Electrospun Polyimide Nanofibers Modified with Metal Oxide Nanowires and MXene for Photocatalytic Water Purification

. 2025 Sep 05 ; 15 (17) : . [epub] 20250905

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40938049

As the demand for clean water continues to rise, the development of reliable and environmentally sustainable purification methods has become increasingly important. In this study, we describe the production and characterization of electrospun polyimide (PID) nanofibers modified with MXene (Ti3C2Tx), tungsten trioxide (WO3), and titanium dioxide (TiO2) nanomaterials for improved photocatalytic degradation of rhodamine 6G (R6G), a model organic dye. Superior photocatalytic performance was achieved by suppressing electron-hole recombination, promoting efficient charge carrier separation, and the significant increase in light absorption through the addition of metal oxide nanowires and MXene to the PID matrix. Comprehensive characterization confirms a core-shell nanofiber architecture with TiO2, WO3, and MXene effectively integrated and electronically coupled, consistent with the observed photocatalytic response. The PID/TiO2/WO3/MXene composite exhibited the highest photocatalytic activity among the tested configurations, degrading R6G by 74% in 90 min of light exposure. This enhancement was ascribed to the synergistic interactions between MXene and the metal oxides, which reduced recombination losses and promoted effective charge transfer. The study confirms the suitability of PID-based hybrid nanofibers for wastewater treatment applications. It also points toward future directions focused on scalable production and deployment in the field of environmental remediation.

Zobrazit více v PubMed

Hafeez A., Shamair Z., Shezad N., Javed F., Fazal T., Rehman S.U., Bazmi A.A., Rehman F. Solar Powered Decentralized Water Systems: A Cleaner Solution of the Industrial Wastewater Treatment and Clean Drinking Water Supply Challenges. J. Clean. Prod. 2021;289:125717. doi: 10.1016/j.jclepro.2020.125717. DOI

Al-Tohamy R., Ali S.S., Li F., Okasha K.M., Mahmoud Y.A.-G., Elsamahy T., Jiao H., Fu Y., Sun J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxicol. Environ. Saf. 2022;231:113160. doi: 10.1016/j.ecoenv.2021.113160. PubMed DOI

Saeed M., Muneer M., Haq A.U., Akram N. Photocatalysis: An Effective Tool for Photodegradation of Dyes—A Review. Environ. Sci. Pollut. Res. 2022;29:293–311. doi: 10.1007/s11356-021-16389-7. PubMed DOI

Zhang J., Sun X., Zhu W., Liu G., Xian T., Yang H. Design of CdZnS/BiOCl Heterostructure as a Highly-Efficient Piezo-Photocatalyst for Removal of Antibiotic. J. Environ. Chem. Eng. 2024;12:114405. doi: 10.1016/j.jece.2024.114405. DOI

Mu W., Xu M., Sun X., Liu G., Yang H. Oxygen-Vacancy-Tunable Mesocrystalline ZnO Twin “Cakes” Heterostructured with CdS and Cu Nanoparticles for Efficiently Photodegrading Sulfamethoxazole. J. Environ. Chem. Eng. 2024;12:112367. doi: 10.1016/j.jece.2024.112367. DOI

Thanh P.N., Phung V.-D., Nguyen T.B.H. Recent Advances and Future Trends in Metal Oxide Photocatalysts for Removal of Pharmaceutical Pollutants from Wastewater: A Comprehensive Review. Environ. Geochem. Health. 2024;46:364. doi: 10.1007/s10653-024-02140-x. PubMed DOI

Fareza A.R., Nugroho F.A.A., Abdi F.F., Fauzia V. Nanoscale Metal Oxides–2D Materials Heterostructures for Photoelectrochemical Water Splitting—A Review. J. Mater. Chem. A. 2022;10:8656–8686. doi: 10.1039/D1TA10203F. DOI

Okpara E.C., Olatunde O.C., Wojuola O.B., Onwudiwe D.C. Applications of Transition Metal Oxides and Chalcogenides and Their Composites in Water Treatment: A Review. Environ. Adv. 2023;11:100341. doi: 10.1016/j.envadv.2023.100341. DOI

Sedghi R., Moazzami H.R., Hosseiny Davarani S.S., Nabid M.R., Keshtkar A.R. A One Step Electrospinning Process for the Preparation of Polyaniline Modified TiO2/Polyacrylonitile Nanocomposite with Enhanced Photocatalytic Activity. J. Alloys Compd. 2017;695:1073–1079. doi: 10.1016/j.jallcom.2016.10.232. DOI

Chang Z., Sun X., Liao Z., Liu Q., Han J. Design and Preparation of Polyimide/TiO2@MoS2 Nanofibers by Hydrothermal Synthesis and Their Photocatalytic Performance. Polymers. 2022;14:3230. doi: 10.3390/polym14163230. PubMed DOI PMC

Yue Y., Hou K., Chen J., Cheng W., Wu Q., Han J., Jiang J. Ag/AgBr/AgVO3 Photocatalyst-Embedded Polyacrylonitrile/Polyamide/Chitosan Nanofiltration Membrane for Integrated Filtration and Degradation of RhB. ACS Appl. Mater. Interfaces. 2022;14:24708–24719. doi: 10.1021/acsami.2c04988. PubMed DOI

Araújo E.S., Da Costa B.P., Oliveira R.A.P., Libardi J., Faia P.M., De Oliveira H.P. TiO2/ZnO Hierarchical Heteronanostructures: Synthesis, Characterization and Application as Photocatalysts. J. Environ. Chem. Eng. 2016;4:2820–2829. doi: 10.1016/j.jece.2016.05.021. DOI

Keirouz A., Wang Z., Reddy V.S., Nagy Z.K., Vass P., Buzgo M., Ramakrishna S., Radacsi N. The History of Electrospinning: Past, Present, and Future Developments. Adv. Mater. Technol. 2023;8:2201723. doi: 10.1002/admt.202201723. DOI

Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., Barsoum M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011;23:4248–4253. doi: 10.1002/adma.201102306. PubMed DOI

Zheng H., Meng X., Chen J., Que M., Wang W., Liu X., Yang L., Zhao Y. In Situ Phase Evolution of TiO2/Ti3C2T Heterojunction for Enhancing Adsorption and Photocatalytic Degradation. Appl. Surf. Sci. 2021;545:149031. doi: 10.1016/j.apsusc.2021.149031. DOI

Konieva A., Deineka V., Diedkova K., Aguilar-Ferrer D., Lyndin M., Wennemuth G., Korniienko V., Kyrylenko S., Lihachev A., Zahorodna V., et al. MXene-Polydopamine-antiCEACAM1 Antibody Complex as a Strategy for Targeted Ablation of Melanoma. ACS Appl. Mater. Interfaces. 2024;16:43302–43316. doi: 10.1021/acsami.4c08129. PubMed DOI PMC

Wang Y., Yin L., Wang M., Zhang B., Feng S., Liu W., Liu Y., Liu T., Bi Y., Yang Q., et al. Surface Plasmon Effect of Ti3C2 Mxene and Degradation of Antibiotics Under Full Spectrum. SSRN J. 2022 doi: 10.2139/ssrn.4073612. DOI

Zhu Y., Zhao X., Peng Q., Zheng H., Xue F., Li P., Xu Z., He X. Flame-Retardant MXene/Polyimide Film with Outstanding Thermal and Mechanical Properties Based on the Secondary Orientation Strategy. Nanoscale Adv. 2021;3:5683–5693. doi: 10.1039/D1NA00415H. PubMed DOI PMC

Kalambate P.K., Dhanjai, Sinha A., Li Y., Shen Y., Huang Y. An Electrochemical Sensor for Ifosfamide, Acetaminophen, Domperidone, and Sumatriptan Based on Self-Assembled MXene/MWCNT/Chitosan Nanocomposite Thin Film. Microchim. Acta. 2020;187:402. doi: 10.1007/s00604-020-04366-9. PubMed DOI

Fong H., Chun I., Reneker D.H. Beaded Nanofibers Formed during Electrospinning. Polymer. 1999;40:4585–4592. doi: 10.1016/S0032-3861(99)00068-3. DOI

Myndrul V., Coy E., Babayevska N., Zahorodna V., Balitskyi V., Baginskiy I., Gogotsi O., Bechelany M., Giardi M.T., Iatsunskyi I. MXene Nanoflakes Decorating ZnO Tetrapods for Enhanced Performance of Skin-Attachable Stretchable Enzymatic Electrochemical Glucose Sensor. Biosens. Bioelectron. 2022;207:114141. doi: 10.1016/j.bios.2022.114141. PubMed DOI

Prabu G.T.V., Dhurai B. A Novel Profiled Multi-Pin Electrospinning System for Nanofiber Production and Encapsulation of Nanoparticles into Nanofibers. Sci. Rep. 2020;10:4302. doi: 10.1038/s41598-020-60752-6. PubMed DOI PMC

Lu Y., Li D., Liu F. Characterizing the Chemical Structure of Ti3C2Tx MXene by Angle-Resolved XPS Combined with Argon Ion Etching. Materials. 2022;15:307. doi: 10.3390/ma15010307. PubMed DOI PMC

Näslund L.-Å., Kokkonen E., Magnuson M. Interaction and Kinetics of H2, CO2, and H2O on Ti3C2Tx MXene Probed by X-Ray Photoelectron Spectroscopy. Appl. Surf. Sci. 2025;684:161926. doi: 10.1016/j.apsusc.2024.161926. DOI

Ma H., Zhang L., Yao N., Bi Z., Zhang B., Hu H. Field-Electron Emission from Polyimide-Ablated Films. Appl. Phys. A. 2000;71:281–284. doi: 10.1007/s003390000511. DOI

Natu V., Benchakar M., Canaff C., Habrioux A., Célérier S., Barsoum M.W. A Critical Analysis of the X-Ray Photoelectron Spectra of Ti3C2Tz MXenes. Matter. 2021;4:1224–1251. doi: 10.1016/j.matt.2021.01.015. DOI

Kim S.-K., Kim H.-T., Park J.-K. Effects of Thermal Curing on the Structure of Polyimide Film. Polym. J. 1998;30:229–233. doi: 10.1295/polymj.30.229. DOI

Sheng W., Shi J.-L., Hao H., Li X., Lang X. Polyimide-TiO2 Hybrid Photocatalysis: Visible Light-Promoted Selective Aerobic Oxidation of Amines. Chem. Eng. J. 2020;379:122399. doi: 10.1016/j.cej.2019.122399. DOI

Dozzi M.V., Marzorati S., Longhi M., Coduri M., Artiglia L., Selli E. Photocatalytic Activity of TiO2-WO3 Mixed Oxides in Relation to Electron Transfer Efficiency. Appl. Catal. B Environ. 2016;186:157–165. doi: 10.1016/j.apcatb.2016.01.004. DOI

Gao W., Li X., Luo S., Luo Z., Zhang X., Huang R., Luo M. In Situ Modification of Cobalt on MXene/TiO2 as Composite Photocatalyst for Efficient Nitrogen Fixation. J. Colloid Interface Sci. 2021;585:20–29. doi: 10.1016/j.jcis.2020.11.064. PubMed DOI

Tauc J., Grigorovici R., Vancu A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi B. 1966;15:627–637. doi: 10.1002/pssb.19660150224. DOI

Nirmala R., Jeong J.W., Navamathavan R., Kim H.Y. Synthesis and Electrical Properties of TiO2 Nanoparticles Embedded in Polyamide-6 Nanofibers Via Electrospinning. Nano-Micro Lett. 2011;3:56–61. doi: 10.1007/BF03353651. DOI

Li B., He T., Ding M. A Comparative Study of Insoluble and Soluble Polyimide Thin Films. Polymer. 1999;40:789–794. doi: 10.1016/S0032-3861(98)00279-1. DOI

Xu Y., Schoonen M.A.A. The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals. Am. Mineral. 2000;85:543–556. doi: 10.2138/am-2000-0416. DOI

Patel M.Y., Mortelliti M.J., Dempsey J.L. A Compendium and Meta-Analysis of Flatband Potentials for TiO2, ZnO, and SnO2 Semiconductors in Aqueous Media. Chem. Phys. Rev. 2022;3:011303. doi: 10.1063/5.0063170. DOI

Kalanur S.S. Structural, Optical, Band Edge and Enhanced Photoelectrochemical Water Splitting Properties of Tin-Doped WO3. Catalysts. 2019;9:456. doi: 10.3390/catal9050456. DOI

Ye F., Qian J., Xia J., Li L., Wang S., Zeng Z., Mao J., Ahamad M., Xiao Z., Zhang Q. Efficient Photoelectrocatalytic Degradation of Pollutants over Hydrophobic Carbon Felt Loaded with Fe-Doped Porous Carbon Nitride via Direct Activation of Molecular Oxygen. Environ. Res. 2024;249:118497. doi: 10.1016/j.envres.2024.118497. PubMed DOI

Othman Z., Sinopoli A., Mackey H.R., Mahmoud K.A. Efficient Photocatalytic Degradation of Organic Dyes by AgNPs/TiO2/Ti3C2Tx MXene Composites under UV and Solar Light. ACS Omega. 2021;6:33325–33338. doi: 10.1021/acsomega.1c03189. PubMed DOI PMC

Nguyen N.T.A., Kim H. Ag3PO4-Deposited TiO2@Ti3C2 Petals for Highly Efficient Photodecomposition of Various Organic Dyes under Solar Light. Nanomaterials. 2022;12:2464. doi: 10.3390/nano12142464. PubMed DOI PMC

Bai Y., Xu S., Chen J., Sun X., Zhao S., Chang J., He Z. Ti3C2@g-C3N4/TiO2 Ternary Heterogeneous Photocatalyst for Promoted Photocatalytic Degradation Activities. Coatings. 2023;13:655. doi: 10.3390/coatings13030655. DOI

Li Y., Zhang M., Liu Y., Zhao Q., Li X., Zhou Q., Chen Y., Wang S. Construction of Bronze TiO2/Ti3C2 MXene/Ag3PO4 Ternary Composite Photocatalyst toward High Photocatalytic Performance. Catalysts. 2022;12:599. doi: 10.3390/catal12060599. DOI

Nasri M.S.I., Samsudin M.F.R., Tahir A.A., Sufian S. Effect of MXene Loaded on G-C3N4 Photocatalyst for the Photocatalytic Degradation of Methylene Blue. Energies. 2022;15:955. doi: 10.3390/en15030955. DOI

Praus P. 2D/2D Composites Based on Graphitic Carbon Nitride and MXenes for Photocatalytic Reactions: A Critical Review. Carbon Lett. 2024;34:227–245. doi: 10.1007/s42823-023-00634-9. DOI

Pino E., Calderón C., Herrera F., Cifuentes G., Arteaga G. Photocatalytic Degradation of Aqueous Rhodamine 6G Using Supported TiO2 Catalysts. A Model for the Removal of Organic Contaminants from Aqueous Samples. Front. Chem. 2020;8:365. doi: 10.3389/fchem.2020.00365. PubMed DOI PMC

Iqbal M.A., Tariq A., Zaheer A., Gul S., Ali S.I., Iqbal M.Z., Akinwande D., Rizwan S. Ti3C2 -MXene/Bismuth Ferrite Nanohybrids for Efficient Degradation of Organic Dyes and Colorless Pollutants. ACS Omega. 2019;4:20530–20539. doi: 10.1021/acsomega.9b02359. PubMed DOI PMC

Li J.-Y., Jiang X., Lin L., Zhou J.-J., Xu G.-S., Yuan Y.-P. Improving the Photocatalytic Performance of Polyimide by Constructing an Inorganic-Organic Hybrid ZnO-Polyimide Core–Shell Structure. J. Mol. Catal. A Chem. 2015;406:46–50. doi: 10.1016/j.molcata.2015.05.014. DOI

Zhou M., Tian X., Yu H., Wang Z., Ren C., Zhou L., Lin Y.-W., Dou L. WO3/Ag2CO3 Mixed Photocatalyst with Enhanced Photocatalytic Activity for Organic Dye Degradation. ACS Omega. 2021;6:26439–26453. doi: 10.1021/acsomega.1c03694. PubMed DOI PMC

Iravani S., Varma R.S. MXene-Based Photocatalysts in Degradation of Organic and Pharmaceutical Pollutants. Molecules. 2022;27:6939. doi: 10.3390/molecules27206939. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...