., Kosalec I., Kalodera Z., Blazević N. (2005). ‘Antimicrobial activity of juniper berry essential oil ( PubMed
Peschel W. (2016). Quality control of traditional Cannabis tinctures: Pattern, markers, and stability. PubMed DOI PMC
Pinto E., Hrimpeng K., Lopes G., Vaz S., Gonçalves M. J., Cavaleiro C., et al. (2013). Antifungal activity of Ferulago capillaris essential oil against PubMed DOI
Politi M., Peschel W., Wilson N., Prieto J. M., Heinrich M. (2008). Direct NMR analysis of cannabis water extracts and tinctures and semi-quantitative data on Δ9-THC and Δ9-THC-acid. PubMed DOI
Rajagopalan M., Inamadar A., Mittal A., Miskeen A. K., Srinivas C. R., Sardana K., et al. (2018). Expert consensus on the management of dermatophytosis in India (ECTODERM India). PubMed DOI PMC
Ramaraj V., Vijayaraman R. S., Rangarajan S., Kindo A. J. (2016). Incidence and prevalence of dermatophytosis in and around Chennai, Tamilnadu, India. DOI
Ranarivelo L. R., Randriamialinoro F., Rakotonandrasana S., Ratsimbason M., Vérité P., Lecso-Bornet M., et al. (2020). Chemical Composition and Antimicrobial Activity of Leaf Essential Oil of DOI
Romano L. L., Hazekamp A. (2013). Cannabis oil: Chemical evaluation of an upcoming cannabis- based medicine.
Russo E. B. (2011). Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. PubMed DOI PMC
Sanguinetti M., Posteraro B., Romano L., Battaglia F., Lopizzo T., De Carolis E., et al. (2007). PubMed DOI
Schofs L., Sparo M. D., Sánchez Bruni S. F. (2021). The antimicrobial effect behind PubMed DOI PMC
Schommer N. N., Gallo R. L. (2013). Structure and function of the human skin microbiome. PubMed DOI PMC
Singh A., Masih A., Khurana A., Singh P. K., Gupta M., Hagen F., et al. (2018). High terbinafine resistance in PubMed DOI
Singh P., Shukla R., Prakash B., Kumar A., Singh S., Mishra P. K., et al. (2010). ‘Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of PubMed DOI
Tavares A. C., Gonçalves M. J., Cruz M. T., Cavaleiro C., Lopes M. C., Canhoto J., et al. (2010). Essential oils from PubMed DOI
Turner C. E., Elsohly M. A. (1981). Biological activity of cannabichromene, its homologs and isomers. PubMed DOI
van Klingeren B., Ten Ham M. (1976). Antibacterial activity of Δ9-tetrahydrocannabinol and cannabidiol. PubMed DOI
Wang Y. H., Avula B., ElSohly M. A., Radwan M. M., Wang M., Wanas A. S., et al. (2018). Quantitative Determination of Δ 9 -THC, CBG, CBD, Their Acid Precursors and Five Other Neutral Cannabinoids by UHPLC-UV-MS. PubMed DOI
WHO (2019).
Zajicek J. P., Hobart J. C., Slade A., Barnes D., Mattison P. G. Musec Research Group et al. (2012). MUltiple sclerosis and extract of cannabis: Results of the MUSEC trial. PubMed DOI
Zuardi A. W. (2006). History of cannabis as a medicine: A review. PubMed DOI