Inhibitory Potential of Cannabis Biomass Extracts on Livestock-Associated Staphylococcal and Streptococcal Pathogens
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RO0723
Ministry of Agriculture of the Czech Republic
LM2023064
METROFOOD-CZ
PubMed
40005797
PubMed Central
PMC11857943
DOI
10.3390/microorganisms13020432
PII: microorganisms13020432
Knihovny.cz E-zdroje
- Klíčová slova
- Cannabis sativa L., Staphylococcus aureus, Streptococcus agalactiae, Streptococcus dysgalactiae, animal, antibacterial, inhibition,
- Publikační typ
- časopisecké články MeSH
Diseases caused by staphylococci and streptococci are a serious burden on livestock production, causing significant losses. In addition, the associated antibiotic resistance of these pathogens often makes treatment impossible or prolonged. Cannabis sativa L. contains many compounds with antibacterial properties and shows great potential as a natural antimicrobial agent for agricultural use against both of these bacterial species. The aim of this study was to compare the in vitro antibacterial activity of ethanol extracts from five cultivars of hemp, namely, Bialobrzeskie, Felina 32, Futura 75, mixed and Santhica 27, against Staphylococcus aureus, Streptococcus agalactiae and Streptococcus dysgalactiae. All five cultivars exhibited a certain degree of inhibitory effect against all the pathogens tested with minimum inhibitory concentrations (MICs) ranging from 128 to 2048 μg/mL. The extract from the Santhica 27 cultivar was the most effective antibacterial agent with the lowest MIC value of 128 μg/mL against Str. agalactiae and two clinical isolates of S. aureus, followed by Bialobrzeskie and mixed cultivars with the same growth-inhibitory potential against Str. agalactiae. The extracts from the Felina 32 and Futura 75 cultivars presented only weak activity with MIC values ranging from 256 to 2048 μg/mL. The extract from the Santhica 27 cultivar appears to be a promising product for future use in the treatment of staphylococcal and streptococcal infections in livestock.
Zobrazit více v PubMed
HealthforAnimals . Animal Health and Sustainability: A Global Data Analysis. Oxford Analytica; Oxford, UK: 2023. [(accessed on 8 December 2024)]. pp. 1–54. Available online: https://healthforanimals.org/resources/publications/publications/full-report-animal-health-and-sustainability-a-global-data-analysis/
Mesquita A.A., Rocha C.M.B.M., Bruhn F.R.P., Custódio D.A.C., Braz M.S., Pinto S.M., Silva D.B., Costa G.M. Staphylococcus aureus and Streptococcus agalactiae: Prevalence, resistance to antimicrobials, and their relationship with the milk quality of dairy cattle herds in Minas Gerais state, Brazil. Pesqui. Vet. Bras. 2019;39:308–316. doi: 10.1590/1678-5150-pvb-5821. DOI
Taponen S., Liski E., Heikkilä A.M., Pyörälä S. Factors associated with intramammary infection in dairy cows caused by coagulase-negative staphylococci, Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, or Escherichia coli. J. Dairy Sci. 2017;100:493–503. doi: 10.3168/jds.2016-11465. PubMed DOI
Saro J., Stádník L., Bláhová P., Huguet S., Brožová H., Ducháček J. A decision support system based on disease scoring enables dairy farmers to proactively improve herd health. Czech J. Anim. Sci. 2024;69:165–177. doi: 10.17221/53/2024-CJAS. DOI
Cheng W.N., Han S.G. Bovine mastitis: Risk factors, therapeutic strategies, and alternative treatments—A review. Asian-Australas. J. Anim. Sci. 2020;33:1699–1713. doi: 10.5713/ajas.20.0156. PubMed DOI PMC
Guy R., Coelho J., Blakey E., Broughton K., Lamagni T. Laboratory Surveillance of Pyogenic and Non-Pyogenic Streptococcal Bacteraemia in England (2022) UK Health Security Agency; London, UK: 2023. [(accessed on 8 December 2024)]. pp. 1–30. Available online: https://www.gov.uk/government/publications/pyogenic-and-non-pyogenic-streptococcal-bacteraemia-annual-data-from-voluntary-surveillance.
Alves-Barroco C., Roma-Rodrigues C., Raposo L.R., Brás C., Diniz M., Caço J., Costa P.M., Santos-Sanches I., Fernandes A.R. Streptococcus dysgalactiae subsp. dysgalactiae isolated from milk of the bovine udder as emerging pathogens: In vitro and in vivo infection of human cells and zebrafish as biological models. MicrobiologyOpen. 2019;8:e00623. doi: 10.1002/mbo3.623. PubMed DOI PMC
Rao S., Linke L., Magnuson R., Jauch L., Hyatt D.R. Antimicrobial resistance and genetic diversity of Staphylococcus aureus collected from livestock, poultry and humans. One Health. 2022;15:100407. doi: 10.1016/j.onehlt.2022.100407. PubMed DOI PMC
Vaou N., Stavropoulou E., Voidarou C., Tsigalou C., Bezirtzoglou E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms. 2021;9:2041. doi: 10.3390/microorganisms9102041. PubMed DOI PMC
Cakir M., Karatas T., Yildirim S. Protective effects of green tea (Camellia sinensis) extract against cypermethrin-induced neurotoxicity in rainbow trout (Oncorhynchus mykiss) brain tissues. Czech J. Anim. Sci. 2024;69:29–37. doi: 10.17221/110/2023-CJAS. DOI
Sionov R.V., Steinberg D. Anti-Microbial Activity of Phytocannabinoids and Endocannabinoids in the Light of Their Physiological and Pathophysiological Roles. Biomedicines. 2022;10:631. doi: 10.3390/biomedicines10030631. PubMed DOI PMC
Lanzoni D., Skrivanova E., Pinotti L., Rebucci R., Baldi A., Giromini C. Review: Nutritional aspects of hemp-based products and their effects on health and performance of monogastric animals. Animal. 2024;18:101058. doi: 10.1016/j.animal.2023.101058. PubMed DOI
Bonini S.A., Premoli M., Tambaro S., Kumar A., Maccarinelli G., Memo M., Mastinu A. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J. Ethnopharmacol. 2018;227:300–315. doi: 10.1016/j.jep.2018.09.004. PubMed DOI
Alfei S., Schito G.C., Schito A.M. Synthetic Pathways to Non-Psychotropic Phytocannabinoids as Promising Molecules to Develop Novel Antibiotics: A Review. Pharmaceutics. 2023;15:1889. doi: 10.3390/pharmaceutics15071889. PubMed DOI PMC
Czauderna M., Taubner T., Wojtak W. Comparative Study of Gas and Liquid Chromatography Methods for the Determination of Underivatised Neutral and Acidic Cannabinoids and Cholesterol. Molecules. 2024;29:2165. doi: 10.3390/molecules29102165. PubMed DOI PMC
Rondevaldova J., Hummelova J., Tauchen J., Kokoska L. In Vitro Antistaphylococcal Synergistic Effect of Isoflavone Metabolite Demethyltexasin with Amoxicillin and Oxacillin. Microb. Drug Resist. 2018;24:24–29. doi: 10.1089/mdr.2017.0033. PubMed DOI
Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th ed. Clinical Laboratory Standards Institute; Wayne, PA, USA: 2018.
Cos P., Vlietinck A.J., Berghe D.V., Maes L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006;106:290–302. doi: 10.1016/j.jep.2006.04.003. PubMed DOI
Ali E.M.M., Almagboul A.Z.I., Khogali S.M.E., Gergeir U.M.A. Antimicrobial activity of Cannabis sativa L. Chin. Med. 2012;3:61–64. doi: 10.4236/cm.2012.31010. DOI
Kaur S., Sharma C., Chaudhry S., Aman R. Antimicrobial Potential of Three Common Weeds of Kurukshetra: An in vitro Study. Res. J. Microbiol. 2015;10:280. doi: 10.3923/jm.2015.280.287. DOI
Giselle F., Azucena I., Dalila O., Florencia F., Facundo R., Giulia M., Sandra F., Maggi M., Ramirez C.L. Antibacterial activity of cannabis (Cannabis sativa L.) female inflorescence and root extract against Paenibacillus larvae, causal agent of American foulbrood. Biocatal. Agric. Biotechnol. 2023;47:102575. doi: 10.1016/j.bcab.2022.102575. DOI
Skala T., Kahánková Z., Tauchen J., Janatová A., Klouček P., Hubka V., Fraňková A. Medical cannabis dimethyl ether, ethanol and butane extracts inhibit the in vitro growth of bacteria and dermatophytes causing common skin diseases. Front. Microbiol. 2022;13:953092. doi: 10.3389/fmicb.2022.953092. PubMed DOI PMC
EFSA Panel on Additives and Products or Substances used in Animal Feed Scientific Opinion on the safety of hemp (Cannabis genus) for use as animal feed (FEEDAP) EFSA J. 2011;9:2011. doi: 10.2903/j.efsa.2011.2011. DOI
Aqawi M., Sionov R.V., Gallily R., Friedman M., Steinberg D. Anti-Bacterial Properties of Cannabigerol Toward Streptococcus mutans. Front. Microbiol. 2021;12:656471. doi: 10.3389/fmicb.2021.656471. PubMed DOI PMC
van Klingeren B., ten Ham M. Antibacterial activity of Δ9-tetrahydrocannabinol and cannabidiol. Antonie van Leeuwenhoek. 1976;42:9–12. doi: 10.1007/BF00399444. PubMed DOI
Blaskovich M.A.T., Kavanagh A.M., Elliott A.G., Zhang B., Ramu S., Amado M., Lowe G.J., Hinton A.O., Pham D.M.T., Zuegg J., et al. The antimicrobial potential of cannabidiol. Commun. Biol. 2021;4:7. doi: 10.1038/s42003-020-01530-y. PubMed DOI PMC
Glivar T., Eržen J., Kreft S., Zagožen M., Čerenak A., Čeh B., Tavčar Benković E. Cannabinoid content in industrial hemp (Cannabis sativa L.) varieties grown in Slovenia. Ind. Crops Prod. 2020;145:112082. doi: 10.1016/j.indcrop.2019.112082. DOI