Comparative Study of Gas and Liquid Chromatography Methods for the Determination of Underivatised Neutral and Acidic Cannabinoids and Cholesterol

. 2024 May 07 ; 29 (10) : . [epub] 20240507

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, srovnávací studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid38792027

The aim of our study was to develop a gas chromatographic method coupled with mass spectrometry (GC-MS) for the determination of underivatised neutral (CBDs-N) and acidic (CBDs-A) cannabinoids (CBDs) and cholesterol (Chol). Emphasis was also placed on comparing our original GC-MS method with the currently developed C18-high-performance liquid chromatography with photodiode detection (C18-HPLC-DAD). A combination of a long GC column, shallow temperature column programme, and mass-spectrometry was employed to avoid issues arising from the overlap between CBDs and Chol and background fluctuations. The pre-column procedure for CBDs and Chol in egg yolks consisted of hexane extractions, whereas the pre-column procedure for CBDs in non-animal samples involved methanol and hexane extractions. CBDs-A underwent decarboxylation to CBDs during GC-MS analyses, and pre-column extraction of the processed sample with NaOH solution allowed for CBD-A removal. No losses of CBDs-N were observed in the samples extracted with NaOH solution. GC-MS analyses of the samples before and after extraction with NaOH solution enabled the quantification of CBDs-A and CBDs-N. CBDs-A did not undergo decarboxylation to CBDs-N during C18-HPLC-DAD runs. The use of the C18-HPLC-DAD method allowed simultaneous determination of CBDs-N and CBDs-A. In comparison to the C18-HPLC-DAD method, our GC-MS technique offered improved sensitivity, precision, specificity, and satisfactory separation of underivatised CBDs and Chol from biological materials of endogenous species, especially in hemp and hen egg yolk. The scientific novelty of the present study is the application of the GC-MS method for quantifying underivatised CBDs-A, CBDs-N, and Chol in the samples of interest.

Zobrazit více v PubMed

Handayani U.F., Sofyan A., Lestari D., Sholikin M.M., Wulandari W., Harahap M.A., Herdian H., Julendra H., Okselni T., Mahat M.E. Dietary supplementation with tomato waste to improve performance and egg quality of laying hens: A meta-analysis. J. Anim. Feed Sci. 2023;32:221–232. doi: 10.22358/jafs/159529/2023. DOI

Reis M.G., Ferreira A.J.F., Sohouli M.H., Taimeirão D.R., Vieira R.A.L., Guimarães N.S. Effect of cannabis and subproducts on anthropometric measures: A systematic review and meta-analysis. Int. J. Obes. 2024;48:44–54. doi: 10.1038/s41366-023-01399-x. PubMed DOI

Kleinhenz M.D., Weeder M., Montgomery S., Martin M., Curtis A., Magnin G., Lin Z., Griffin J., Coetzee J.F. Short term feeding of industrial hemp with a high cannabidiolic acid (CBDA) content increases lying behavior and reduces biomarkers of stress and inflammation in Holstein steers. Sci. Rep. 2022;12:3683. doi: 10.1038/s41598-022-07795-z. PubMed DOI PMC

Kleinhenz M.D., Magnin G., Ensley S.M., Griffin J.J., Goeser J., Lynch P.E., Coetzee J.E. Nutrient concentrations, digestibility, and cannabinoid concentrations of industrial hemp plant components. Appl. Anim. Sci. 2020;36:489–494. doi: 10.15232/aas.2020-02018. DOI

Henson J.D., Vitetta L., Hall S. Tetrahydrocannabinol and cannabidiol medicines for chronic pain and mental health conditions. Inflammopharmacology. 2022;30:1167–1178. doi: 10.1007/s10787-022-01020-z. PubMed DOI PMC

Duanis-Assaf D., Feldman M., Maurer D., Feygenberg O., Steinberg D., Alkan N. Cannabinoids: A new natural agent to control postharvest decay development. Postharvest Biol. Technol. 2024;211:112842. doi: 10.1016/j.postharvbio.2024.112842. DOI

Krebs G.L., De Rosa D.W., White D.M., Blake B.L., Dods K.C., May C.D., Tai Z.X., Clayton E.H., Lynch E.E. Intake, nutrient digestibility, rumen parameters, growth rate, carcase characteristics and cannabinoid residues of sheep fed pelleted rations containing hemp (Cannabis sativa L.) stubble. Transl. Anim. Sci. 2021;5:txab213. doi: 10.1093/tas/txab213. PubMed DOI PMC

Peng H., Shahidi F. Cannabis and Cannabis Edibles: A Review. J. Agric. Food Chem. 2021;69:1751–1774. doi: 10.1021/acs.jafc.0c07472. PubMed DOI

Wu J. Cannabis, cannabinoid receptors, and endocannabinoid system: Yesterday, today, and tomorrow. Acta Pharmacol. Sin. 2019;40:297–299. doi: 10.1038/s41401-019-0210-3. PubMed DOI PMC

Acosta-Balcazar I.C., Estrada-Drouaillet B., Bautista-Martínez Y., Granados-Rivera L.D. A meta-analysis to determine the optimal values of precursors in the diet of dairy cows that increase the concentration of conjugated linoleic acid (CLA) in milk. J. Anim. Feed Sci. 2024;33:13–27. doi: 10.22358/jafs/171458/2023. DOI

Mensah E., Tabrizchi R., Daneshtalab N. Pharmacognosy and Effects of Cannabinoids in the Vascular System. ACS Pharmacol. Transl. Sci. 2022;5:1034–1049. doi: 10.1021/acsptsci.2c00141. PubMed DOI PMC

Kanabus J., Bryła M., Roszko M., Modrzewska M., Pierzgalski A. Cannabinoids. Characteristics and Potential for Use in Food Production. Molecules. 2021;26:6723. doi: 10.3390/molecules26216723. PubMed DOI PMC

Cardenia V., Toschi T.G., Scappini S., Rubino R.C., Rodriguez-Estrada M.T. Development and validation of a Fast gas chromatography/mass spectrometry method for the determination of cannabinoids in Cannabis sativa L. J. Food Drug Anal. 2018;26:1283–1292. doi: 10.1016/j.jfda.2018.06.001. PubMed DOI PMC

Zgair A., Lee J.B., Wong J.C.M., Taha D.A., Aram J., Di Virgilio D., McArthur J.W., Cheng Y.K., Hennig I.M., Barrett D.A., et al. Oral administration of cannabis with lipids leads to high levels of cannabinoids in the intestinal lymphatic system and prominent immunemodulation. Sci. Rep. 2017;7:14542. doi: 10.1038/s41598-017-15026-z. PubMed DOI PMC

McDougle D.R., Watson J.E., Abdeen A.A., Adili R., Caputo M.P., Krapf J.E., Johnson R.W., Kilian K.A., Holinstat M., Das A. Anti-inflammatory ω-3 endocannabinoid epoxides. Proc. Natl. Acad. Sci. USA. 2017;114:E6034–E6043. doi: 10.1073/pnas.1610325114. PubMed DOI PMC

Whiting P.F., Wolff R.F., Deshpande S., Di Nisio M., Duffy S., Hernandez A.V., Keurentjes J.C., Lang S., Misso K., Ryder S., et al. Cannabinoids for Medical Use: A Systematic Review and Meta-analysis. J. Am. Med. Assoc. 2015;313:2456–2473. doi: 10.1001/jama.2015.6358. PubMed DOI

Fallahi S., Bobak Ł., Opaliński S. Hemp in Animal Diets—Cannabidiol. Animals. 2022;12:2541. doi: 10.3390/ani12192541. PubMed DOI PMC

Williams R.A., Williams D.W. Cannabinoids-Human Physiology and Agronomic Principles for Production. Wiley; Hoboken, NJ, USA: 2019. (Book Series: ASA, CSSA, and SSSA Books). DOI

Marcu J.P. Neuropathology of Drug Additions and Substance Misuse. Elsevier Inc.; Amsterdam, The Netherlands: 2016. An overview of major and minor phytocannabinoids. DOI

Bab I., Zimmer A. Cannabinoid receptors and the regulation of bone mass. Br. J. Pharmacol. 2008;153:182–188. doi: 10.1038/sj.bjp.0707593. PubMed DOI PMC

Ng T., Gupta V., Keshock M.C. StatPearls [Internet] StatPearls Publishing; Treasure Island, FL, USA: 2023. Tetrahydrocannabinol (THC) PubMed

Dos Reis Rosa Franco G., Smid S., Viegas C. Phytocannabinoids: General Aspects and Pharmacological Potential in Neurodegenerative Diseases. Curr. Neuropharmacol. 2021;19:449–464. doi: 10.2174/1570159X18666200720172624. PubMed DOI PMC

Wang M., Wang Y.H., Avula B., Radwan M.M., Wanas A.S., van Antwerp J., Parcher J.F., ElSohly M.A., Khan I.A. Decarboxylation Study of Acidic Cannabinoids: A Novel Approach Using Ultra-High-Performance Supercritical Fluid Chromatography/Photodiode Array-Mass Spectrometry. Cannabis Cannabinoid Res. 2016;1:262–271. doi: 10.1089/can.2016.0020. PubMed DOI PMC

ElSohly M., Gul W. Constituents of Cannabis sativa. In: Pertwee R., editor. Handbook of Cannabis. Oxford University Press; Oxford, UK: 2014. pp. 3–22. DOI

Correia B., Ahmad S.M., Quintas A. Determination of phytocannabinoids in cannabis samples by ultrasound-assisted solid-liquid extraction and high-performance liquid chromatography with diode array detector analysis. J. Chromatogr. A. 2023;1705:464191. doi: 10.1016/j.chroma.2023.464191. PubMed DOI

Stefkov G., Cvetkovikj Karanfilova I., Stoilkovska Gjorgievska V., Trajkovska A., Geskovski N., Karapandzova M., Kulevanova S. Analytical Techniques for Phytocannabinoid Profiling of Cannabis and Cannabis-Based Products—A Comprehensive Review. Molecules. 2022;27:975. doi: 10.3390/molecules27030975. PubMed DOI PMC

Czauderna M., Marounek M., Duskova D., Kowalczyk J. The sensitive and simple measurement of underivatized cholesterol and its oxygen derivatives in biological materials by capillary gas-chromatography coupled to a mass-selective detector. Acta Chromatogr. 2013;25:655–667. doi: 10.1556/AChrom.25.2013.4.5. DOI

Citti C., Braghiroli D., Vandelli M.A., Cannazza G. Pharmaceutical and biomedical analysis of cannabinoids: A critical review. J. Pharm. Biomed. Anal. 2018;147:565–579. doi: 10.1016/j.jpba.2017.06.003. PubMed DOI

Ravisankar P. Fundamental Chromatographic Parameters. [(accessed on 22 April 2020)];Int. J. Pharm. Sci. Rev. Res. 2020 55:46–50. Available online: https://www.researchgate.net/publication/340849229.

Białek M., Karpińska M., Czauderna M. Enrichment of lamb rations with carnosic acid and Se-compounds affects the content of selected lipids and tocopherols in the pancreas. J. Anim. Feed Sci. 2022;31:161–174. doi: 10.22358/jafs/147089/2022. DOI

Czauderna M., Kowalczyk J., Niedźwiedzka K.M. Simple HPLC analysis of tocopherols and cholesterol from specimens of animal origin. Chem. Anal. 2009;54:203–214.

Pourseyed Lazarjani M., Torres S., Hooker T., Fowlie C., Young O., Seyfoddin A. Methods for quantification of cannabinoids: A narrative review. J. Cannabis Res. 2020;2:35. doi: 10.1186/s42238-020-00040-2. PubMed DOI PMC

Antunes M., Barroso M., Gallardo E. Analysis of Cannabinoids in Biological Specimens: An Update. Int. J. Environ. Res. Public Health. 2023;20:2312. doi: 10.3390/ijerph20032312. PubMed DOI PMC

Liu Y., Liu H.-Y., Li S.-H., Ma W., Wu D.-T., Li H.-B., Xiao A.-P., Liu L.-L., Zhu F., Gan R.-Y. Cannabis sativa bioactive compounds and their extraction, separation, purification, and identification technologies: An updated review. TrAC Trends Anal. Chem. 2022;149:116554. doi: 10.1016/j.trac.2022.116554. DOI

Mandrioli M., Tura M., Scotti S., Toschi T.G. Fast detection of 10 cannabinoids by RP-HPLC-UV method in Cannabis sativa L. Molecules. 2019;24:2113. doi: 10.3390/molecules24112113. PubMed DOI PMC

Zekič J., Križman M. Development of Gas-Chromatographic method for simultaneous determination of cannabinoids and terpenes in hemp. Molecules. 2020;25:5872. doi: 10.3390/molecules25245872. PubMed DOI PMC

Franzin M., Ruoso R., Del Savio R., Akhavan Niaki E., Pettinelli A., Decorti G., Stocco G., Addobbat R. Quantification of 7 cannabinoids in cannabis oil using GC-MS: Method development, validation and application to therapeutic preparations in Friuli Venezia Giulia region, Italy. Heliyon. 2023;9:e15479. doi: 10.1016/j.heliyon.2023.e15479. PubMed DOI PMC

Montero L., Meckelmann S.W., Kim H., Ayala-Cabrera J.F., Schmitz O.J. Differentiation of industrial hemp strains by their cannabinoid and phenolic compounds using LC × LC-HRMS. Anal. Bioanal. Chem. 2022;414:5445–5459. doi: 10.1007/s00216-022-03925-8. PubMed DOI PMC

Sonawane P., Pollier J., Panda S., Szymanski J., Massalha H., Yona M., Unger T., Malitsky S., Arendt P., Pauwels L., et al. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nat. Plants. 2017;3:16205. doi: 10.1038/nplants.2016.205. PubMed DOI

Czerwonka M., Białek A., Bobrowska-Korczak B. A Novel method for the determination of squalene, cholesterol and their oxidation products in food of animal origin by GC-TOF/MS. Int. J. Mol. Sci. 2024;25:2807. doi: 10.3390/ijms25052807. PubMed DOI PMC

Hammond E.W. Food and nutritional analysis|Oils and Fats. In: Worsfold P., Townshend A., Poole C., editors. Encyclopedia of Analytical Science. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2005. [(accessed on 28 May 2005)]. pp. 328–334. Available online: https://www.sciencedirect.com/science/article/pii/B0123693977001862. DOI

Czauderna M., Wojtak W., Białek M., Białek A. Optimization of high-efficient pre-column sample treatments and C18-UFLC method for selective quantification of selected chemical forms of tocopherol and tocotrienol in diverse foods. Food Chem. 2024;437:137909. doi: 10.1016/j.foodchem.2023.137909. PubMed DOI

Armbruster D. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 2008;29:S49–S52. PubMed PMC

Shrivastava A., Gupta V.B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011;2:21–25. doi: 10.4103/2229-5186.79345. DOI

Brown C.E. Applied Multivariate Statistics in Geohydrology and Related Sciences. Springer; Berlin/Heidelberg, Germany: 1998. Coefficient of Variation; pp. 155–157.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...