Anti-staphylococcal activity of soilless cultivated cannabis across the whole vegetation cycle under various nutritional treatments in relation to cannabinoid content
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
38383569
PubMed Central
PMC10881570
DOI
10.1038/s41598-024-54805-3
PII: 10.1038/s41598-024-54805-3
Knihovny.cz E-zdroje
- MeSH
- agonisté kanabinoidních receptorů farmakologie MeSH
- antibakteriální látky farmakologie MeSH
- Cannabis * MeSH
- ethanol farmakologie MeSH
- halucinogeny * farmakologie MeSH
- kanabinoidy * farmakologie MeSH
- rostlinné extrakty farmakologie MeSH
- Staphylococcus MeSH
- tetrahydrokanabinol farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- agonisté kanabinoidních receptorů MeSH
- antibakteriální látky MeSH
- ethanol MeSH
- halucinogeny * MeSH
- kanabinoidy * MeSH
- rostlinné extrakty MeSH
- tetrahydrokanabinol MeSH
Antibiotic resistance in staphylococcal strains and its impact on public health and agriculture are global problems. The development of new anti-staphylococcal agents is an effective strategy for addressing the increasing incidence of bacterial resistance. In this study, ethanolic extracts of Cannabis sativa L. made from plant parts harvested during the whole vegetation cycle under various nutritional treatments were assessed for in vitro anti-staphylococcal effects. The results showed that all the cannabis extracts tested exhibited a certain degree of growth inhibition against bacterial strains of Staphylococcus aureus, including antibiotic-resistant and antibiotic-sensitive forms. The highest antibacterial activity of the extracts was observed from the 5th to the 13th week of plant growth across all the nutritional treatments tested, with minimum inhibitory concentrations ranging from 32 to 64 µg/mL. Using HPLC, Δ9-tetrahydrocannabinolic acid (THCA) was identified as the most abundant cannabinoid in the ethanolic extracts. A homolog of THCA, tetrahydrocannabivarinic acid (THCVA), reduced bacterial growth by 74%. These findings suggest that the cannabis extracts tested in this study can be used for the development of new anti-staphylococcal compounds with improved efficacy.
Zobrazit více v PubMed
Peton V, Le Loir Y. Staphylococcus aureus in veterinary medicine. Infect. Genet. Evol. 2014;21:602–615. doi: 10.1016/j.meegid.2013.08.011. PubMed DOI
Prestinaci F, Patrizio P, Annalisa P. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health. 2015;109:309–318. doi: 10.1179/2047773215Y.0000000030. PubMed DOI PMC
Kourtis AP, et al. Vital signs: Epidemiology and recent trends in methicillin-resistant and in methicillin-susceptible Staphylococcus aureus bloodstream infections—United States. MMWR Morb. Mortal Wkly. Rep. 2019;68:214–219. doi: 10.15585/mmwr.mm6809e1. PubMed DOI PMC
Lowy FD. Antimicrobial resistance: The example of Staphylococcus aureus. J. Clin. Investig. 2003;111:1265–1273. doi: 10.1172/JCI18535. PubMed DOI PMC
Rodvold KA, McConeghy KW. Methicillin-resistant Staphylococcus aureus therapy: Past, present, and future. Clin. Infect. Dis. 2014;58:20–27. doi: 10.1093/cid/cit614. PubMed DOI
Akpaka PE, Roberts R, Monecke S. Molecular characterization of antimicrobial resistance genes against Staphylococcus aureus isolates from Trinidad and Tobago. J. Infect. Public Health. 2017;10:316–323. doi: 10.1016/j.jiph.2016.05.010. PubMed DOI
Spengler G, et al. Evaluation of the antimicrobial and antivirulent potential of essential oils isolated from Juniperus oxycedrus L. ssp. macrocarpa aerial parts. Microorganisms. 2022;10:1–19. doi: 10.3390/microorganisms10040758. PubMed DOI PMC
Castro A, Santos C, Meireles H, Silva J, Teixeira P. Food handlers as potential sources of dissemination of virulent strains of Staphylococcus aureus in the community. J. Infect. Public Health. 2016;9:153–160. doi: 10.1016/j.jiph.2015.08.001. PubMed DOI
Vaou N, Stavropoulou E, Voidarou Ch, Tsigalou Ch, Bezirtzoglou E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms. 2021;9:1–28. doi: 10.3390/microorganisms9102041. PubMed DOI PMC
Rezaee E, Nazari M, Mosayebnia M, Movahed MA. Novel medicinal and synthetic chemistry strategies against antimicrobial resistance. MNT. 2022 doi: 10.1016/B978-0-323-90792-7.00017-8. DOI
McNulty M, et al. Techno-economic analysis of a plant-based platform for manufacturing antimicrobial proteins for food safety. Biotechnol. Prog. 2019;36:1–15. doi: 10.1002/btpr.2896. PubMed DOI PMC
World Health Organization. WHO guidelines on good agricultural and collection practices for medicinal plants (2003).
Lubbe A, Verpoorte R. Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind. Crops Prod. 2011;34:785–801. doi: 10.1016/j.indcrop.2011.01.019. DOI
Fussy A, Papenbrock J. An overview of soil and soilless cultivation techniques—chances, challenges and the neglected question of sustainability. Plants. 2022;11:1153. doi: 10.3390/plants11091153. PubMed DOI PMC
Atzori G, Pane C, Zaccardelli M, Cacini S, Massa D. The role of peat-free organic substrates in the sustainable management of soilless cultivations. Agronomy. 2021;11:1236. doi: 10.3390/agronomy11061236. DOI
Putra PA, Yuliando H. Soilless culture system to support water use efficiency and product quality: A review. Agric. Sci. Proc. 2015;3:283–288. doi: 10.1016/j.aaspro.2015.01.054. DOI
Grafiadellis I, Mattas K, Maloupa E, Tzouramani I, Galanopoulos K. An economic analysis of soilless culture in Gerbera production. HortScience. 2000;35:300–303. doi: 10.21273/HORTSCI.35.2.300. DOI
Nejad AR, Ismaili A. Changes in growth, essential oil yield and composition of geranium (Pelargonium graveolens L.) as affected by growing media. J. Sci. Food Agric. 2014;94:905–910. doi: 10.1002/jsfa.6334. PubMed DOI
van Os E. Closed soilless growing systems: A sustainable solution for Dutch greenhouse horticulture. Water Sci. Technol. 1999;39:105–112. doi: 10.2166/wst.1999.0228. DOI
Savvas D, Passam HC. Hydroponic Production of Vegetables and Ornamentals. Embryo Publications; 2002. pp. 243–299.
White PJ, Brown P. Plant nutrition for sustainable development and global health. Ann. Bot. 2010;105(1073–1080):2010. doi: 10.1093/aob/mcq085. PubMed DOI PMC
Müller V, Lankes Ch, Zimmermann BF, Noga G, Hunsche M. Centelloside accumulation in leaves of Centella asiatica is determined by resource partitioning between primary and secondary metabolism while influenced by supply levels of either nitrogen, phosphorus or potassium. J. Plant Physiol. 2013;170:1165–1175. doi: 10.1016/j.jplph.2013.03.010. PubMed DOI
Verma N, Shukla S. Impact of various factors responsible for fluctuation in plant secondary metabolites. J. Appl. Res. Med. 2015;2:105–113. doi: 10.1016/j.jarmap.2015.09.002. DOI
Fageria NK, Baligar VC, Clark RB. Micronutrients in crop production. Adv. Agron. 2002;77:185–268. doi: 10.1016/S0065-2113(02)77015-6. DOI
Du Jardin P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015;196:3–14. doi: 10.1016/j.scienta.2015.09.021. DOI
Rout GR, Sahoo S. Role of iron in plant growth and metabolism. Rev. Agric. Sci. 2015;3:1–24. doi: 10.7831/ras.3.1. DOI
Nephali L, et al. Biostimulants for plant growth and mitigation of abiotic stresses: A metabolomics perspective. Metabolites. 2020;10(505):2020. doi: 10.3390/metabo10120505. PubMed DOI PMC
Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH. Biostimulants in plant science: A global perspective. Front. Plant Sci. 2017 doi: 10.3389/fpls.2016.02049. PubMed DOI PMC
Kopriva S, Malagoli M, Takahashi H. Sulfur nutrition: Impacts on plant development, metabolism, and stress responses. J. Exp. Bot. 2019;70:4069–4073. doi: 10.1093/jxb/erz319. PubMed DOI
Tangolar, S., Tangolar, S., Turan, M., Atalan M. & Ada, M. The Effects of Different Substrates with Chemical and Organic Fertilizer Applications on Vitamins, Mineral, and Amino Acid Content of Grape Berries from Soilless Culture (IntechOpen, 2022)10.5772/intechopen.102345.
Caser M, et al. Arbuscular mycorrhizal fungi modulate the crop performance and metabolic profile of saffron in soilless cultivation. Agron. 2019;9:232. doi: 10.3390/agronomy9050232. DOI
Neocleous D, Ntatsi G. Seasonal variations of antioxidants and other agronomic features in soilless production of selected fresh aromatic herbs. Sci. Hortic. 2018;234:290–299. doi: 10.1016/j.scienta.2018.02.066. DOI
Malik M, Praus L, Tlustos P. Comparison of recirculation and drain-to-waste hydroponic systems in relation to medical cannabis (Cannabis sativa L.) plants. Ind. Crops Prod. 2023 doi: 10.1016/j.indcrop.2023.117059. DOI
Balneaves LG, Alraja AA. "Guarding their practice": A descriptive study of Canadian nursing policies and education related to medical cannabis. BMC Nurs. 2019 doi: 10.1186/s12912-019-0390-7. PubMed DOI PMC
Shelef A, Mashiah M, Schumacher I, Shine O, Baruch Y. Medical grade cannabis (MGC): Regulation mechanisms, the present situation around the world and in Israel. Harefuah. 2011;150:913–917. PubMed
Troutt WD, DiDonato MD. Medical cannabis in Arizona: Patient characteristics, perceptions, and impressions of medical cannabis legalization. J. Psychoact. Drugs. 2015;47:259–266. doi: 10.1080/02791072.2015.1074766. PubMed DOI
Karas JA, et al. The antimicrobial activity of cannabinoids. Antibiotics. 2020;9:1–10. doi: 10.3390/antibiotics9070406. PubMed DOI PMC
Klahn P. Cannabinoids-promising antimicrobial drugs or intoxicants with benefits? Antibiotics. 2020;9:1–27. doi: 10.3390/antibiotics9060297. PubMed DOI PMC
Pugazhendhi A, et al. Cannabinoids as a anticancer and neuroprotective drugs: Structural insights and pharmacological interactions—A review. Process Biochem. 2021;111:9–31. doi: 10.1016/j.procbio.2021.08.025. DOI
Blaskovich MAT, et al. The antimicrobial potential of cannabidiol. Commun. Biol. 2021;4:1–18. doi: 10.1038/s42003-020-01530-y. PubMed DOI PMC
Aqawi M, Sionov RV, Gallily R, Friedman M, Steinberg D. Anti-bacterial properties of cannabigerol toward Streptococcus mutans. Front. Microbiol. 2021;12:1–15. doi: 10.3389/fmicb.2021.656471. PubMed DOI PMC
van Klingeren B, Ham M. Antibacterial activity of Δ9-tetrahydrocannabinol and cannabidiol. Antonie van Leeuwenhoek. 1976;42:9–12. doi: 10.1007/BF00399444. PubMed DOI
Sionov RV, Steinberg D. Anti-microbial activity of phytocannabinoids and endocannabinoids in the light of their physiological and pathophysiological roles. Biomedicines. 2022;10:1–48. doi: 10.3390/biomedicines10030631. PubMed DOI PMC
Sharma D, Misba L, Khan AU. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control. 2019;8:1–10. doi: 10.1186/s13756-019-0533-3. PubMed DOI PMC
Ciofu O, Moser C, Jensen PØ, Høiby N. Tolerance and resistance of microbial biofilms. Nat. Rev. Microbiol. 2022;20:621–635. doi: 10.1038/s41579-022-00682-4. PubMed DOI
Scott C, Agonh DN, Lehmann Ch. Antibacterial effects of phytocannabinoids. Life. 2022;12:1–12. doi: 10.3390/life12091394. PubMed DOI PMC
CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard M07. 11 (CLSI, 2020).
Skala T, et al. Medical cannabis dimethyl ether, ethanol and butane extracts inhibit the in vitro growth of bacteria and dermatophytes causing common skin diseases. Front. Microbiol. 2022;13:1–10. doi: 10.3389/fmicb.2022.953092. PubMed DOI PMC
Giselle F, et al. Antibacterial activity of cannabis (Cannabis sativa L.) female inflorescence and root extract against Paenibacillus larvae, causal agent of American foulbrood. Biocatal. Agric. Biotechnol. 2023;47:1–11. doi: 10.1016/j.bcab.2022.102575. DOI
Kaur S, Sharma C, Chaudhry S, Aman R. Antimicrobial potential of three common weeds of kurukshetra: An in vitro study. Res. J. Microbiol. 2015;10:280–287. doi: 10.3923/jm.2015.280.287. DOI
Ali EMM, Almagboul AZI, Khogali SME, Gergeir UMA. Antimicrobial activity of Cannabis sativa L. Chin. Med. 2012;1:1–4. doi: 10.4236/cm.2012.31010. DOI
Schofs L, Sparo MD, Sánchez Bruni SF. The antimicrobial effect behind Cannabis sativa. Pharmacol. Res. Perspect. 2021;9:1–17. doi: 10.1002/prp2.761. PubMed DOI PMC
Pollastro F, Minassi A, Fresu LG. Cannabis phenolics and their bioactivities. Curr. Med. Chem. 2018;25:1160–1185. doi: 10.2174/0929867324666170810164636. PubMed DOI
Valliere MA, et al. A cell-free platform for the prenylation of natural products and application to cannabinoid production. Nat. Comm. 2019;10:1–9. doi: 10.1038/s41467-019-08448-y. PubMed DOI PMC
Richins RD, Rodriguez-Uribe L, Lowe K, Ferral R, O’Connell MA. Accumulation of bioactive metabolites in cultivated medical Cannabis. PLoS ONE. 2018;13:1–20. doi: 10.1371/journal.pone.0201119. PubMed DOI PMC
Dewick PM. Medicinal Natural Products: A Biosynthetic Approach. Wiley; 2002.
Elsohly MA, Slade D. Chemical constituents of marijuana: The complex mixture of natural cannabinoids. Life Sci. 2005;78:539–548. doi: 10.1016/j.lfs.2005.09.011. PubMed DOI
Hillig KW, Mahlberg PG. A chemotaxonomic analysis of cannabinoid variation in Cannabis (Cannabaceae) Am. J. Bot. 2004;91:966–975. doi: 10.3732/ajb.91.6.966. PubMed DOI
Wassmann CS, Højrup P, Klitgaard JK. Cannabidiol is an effective helper compound in combination with bacitracin to kill Gram-positive bacteria. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-020-60952-0. PubMed DOI PMC
Appendino G, et al. Antibacterial cannabinoids from Cannabis sativa: A structure-activity study. J. Nat. Prod. 2008;71:1427–1430. doi: 10.1021/np8002673. PubMed DOI
Challapalli PV, Stinchcomb AL. In vitro experiment optimization for measuring tetrahydrocannabinol skin permation. Int. J. Pharm. 2002;241:329–339. doi: 10.1016/s03738-5173(02)00262-4. PubMed DOI
Nikaido H. Prevention of drug access to bacterial targets: Permeability barriers and active efflux. Science. 1994;264:382–388. doi: 10.1126/science.8153625. PubMed DOI
Angane M, Swift S, Huang K, Butts ChA, Quek SY. Essential oils and their components: An updated review on antimicrobial activities, mechanism of action and their potential application in the food industry. Foods. 2022;11:1–26. doi: 10.3390/foods11030464. PubMed DOI PMC
Hazekamp A, Fischedick JT, Díez ML, Lubbe A, Ruhaak RL. Chemistry of Cannabis. In: Mander L, Liu H-W, editors. Comprehensive Natural Products II. Elsevier Science; 2010. pp. 1033–1084.
Bhdara BN, Ahmed I, Lee HJ, Jhung SH. Metal-organic frameworks bearing free carboxylic acids: Preparation, modification, ad applications. Coord. Chem. Rev. 2022 doi: 10.1016/j.ccr.2021.214237. DOI
Guan N, Liu L. Microbial response to acid stress: Mechanisms and applications. Appl. Microbiol. Biotechnol. 2020;104:51–65. doi: 10.1007/s00253-019-10226-1. PubMed DOI PMC
Tran TTT, Kannoorpatti K, Padovan A, Thennadil S. Sulphate-reducing bacteria’s response to extreme pH environments and the effect of their activities on microbial corrosion. Appl. Sci. 2021;11:1–19. doi: 10.3390/app11052201. DOI
Atherton HR, Li P. Hydroponic cultivation of medicinal plants—plant organs and hydroponic systems: Techniques and trends. Horticulturae. 2023;9:349. doi: 10.3390/horticulturae9030349. DOI
De Meijer EP. The chemical phenotypes (chemotypes) of Cannabis. In: Roger P, editor. Handbook of Cannabis. Oxford University Press; 2014. pp. 89–110.
Velazquez, L., Hernandez, M., Leon, M., Domínguez, R. B. & Gutierrez, J. First advances on the development of a hydroponic system for cherry tomato culture. In 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). 155–159 (IEEE) 10.1109/ICEEE.2013.6676029.
Malik M, Velechovsky J, Tlustos P. The overview of existing knowledge on medical cannabis plants growing. Plant Soil Environ. 2021;67:425–442. doi: 10.17221/96/2021-pse. DOI
Malik M, et al. Selective cytotoxicity of medical cannabis (Cannabis sativa L.) extracts across the whole vegetation cycle under various hydroponic and nutritional treatments. Cannabis Cannabinoid Res. 2022 doi: 10.1089/can.2022.0243. PubMed DOI
Brighenti V, Pellati F, Steinbach M, Maran D, Benvenuti S. Development of a new extraction technique and HPLC method for the analysis of non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp) J. Pharm. Biomed. Anal. 2017;143:228–236. doi: 10.1016/j.jpba.2017.05.049. PubMed DOI
Križman M. A simplified approach for isocratic HPLC analysis of cannabinoids by fine tuning chromatographic selectivity. Eur. Food Res. Technol. 2019;246:315–322. doi: 10.1007/s00217-019-03344-7. DOI
Cos P, Vlietinck AJ, Berghe D, Maes L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006;106:290–302. doi: 10.1016/j.jep.2006.04.003. PubMed DOI