Electrospun Polyimide Nanofibers Modified with Metal Oxide Nanowires and MXene for Photocatalytic Water Purification
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40938049
PubMed Central
PMC12430064
DOI
10.3390/nano15171371
PII: nano15171371
Knihovny.cz E-zdroje
- Klíčová slova
- MXene (Ti3C2Tx), advanced functional materials, electrospinning, metal oxides, nanofibers, organic dye degradation,
- Publikační typ
- časopisecké články MeSH
As the demand for clean water continues to rise, the development of reliable and environmentally sustainable purification methods has become increasingly important. In this study, we describe the production and characterization of electrospun polyimide (PID) nanofibers modified with MXene (Ti3C2Tx), tungsten trioxide (WO3), and titanium dioxide (TiO2) nanomaterials for improved photocatalytic degradation of rhodamine 6G (R6G), a model organic dye. Superior photocatalytic performance was achieved by suppressing electron-hole recombination, promoting efficient charge carrier separation, and the significant increase in light absorption through the addition of metal oxide nanowires and MXene to the PID matrix. Comprehensive characterization confirms a core-shell nanofiber architecture with TiO2, WO3, and MXene effectively integrated and electronically coupled, consistent with the observed photocatalytic response. The PID/TiO2/WO3/MXene composite exhibited the highest photocatalytic activity among the tested configurations, degrading R6G by 74% in 90 min of light exposure. This enhancement was ascribed to the synergistic interactions between MXene and the metal oxides, which reduced recombination losses and promoted effective charge transfer. The study confirms the suitability of PID-based hybrid nanofibers for wastewater treatment applications. It also points toward future directions focused on scalable production and deployment in the field of environmental remediation.
NanoBioMedical Centre Adam Mickiewicz University 61 712 Poznan Poland
Zobrazit více v PubMed
Hafeez A., Shamair Z., Shezad N., Javed F., Fazal T., Rehman S.U., Bazmi A.A., Rehman F. Solar Powered Decentralized Water Systems: A Cleaner Solution of the Industrial Wastewater Treatment and Clean Drinking Water Supply Challenges. J. Clean. Prod. 2021;289:125717. doi: 10.1016/j.jclepro.2020.125717. DOI
Al-Tohamy R., Ali S.S., Li F., Okasha K.M., Mahmoud Y.A.-G., Elsamahy T., Jiao H., Fu Y., Sun J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxicol. Environ. Saf. 2022;231:113160. doi: 10.1016/j.ecoenv.2021.113160. PubMed DOI
Saeed M., Muneer M., Haq A.U., Akram N. Photocatalysis: An Effective Tool for Photodegradation of Dyes—A Review. Environ. Sci. Pollut. Res. 2022;29:293–311. doi: 10.1007/s11356-021-16389-7. PubMed DOI
Zhang J., Sun X., Zhu W., Liu G., Xian T., Yang H. Design of CdZnS/BiOCl Heterostructure as a Highly-Efficient Piezo-Photocatalyst for Removal of Antibiotic. J. Environ. Chem. Eng. 2024;12:114405. doi: 10.1016/j.jece.2024.114405. DOI
Mu W., Xu M., Sun X., Liu G., Yang H. Oxygen-Vacancy-Tunable Mesocrystalline ZnO Twin “Cakes” Heterostructured with CdS and Cu Nanoparticles for Efficiently Photodegrading Sulfamethoxazole. J. Environ. Chem. Eng. 2024;12:112367. doi: 10.1016/j.jece.2024.112367. DOI
Thanh P.N., Phung V.-D., Nguyen T.B.H. Recent Advances and Future Trends in Metal Oxide Photocatalysts for Removal of Pharmaceutical Pollutants from Wastewater: A Comprehensive Review. Environ. Geochem. Health. 2024;46:364. doi: 10.1007/s10653-024-02140-x. PubMed DOI
Fareza A.R., Nugroho F.A.A., Abdi F.F., Fauzia V. Nanoscale Metal Oxides–2D Materials Heterostructures for Photoelectrochemical Water Splitting—A Review. J. Mater. Chem. A. 2022;10:8656–8686. doi: 10.1039/D1TA10203F. DOI
Okpara E.C., Olatunde O.C., Wojuola O.B., Onwudiwe D.C. Applications of Transition Metal Oxides and Chalcogenides and Their Composites in Water Treatment: A Review. Environ. Adv. 2023;11:100341. doi: 10.1016/j.envadv.2023.100341. DOI
Sedghi R., Moazzami H.R., Hosseiny Davarani S.S., Nabid M.R., Keshtkar A.R. A One Step Electrospinning Process for the Preparation of Polyaniline Modified TiO2/Polyacrylonitile Nanocomposite with Enhanced Photocatalytic Activity. J. Alloys Compd. 2017;695:1073–1079. doi: 10.1016/j.jallcom.2016.10.232. DOI
Chang Z., Sun X., Liao Z., Liu Q., Han J. Design and Preparation of Polyimide/TiO2@MoS2 Nanofibers by Hydrothermal Synthesis and Their Photocatalytic Performance. Polymers. 2022;14:3230. doi: 10.3390/polym14163230. PubMed DOI PMC
Yue Y., Hou K., Chen J., Cheng W., Wu Q., Han J., Jiang J. Ag/AgBr/AgVO3 Photocatalyst-Embedded Polyacrylonitrile/Polyamide/Chitosan Nanofiltration Membrane for Integrated Filtration and Degradation of RhB. ACS Appl. Mater. Interfaces. 2022;14:24708–24719. doi: 10.1021/acsami.2c04988. PubMed DOI
Araújo E.S., Da Costa B.P., Oliveira R.A.P., Libardi J., Faia P.M., De Oliveira H.P. TiO2/ZnO Hierarchical Heteronanostructures: Synthesis, Characterization and Application as Photocatalysts. J. Environ. Chem. Eng. 2016;4:2820–2829. doi: 10.1016/j.jece.2016.05.021. DOI
Keirouz A., Wang Z., Reddy V.S., Nagy Z.K., Vass P., Buzgo M., Ramakrishna S., Radacsi N. The History of Electrospinning: Past, Present, and Future Developments. Adv. Mater. Technol. 2023;8:2201723. doi: 10.1002/admt.202201723. DOI
Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., Barsoum M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011;23:4248–4253. doi: 10.1002/adma.201102306. PubMed DOI
Zheng H., Meng X., Chen J., Que M., Wang W., Liu X., Yang L., Zhao Y. In Situ Phase Evolution of TiO2/Ti3C2T Heterojunction for Enhancing Adsorption and Photocatalytic Degradation. Appl. Surf. Sci. 2021;545:149031. doi: 10.1016/j.apsusc.2021.149031. DOI
Konieva A., Deineka V., Diedkova K., Aguilar-Ferrer D., Lyndin M., Wennemuth G., Korniienko V., Kyrylenko S., Lihachev A., Zahorodna V., et al. MXene-Polydopamine-antiCEACAM1 Antibody Complex as a Strategy for Targeted Ablation of Melanoma. ACS Appl. Mater. Interfaces. 2024;16:43302–43316. doi: 10.1021/acsami.4c08129. PubMed DOI PMC
Wang Y., Yin L., Wang M., Zhang B., Feng S., Liu W., Liu Y., Liu T., Bi Y., Yang Q., et al. Surface Plasmon Effect of Ti3C2 Mxene and Degradation of Antibiotics Under Full Spectrum. SSRN J. 2022 doi: 10.2139/ssrn.4073612. DOI
Zhu Y., Zhao X., Peng Q., Zheng H., Xue F., Li P., Xu Z., He X. Flame-Retardant MXene/Polyimide Film with Outstanding Thermal and Mechanical Properties Based on the Secondary Orientation Strategy. Nanoscale Adv. 2021;3:5683–5693. doi: 10.1039/D1NA00415H. PubMed DOI PMC
Kalambate P.K., Dhanjai, Sinha A., Li Y., Shen Y., Huang Y. An Electrochemical Sensor for Ifosfamide, Acetaminophen, Domperidone, and Sumatriptan Based on Self-Assembled MXene/MWCNT/Chitosan Nanocomposite Thin Film. Microchim. Acta. 2020;187:402. doi: 10.1007/s00604-020-04366-9. PubMed DOI
Fong H., Chun I., Reneker D.H. Beaded Nanofibers Formed during Electrospinning. Polymer. 1999;40:4585–4592. doi: 10.1016/S0032-3861(99)00068-3. DOI
Myndrul V., Coy E., Babayevska N., Zahorodna V., Balitskyi V., Baginskiy I., Gogotsi O., Bechelany M., Giardi M.T., Iatsunskyi I. MXene Nanoflakes Decorating ZnO Tetrapods for Enhanced Performance of Skin-Attachable Stretchable Enzymatic Electrochemical Glucose Sensor. Biosens. Bioelectron. 2022;207:114141. doi: 10.1016/j.bios.2022.114141. PubMed DOI
Prabu G.T.V., Dhurai B. A Novel Profiled Multi-Pin Electrospinning System for Nanofiber Production and Encapsulation of Nanoparticles into Nanofibers. Sci. Rep. 2020;10:4302. doi: 10.1038/s41598-020-60752-6. PubMed DOI PMC
Lu Y., Li D., Liu F. Characterizing the Chemical Structure of Ti3C2Tx MXene by Angle-Resolved XPS Combined with Argon Ion Etching. Materials. 2022;15:307. doi: 10.3390/ma15010307. PubMed DOI PMC
Näslund L.-Å., Kokkonen E., Magnuson M. Interaction and Kinetics of H2, CO2, and H2O on Ti3C2Tx MXene Probed by X-Ray Photoelectron Spectroscopy. Appl. Surf. Sci. 2025;684:161926. doi: 10.1016/j.apsusc.2024.161926. DOI
Ma H., Zhang L., Yao N., Bi Z., Zhang B., Hu H. Field-Electron Emission from Polyimide-Ablated Films. Appl. Phys. A. 2000;71:281–284. doi: 10.1007/s003390000511. DOI
Natu V., Benchakar M., Canaff C., Habrioux A., Célérier S., Barsoum M.W. A Critical Analysis of the X-Ray Photoelectron Spectra of Ti3C2Tz MXenes. Matter. 2021;4:1224–1251. doi: 10.1016/j.matt.2021.01.015. DOI
Kim S.-K., Kim H.-T., Park J.-K. Effects of Thermal Curing on the Structure of Polyimide Film. Polym. J. 1998;30:229–233. doi: 10.1295/polymj.30.229. DOI
Sheng W., Shi J.-L., Hao H., Li X., Lang X. Polyimide-TiO2 Hybrid Photocatalysis: Visible Light-Promoted Selective Aerobic Oxidation of Amines. Chem. Eng. J. 2020;379:122399. doi: 10.1016/j.cej.2019.122399. DOI
Dozzi M.V., Marzorati S., Longhi M., Coduri M., Artiglia L., Selli E. Photocatalytic Activity of TiO2-WO3 Mixed Oxides in Relation to Electron Transfer Efficiency. Appl. Catal. B Environ. 2016;186:157–165. doi: 10.1016/j.apcatb.2016.01.004. DOI
Gao W., Li X., Luo S., Luo Z., Zhang X., Huang R., Luo M. In Situ Modification of Cobalt on MXene/TiO2 as Composite Photocatalyst for Efficient Nitrogen Fixation. J. Colloid Interface Sci. 2021;585:20–29. doi: 10.1016/j.jcis.2020.11.064. PubMed DOI
Tauc J., Grigorovici R., Vancu A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi B. 1966;15:627–637. doi: 10.1002/pssb.19660150224. DOI
Nirmala R., Jeong J.W., Navamathavan R., Kim H.Y. Synthesis and Electrical Properties of TiO2 Nanoparticles Embedded in Polyamide-6 Nanofibers Via Electrospinning. Nano-Micro Lett. 2011;3:56–61. doi: 10.1007/BF03353651. DOI
Li B., He T., Ding M. A Comparative Study of Insoluble and Soluble Polyimide Thin Films. Polymer. 1999;40:789–794. doi: 10.1016/S0032-3861(98)00279-1. DOI
Xu Y., Schoonen M.A.A. The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals. Am. Mineral. 2000;85:543–556. doi: 10.2138/am-2000-0416. DOI
Patel M.Y., Mortelliti M.J., Dempsey J.L. A Compendium and Meta-Analysis of Flatband Potentials for TiO2, ZnO, and SnO2 Semiconductors in Aqueous Media. Chem. Phys. Rev. 2022;3:011303. doi: 10.1063/5.0063170. DOI
Kalanur S.S. Structural, Optical, Band Edge and Enhanced Photoelectrochemical Water Splitting Properties of Tin-Doped WO3. Catalysts. 2019;9:456. doi: 10.3390/catal9050456. DOI
Ye F., Qian J., Xia J., Li L., Wang S., Zeng Z., Mao J., Ahamad M., Xiao Z., Zhang Q. Efficient Photoelectrocatalytic Degradation of Pollutants over Hydrophobic Carbon Felt Loaded with Fe-Doped Porous Carbon Nitride via Direct Activation of Molecular Oxygen. Environ. Res. 2024;249:118497. doi: 10.1016/j.envres.2024.118497. PubMed DOI
Othman Z., Sinopoli A., Mackey H.R., Mahmoud K.A. Efficient Photocatalytic Degradation of Organic Dyes by AgNPs/TiO2/Ti3C2Tx MXene Composites under UV and Solar Light. ACS Omega. 2021;6:33325–33338. doi: 10.1021/acsomega.1c03189. PubMed DOI PMC
Nguyen N.T.A., Kim H. Ag3PO4-Deposited TiO2@Ti3C2 Petals for Highly Efficient Photodecomposition of Various Organic Dyes under Solar Light. Nanomaterials. 2022;12:2464. doi: 10.3390/nano12142464. PubMed DOI PMC
Bai Y., Xu S., Chen J., Sun X., Zhao S., Chang J., He Z. Ti3C2@g-C3N4/TiO2 Ternary Heterogeneous Photocatalyst for Promoted Photocatalytic Degradation Activities. Coatings. 2023;13:655. doi: 10.3390/coatings13030655. DOI
Li Y., Zhang M., Liu Y., Zhao Q., Li X., Zhou Q., Chen Y., Wang S. Construction of Bronze TiO2/Ti3C2 MXene/Ag3PO4 Ternary Composite Photocatalyst toward High Photocatalytic Performance. Catalysts. 2022;12:599. doi: 10.3390/catal12060599. DOI
Nasri M.S.I., Samsudin M.F.R., Tahir A.A., Sufian S. Effect of MXene Loaded on G-C3N4 Photocatalyst for the Photocatalytic Degradation of Methylene Blue. Energies. 2022;15:955. doi: 10.3390/en15030955. DOI
Praus P. 2D/2D Composites Based on Graphitic Carbon Nitride and MXenes for Photocatalytic Reactions: A Critical Review. Carbon Lett. 2024;34:227–245. doi: 10.1007/s42823-023-00634-9. DOI
Pino E., Calderón C., Herrera F., Cifuentes G., Arteaga G. Photocatalytic Degradation of Aqueous Rhodamine 6G Using Supported TiO2 Catalysts. A Model for the Removal of Organic Contaminants from Aqueous Samples. Front. Chem. 2020;8:365. doi: 10.3389/fchem.2020.00365. PubMed DOI PMC
Iqbal M.A., Tariq A., Zaheer A., Gul S., Ali S.I., Iqbal M.Z., Akinwande D., Rizwan S. Ti3C2 -MXene/Bismuth Ferrite Nanohybrids for Efficient Degradation of Organic Dyes and Colorless Pollutants. ACS Omega. 2019;4:20530–20539. doi: 10.1021/acsomega.9b02359. PubMed DOI PMC
Li J.-Y., Jiang X., Lin L., Zhou J.-J., Xu G.-S., Yuan Y.-P. Improving the Photocatalytic Performance of Polyimide by Constructing an Inorganic-Organic Hybrid ZnO-Polyimide Core–Shell Structure. J. Mol. Catal. A Chem. 2015;406:46–50. doi: 10.1016/j.molcata.2015.05.014. DOI
Zhou M., Tian X., Yu H., Wang Z., Ren C., Zhou L., Lin Y.-W., Dou L. WO3/Ag2CO3 Mixed Photocatalyst with Enhanced Photocatalytic Activity for Organic Dye Degradation. ACS Omega. 2021;6:26439–26453. doi: 10.1021/acsomega.1c03694. PubMed DOI PMC
Iravani S., Varma R.S. MXene-Based Photocatalysts in Degradation of Organic and Pharmaceutical Pollutants. Molecules. 2022;27:6939. doi: 10.3390/molecules27206939. PubMed DOI PMC