Comparative Study of Gas and Liquid Chromatography Methods for the Determination of Underivatised Neutral and Acidic Cannabinoids and Cholesterol
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, srovnávací studie
PubMed
38792027
PubMed Central
PMC11124110
DOI
10.3390/molecules29102165
PII: molecules29102165
Knihovny.cz E-zdroje
- Klíčová slova
- cannabinoids, cholesterol, gas chromatography, liquid chromatography, mass spectrometry,
- MeSH
- cholesterol * analýza chemie MeSH
- kanabinoidy * analýza chemie MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí * metody MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- cholesterol * MeSH
- kanabinoidy * MeSH
The aim of our study was to develop a gas chromatographic method coupled with mass spectrometry (GC-MS) for the determination of underivatised neutral (CBDs-N) and acidic (CBDs-A) cannabinoids (CBDs) and cholesterol (Chol). Emphasis was also placed on comparing our original GC-MS method with the currently developed C18-high-performance liquid chromatography with photodiode detection (C18-HPLC-DAD). A combination of a long GC column, shallow temperature column programme, and mass-spectrometry was employed to avoid issues arising from the overlap between CBDs and Chol and background fluctuations. The pre-column procedure for CBDs and Chol in egg yolks consisted of hexane extractions, whereas the pre-column procedure for CBDs in non-animal samples involved methanol and hexane extractions. CBDs-A underwent decarboxylation to CBDs during GC-MS analyses, and pre-column extraction of the processed sample with NaOH solution allowed for CBD-A removal. No losses of CBDs-N were observed in the samples extracted with NaOH solution. GC-MS analyses of the samples before and after extraction with NaOH solution enabled the quantification of CBDs-A and CBDs-N. CBDs-A did not undergo decarboxylation to CBDs-N during C18-HPLC-DAD runs. The use of the C18-HPLC-DAD method allowed simultaneous determination of CBDs-N and CBDs-A. In comparison to the C18-HPLC-DAD method, our GC-MS technique offered improved sensitivity, precision, specificity, and satisfactory separation of underivatised CBDs and Chol from biological materials of endogenous species, especially in hemp and hen egg yolk. The scientific novelty of the present study is the application of the GC-MS method for quantifying underivatised CBDs-A, CBDs-N, and Chol in the samples of interest.
Zobrazit více v PubMed
Handayani U.F., Sofyan A., Lestari D., Sholikin M.M., Wulandari W., Harahap M.A., Herdian H., Julendra H., Okselni T., Mahat M.E. Dietary supplementation with tomato waste to improve performance and egg quality of laying hens: A meta-analysis. J. Anim. Feed Sci. 2023;32:221–232. doi: 10.22358/jafs/159529/2023. DOI
Reis M.G., Ferreira A.J.F., Sohouli M.H., Taimeirão D.R., Vieira R.A.L., Guimarães N.S. Effect of cannabis and subproducts on anthropometric measures: A systematic review and meta-analysis. Int. J. Obes. 2024;48:44–54. doi: 10.1038/s41366-023-01399-x. PubMed DOI
Kleinhenz M.D., Weeder M., Montgomery S., Martin M., Curtis A., Magnin G., Lin Z., Griffin J., Coetzee J.F. Short term feeding of industrial hemp with a high cannabidiolic acid (CBDA) content increases lying behavior and reduces biomarkers of stress and inflammation in Holstein steers. Sci. Rep. 2022;12:3683. doi: 10.1038/s41598-022-07795-z. PubMed DOI PMC
Kleinhenz M.D., Magnin G., Ensley S.M., Griffin J.J., Goeser J., Lynch P.E., Coetzee J.E. Nutrient concentrations, digestibility, and cannabinoid concentrations of industrial hemp plant components. Appl. Anim. Sci. 2020;36:489–494. doi: 10.15232/aas.2020-02018. DOI
Henson J.D., Vitetta L., Hall S. Tetrahydrocannabinol and cannabidiol medicines for chronic pain and mental health conditions. Inflammopharmacology. 2022;30:1167–1178. doi: 10.1007/s10787-022-01020-z. PubMed DOI PMC
Duanis-Assaf D., Feldman M., Maurer D., Feygenberg O., Steinberg D., Alkan N. Cannabinoids: A new natural agent to control postharvest decay development. Postharvest Biol. Technol. 2024;211:112842. doi: 10.1016/j.postharvbio.2024.112842. DOI
Krebs G.L., De Rosa D.W., White D.M., Blake B.L., Dods K.C., May C.D., Tai Z.X., Clayton E.H., Lynch E.E. Intake, nutrient digestibility, rumen parameters, growth rate, carcase characteristics and cannabinoid residues of sheep fed pelleted rations containing hemp (Cannabis sativa L.) stubble. Transl. Anim. Sci. 2021;5:txab213. doi: 10.1093/tas/txab213. PubMed DOI PMC
Peng H., Shahidi F. Cannabis and Cannabis Edibles: A Review. J. Agric. Food Chem. 2021;69:1751–1774. doi: 10.1021/acs.jafc.0c07472. PubMed DOI
Wu J. Cannabis, cannabinoid receptors, and endocannabinoid system: Yesterday, today, and tomorrow. Acta Pharmacol. Sin. 2019;40:297–299. doi: 10.1038/s41401-019-0210-3. PubMed DOI PMC
Acosta-Balcazar I.C., Estrada-Drouaillet B., Bautista-Martínez Y., Granados-Rivera L.D. A meta-analysis to determine the optimal values of precursors in the diet of dairy cows that increase the concentration of conjugated linoleic acid (CLA) in milk. J. Anim. Feed Sci. 2024;33:13–27. doi: 10.22358/jafs/171458/2023. DOI
Mensah E., Tabrizchi R., Daneshtalab N. Pharmacognosy and Effects of Cannabinoids in the Vascular System. ACS Pharmacol. Transl. Sci. 2022;5:1034–1049. doi: 10.1021/acsptsci.2c00141. PubMed DOI PMC
Kanabus J., Bryła M., Roszko M., Modrzewska M., Pierzgalski A. Cannabinoids. Characteristics and Potential for Use in Food Production. Molecules. 2021;26:6723. doi: 10.3390/molecules26216723. PubMed DOI PMC
Cardenia V., Toschi T.G., Scappini S., Rubino R.C., Rodriguez-Estrada M.T. Development and validation of a Fast gas chromatography/mass spectrometry method for the determination of cannabinoids in Cannabis sativa L. J. Food Drug Anal. 2018;26:1283–1292. doi: 10.1016/j.jfda.2018.06.001. PubMed DOI PMC
Zgair A., Lee J.B., Wong J.C.M., Taha D.A., Aram J., Di Virgilio D., McArthur J.W., Cheng Y.K., Hennig I.M., Barrett D.A., et al. Oral administration of cannabis with lipids leads to high levels of cannabinoids in the intestinal lymphatic system and prominent immunemodulation. Sci. Rep. 2017;7:14542. doi: 10.1038/s41598-017-15026-z. PubMed DOI PMC
McDougle D.R., Watson J.E., Abdeen A.A., Adili R., Caputo M.P., Krapf J.E., Johnson R.W., Kilian K.A., Holinstat M., Das A. Anti-inflammatory ω-3 endocannabinoid epoxides. Proc. Natl. Acad. Sci. USA. 2017;114:E6034–E6043. doi: 10.1073/pnas.1610325114. PubMed DOI PMC
Whiting P.F., Wolff R.F., Deshpande S., Di Nisio M., Duffy S., Hernandez A.V., Keurentjes J.C., Lang S., Misso K., Ryder S., et al. Cannabinoids for Medical Use: A Systematic Review and Meta-analysis. J. Am. Med. Assoc. 2015;313:2456–2473. doi: 10.1001/jama.2015.6358. PubMed DOI
Fallahi S., Bobak Ł., Opaliński S. Hemp in Animal Diets—Cannabidiol. Animals. 2022;12:2541. doi: 10.3390/ani12192541. PubMed DOI PMC
Williams R.A., Williams D.W. Cannabinoids-Human Physiology and Agronomic Principles for Production. Wiley; Hoboken, NJ, USA: 2019. (Book Series: ASA, CSSA, and SSSA Books). DOI
Marcu J.P. Neuropathology of Drug Additions and Substance Misuse. Elsevier Inc.; Amsterdam, The Netherlands: 2016. An overview of major and minor phytocannabinoids. DOI
Bab I., Zimmer A. Cannabinoid receptors and the regulation of bone mass. Br. J. Pharmacol. 2008;153:182–188. doi: 10.1038/sj.bjp.0707593. PubMed DOI PMC
Ng T., Gupta V., Keshock M.C. StatPearls [Internet] StatPearls Publishing; Treasure Island, FL, USA: 2023. Tetrahydrocannabinol (THC) PubMed
Dos Reis Rosa Franco G., Smid S., Viegas C. Phytocannabinoids: General Aspects and Pharmacological Potential in Neurodegenerative Diseases. Curr. Neuropharmacol. 2021;19:449–464. doi: 10.2174/1570159X18666200720172624. PubMed DOI PMC
Wang M., Wang Y.H., Avula B., Radwan M.M., Wanas A.S., van Antwerp J., Parcher J.F., ElSohly M.A., Khan I.A. Decarboxylation Study of Acidic Cannabinoids: A Novel Approach Using Ultra-High-Performance Supercritical Fluid Chromatography/Photodiode Array-Mass Spectrometry. Cannabis Cannabinoid Res. 2016;1:262–271. doi: 10.1089/can.2016.0020. PubMed DOI PMC
ElSohly M., Gul W. Constituents of Cannabis sativa. In: Pertwee R., editor. Handbook of Cannabis. Oxford University Press; Oxford, UK: 2014. pp. 3–22. DOI
Correia B., Ahmad S.M., Quintas A. Determination of phytocannabinoids in cannabis samples by ultrasound-assisted solid-liquid extraction and high-performance liquid chromatography with diode array detector analysis. J. Chromatogr. A. 2023;1705:464191. doi: 10.1016/j.chroma.2023.464191. PubMed DOI
Stefkov G., Cvetkovikj Karanfilova I., Stoilkovska Gjorgievska V., Trajkovska A., Geskovski N., Karapandzova M., Kulevanova S. Analytical Techniques for Phytocannabinoid Profiling of Cannabis and Cannabis-Based Products—A Comprehensive Review. Molecules. 2022;27:975. doi: 10.3390/molecules27030975. PubMed DOI PMC
Czauderna M., Marounek M., Duskova D., Kowalczyk J. The sensitive and simple measurement of underivatized cholesterol and its oxygen derivatives in biological materials by capillary gas-chromatography coupled to a mass-selective detector. Acta Chromatogr. 2013;25:655–667. doi: 10.1556/AChrom.25.2013.4.5. DOI
Citti C., Braghiroli D., Vandelli M.A., Cannazza G. Pharmaceutical and biomedical analysis of cannabinoids: A critical review. J. Pharm. Biomed. Anal. 2018;147:565–579. doi: 10.1016/j.jpba.2017.06.003. PubMed DOI
Ravisankar P. Fundamental Chromatographic Parameters. [(accessed on 22 April 2020)];Int. J. Pharm. Sci. Rev. Res. 2020 55:46–50. Available online: https://www.researchgate.net/publication/340849229.
Białek M., Karpińska M., Czauderna M. Enrichment of lamb rations with carnosic acid and Se-compounds affects the content of selected lipids and tocopherols in the pancreas. J. Anim. Feed Sci. 2022;31:161–174. doi: 10.22358/jafs/147089/2022. DOI
Czauderna M., Kowalczyk J., Niedźwiedzka K.M. Simple HPLC analysis of tocopherols and cholesterol from specimens of animal origin. Chem. Anal. 2009;54:203–214.
Pourseyed Lazarjani M., Torres S., Hooker T., Fowlie C., Young O., Seyfoddin A. Methods for quantification of cannabinoids: A narrative review. J. Cannabis Res. 2020;2:35. doi: 10.1186/s42238-020-00040-2. PubMed DOI PMC
Antunes M., Barroso M., Gallardo E. Analysis of Cannabinoids in Biological Specimens: An Update. Int. J. Environ. Res. Public Health. 2023;20:2312. doi: 10.3390/ijerph20032312. PubMed DOI PMC
Liu Y., Liu H.-Y., Li S.-H., Ma W., Wu D.-T., Li H.-B., Xiao A.-P., Liu L.-L., Zhu F., Gan R.-Y. Cannabis sativa bioactive compounds and their extraction, separation, purification, and identification technologies: An updated review. TrAC Trends Anal. Chem. 2022;149:116554. doi: 10.1016/j.trac.2022.116554. DOI
Mandrioli M., Tura M., Scotti S., Toschi T.G. Fast detection of 10 cannabinoids by RP-HPLC-UV method in Cannabis sativa L. Molecules. 2019;24:2113. doi: 10.3390/molecules24112113. PubMed DOI PMC
Zekič J., Križman M. Development of Gas-Chromatographic method for simultaneous determination of cannabinoids and terpenes in hemp. Molecules. 2020;25:5872. doi: 10.3390/molecules25245872. PubMed DOI PMC
Franzin M., Ruoso R., Del Savio R., Akhavan Niaki E., Pettinelli A., Decorti G., Stocco G., Addobbat R. Quantification of 7 cannabinoids in cannabis oil using GC-MS: Method development, validation and application to therapeutic preparations in Friuli Venezia Giulia region, Italy. Heliyon. 2023;9:e15479. doi: 10.1016/j.heliyon.2023.e15479. PubMed DOI PMC
Montero L., Meckelmann S.W., Kim H., Ayala-Cabrera J.F., Schmitz O.J. Differentiation of industrial hemp strains by their cannabinoid and phenolic compounds using LC × LC-HRMS. Anal. Bioanal. Chem. 2022;414:5445–5459. doi: 10.1007/s00216-022-03925-8. PubMed DOI PMC
Sonawane P., Pollier J., Panda S., Szymanski J., Massalha H., Yona M., Unger T., Malitsky S., Arendt P., Pauwels L., et al. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nat. Plants. 2017;3:16205. doi: 10.1038/nplants.2016.205. PubMed DOI
Czerwonka M., Białek A., Bobrowska-Korczak B. A Novel method for the determination of squalene, cholesterol and their oxidation products in food of animal origin by GC-TOF/MS. Int. J. Mol. Sci. 2024;25:2807. doi: 10.3390/ijms25052807. PubMed DOI PMC
Hammond E.W. Food and nutritional analysis|Oils and Fats. In: Worsfold P., Townshend A., Poole C., editors. Encyclopedia of Analytical Science. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2005. [(accessed on 28 May 2005)]. pp. 328–334. Available online: https://www.sciencedirect.com/science/article/pii/B0123693977001862. DOI
Czauderna M., Wojtak W., Białek M., Białek A. Optimization of high-efficient pre-column sample treatments and C18-UFLC method for selective quantification of selected chemical forms of tocopherol and tocotrienol in diverse foods. Food Chem. 2024;437:137909. doi: 10.1016/j.foodchem.2023.137909. PubMed DOI
Armbruster D. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 2008;29:S49–S52. PubMed PMC
Shrivastava A., Gupta V.B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011;2:21–25. doi: 10.4103/2229-5186.79345. DOI
Brown C.E. Applied Multivariate Statistics in Geohydrology and Related Sciences. Springer; Berlin/Heidelberg, Germany: 1998. Coefficient of Variation; pp. 155–157.