Evaluating the Impact of Lactobacillus acidophilus on Fusarium Mycotoxins in Raw Vegan Pumpkin-Sunflower Seed Flour Blends
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QL2401010
Ministry of Agriculture
PubMed
40941192
PubMed Central
PMC12427764
DOI
10.3390/foods14173077
PII: foods14173077
Knihovny.cz E-zdroje
- Klíčová slova
- competition, contamination, drying, principal component analysis, vitarianism,
- Publikační typ
- časopisecké články MeSH
A blend with pumpkin and sunflower seed flours was prepared and dried at 41.5 °C for 5 h to create a minimally heat-treated blend for a raw food diet. The blend was inoculated with Lactobacillus acidophilus and Fusarium langsethiae to assess the effect of L. acidophilus on Fusarium growth and mycotoxin production. Drying did not affect the content of naturally occurring microorganisms but significantly reduced water activity (p < 0.05) and increased total phenolic content in samples with external microorganisms. Lactobacilli content remained unchanged after drying (4.8 log CFU/g), while F. langsethiae increased by 1.5 log CFU/g. Principal component analysis showed PC1 explained 95.1% of total variance, driven by Fusarium mycotoxin production. A significant difference in total mycotoxin was found between samples with F. langsethiae alone and those with both F. langsethiae and L. acidophilus (p < 0.05). Lactic acid bacteria could reduce fusarium mycotoxin risk in raw food diet mixtures.
Zobrazit více v PubMed
Desmond M.A., Sobiecki J.G., Jaworski M., Płudowski P., Antoniewicz J., Shirley M.K., Eaton S., Książyk J., Cortina-Borja M., De Stavola B., et al. Growth, body composition, and cardiovascular and nutritional risk of 5- to 10-y-old children consuming vegetarian, vegan, or omnivore diets. Am. J. Clin. Nutr. 2021;113:1565–1577. doi: 10.1093/ajcn/nqaa445. PubMed DOI PMC
Marrone G., Guerriero C., Palazzetti D., Lido P., Marolla A., Di Daniele F., Noce A. Vegan diet health benefits in metabolic syndrome. Nutrients. 2021;13:817. doi: 10.3390/nu13030817. PubMed DOI PMC
Ferrarová E., Faltusová K., Goerojová K., Kašparová M., Matějíčková P., Moravcová A., Poulová V., Vlčková E. Crisis of cultural patterns and new trends in alimentation in terms of anthropology of food. Anthropol. Integr. 2019;10:7–16. doi: 10.5817/AI2019-2-7. DOI
Raba D.-N., Iancu T., Bordean D.-M., Adamov T., Popa V.-M., Pîrvulescu L.C. Pros and cons of raw vegan diet. Adv. Res. Life Sci. 2019;3:46–51. doi: 10.2478/arls-2019-0010. DOI
Fernández-López J., Botella-Martínez C., Navarro-Rodriguez de Vera C., Sayas-Barberá M.E., Viuda-Martos M., Sánchez-Zapata E., Pérez-Álvarez J.A. Vegetable soups and creams: Raw materials, processing, health benefits, and innovation trends. Plants. 2020;9:1769. doi: 10.3390/plants9121769. PubMed DOI PMC
Wong J. Are there benefits to a raw-food diet? New Sci. 2021;249:20. doi: 10.1016/S0262-4079(20)32263-6. DOI
Pahlavani N., Azizi-Soleiman F. The effects of a raw vegetarian diet from a clinical perspective; review of the available evidence. Clin. Nutr. Open Sci. 2023;49:107–112. doi: 10.1016/j.nutos.2023.04.001. DOI
Morelli G., Catellani P., Miotti Scapin R., Bastianello S., Conficoni D., Contiero B., Ricci R. Evaluation of microbial contamination and effects of storage in raw meat-based dog foods purchased online. J. Anim. Physiol. Anim. Nutr. 2020;104:690–697. doi: 10.1111/jpn.13263. PubMed DOI
Schelstraete W., Devreese M., Croubels S. Comparative toxicokinetics of Fusarium mycotoxins in pigs and humans. Food Chem. Toxicol. 2020;137:111140. doi: 10.1016/j.fct.2020.111140. PubMed DOI
Ekwomadu T.I., Mwanza M. Fusarium fungi pathogens, identification, adverse effects, disease management, and global food security: A review of latest research. Agriculture. 2023;13:1810. doi: 10.3390/agriculture13091810. DOI
Pernica M., Kyralová B., Svoboda Z., Boško R., Brožková I., Česlová L., Benešová K., Červenka L., Běláková S. Levels of T-2 toxin and its metabolites, and the occurrence of Fusarium fungi in spring barley in the Czech Republic. Food Microbiol. 2022;102:103879. doi: 10.1016/j.fm.2021.103875. PubMed DOI
Krishnan S.V., Nampoothiri K.M., Suresh A., Linh N.T., Balakumaran P.A., Pòcsi I., Pusztahelyi T. Fusarium biocontrol: Antagonism and mycotoxin elimination by lactic acid bacteria. Front. Microbiol. 2024;14:1260166. doi: 10.3389/fmicb.2023.1260166. PubMed DOI PMC
Brožková I., Šmahová P., Vytřasová J., Moťková P., Pejchalová M., Šilha D. Influence of chosen microbes and some chemicals substances on the production of aflatoxins. Slovak J. Food Sci./Potravin. 2015;9:9–17. doi: 10.5219/416. DOI
Mateo E.M., Tarazona A., Aznar R., Mateo F. Exploring the impact of lactic acid bacteria on the biocontrol of toxigenic Fusarium spp. and their main mycotoxins. Int. J. Food Microbiol. 2023;387:110054. doi: 10.1016/j.ijfoodmicro.2022.110054. PubMed DOI
Joudeikiene G., Bartkiene E., Cernauskas D., Cizeikiene D., Zadeike D., Lele V., Bartkevics V. Antifungal activity of lactic acid bacteria and their application for Fusarium mycotoxin reduction in malting wheat grains. LWT-Food Sci. Technol. 2018;89:307–314. doi: 10.1016/j.lwt.2017.10.061. DOI
Cao H., Meng D., Zhang W., Ye T., Yuan M., Yu J., Wu X., Li Y., Yin F., Fu C., et al. Growth inhibition of Fusarium graminearum and deoxynivalenol detoxification by lactic acid bacteria and their application in sourdough bread. Int. J. Food Sci. Technol. 2021;56:2304–2314. doi: 10.1111/ijfs.14852. DOI
Piotrowska M. Microbiological decontamination of mycotoxins: Opportunities and limitations. Toxins. 2021;13:819. doi: 10.3390/toxins13110819. PubMed DOI PMC
Alcorta A., Porta A., Tárrega A., Alvarez M.D., Vaquero M.P. Foods for plant-based diets: Challenges and innovations. Foods. 2021;10:293. doi: 10.3390/foods10020293. PubMed DOI PMC
Kamiński M., Skonieczna-Żydecka K., Nowak J.K., Stachowska E. Global and local diet popularity rankings, their secular trends, and seasonal variation in Google Trends data. Nutrition. 2020;79–80:110759. doi: 10.1016/j.nut.2020.110759. PubMed DOI
Microbiology of Food and Animal Feeding Stuffs—General Requirements and Guidance for Microbiological Examinations. Czech Office for Standards, Metrology and Testing; Prague, Czech Republic: 2014.
Martiník J., Boško R., Svoboda Z., Běláková S., Benešová K., Pernica M. Determination of mycotoxins and their dietary exposure assessment in pale lager beers using immunoaffinity columns and UPLC-MS/MS. Mycotoxin Res. 2023;39:285–302. doi: 10.1007/s12550-023-00492-4. PubMed DOI
Červenka L., Frühbauerová M., Palarčík J., Muriqi S., Velichová H. The effect of vibratory grinding time on moisture sorption, particle size distribution, and phenolic bioaccessibility of carob powder. Molecules. 2022;27:7689. doi: 10.3390/molecules27227689. PubMed DOI PMC
Senn S., Holford N., Hockey H. The ghosts of departed quantities: Approaches to dealing with observations below the limit of quantification. Stat. Med. 2012;31:4280–4290. doi: 10.1002/sim.5515. PubMed DOI
U.S. Environmental Protection Agency (EPA) Data Quality Assessment: Statistical Methods for Practitioners. U.S. Environmental Protection Agency; Washington, DC, USA: [(accessed on 24 June 2025)]. EPA QA/G-9S; EPA/240/B-06/003. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/900B0D00.PDF?Dockey=900B0D00.PDF.
Lubin J.H., Colt J.S., Camann D., Davis S., Cerhan J.R., Severson R.K., Bernstein L., Hartge P. Epidemiologic evaluation of measurement data in the presence of detection limits. Environ. Health Perspect. 2004;112:1691–1696. doi: 10.1289/ehp.7199. PubMed DOI PMC
Ramette A. Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 2007;62:142–160. doi: 10.1111/j.1574-6941.2007.00375.x. PubMed DOI PMC
Abapihi B., Wibawa G.N.A., Baharuddin, Mukhsar, Agusrawati, LaOme L. ANOVA on principal component as an alternative to MANOVA. J. Phys. Conf. Ser. 2021;1899:012103. doi: 10.1088/1742-6596/1899/1/012103. DOI
Hunaefi D., Rahmawati R., Saputra D., Maulani R.R., Muhandri T. Optimizing the tray dryer temperature and time of white corn flour culture. Food Res. 2021;5:95–104. doi: 10.26656/fr.2017.5(5).718. DOI
Schmidt-Heydt M., Parra R., Geisen R., Magan N. Modelling the relationship between environmental factors, transcriptional genes and deoxynivalenol mycotoxin production by strains of two Fusarium species. J. R. Soc. Interface. 2011;8:117–126. doi: 10.1098/rsif.2010.0131. PubMed DOI PMC
Mshelia L.P., Selamat J., Putra Samsudin N.I., Rafii M.Y., Abdul Mutalib N.A., Nordin N., Berthiller F. Effect of temperature, water activity and carbon dioxide on fungal growth and mycotoxin production of acclimatized isolates of Fusarium verticillioides and F. graminearum. Toxins. 2020;12:478. doi: 10.3390/toxins12080478. PubMed DOI PMC
Salah-Abbès J.B., Mannai M., Belgacem H., Zinedine A., Abbès S. Efficacy of lactic acid bacteria supplementation against Fusarium graminearum growth in vitro and inhibition of zearalenone causing inflammation and oxidative stress in vivo. Toxicon. 2021;202:115–122. doi: 10.1016/j.toxicon.2021.09.010. PubMed DOI
Akbari M., Hadi Razavi S., Khodaiyan F., Blesa J., Esteve M.J. Fermented corn bran: A by product with improved total phenolic content and antioxidant activity. LWT. 2023;184:115090. doi: 10.1016/j.lwt.2023.115090. DOI
Shalapy N.M., Kang W. Fusrium oxysporum & Fusarium solani: Identification, characterization, and differentitation the fungal phenolic profiles by HPLC and the fungal lipid profiles by GC-MS. J. Food Qual. 2022;2022:414180.
Kulik T., Stuper-Szablewska K., Bilska K., Buśko M., Ostrowska-Kołodziejczak A., Załuski D., Perkowski J. trans-cinnamic and chlorogenic acids affect the secondary metabolic profiles and ergosterol biosynthesis by Fusarium culmorum and F. gramenearum sensu stricto. Toxins. 2017;9:198. doi: 10.3390/toxins9070198. PubMed DOI PMC
Coton M., Dantigny P. Mycotoxin migration in moldy foods. Curr. Opin. Food Sci. 2018;29:88–93. doi: 10.1016/j.cofs.2019.08.007. DOI
Guo H., Ji J., Wang J.S., Sun X. Deoxinivalenol: Masked forms, fate during food processing, and potential biological remedies. Compr. Rev. Food Sci. Food Saf. 2020;19:895–926. doi: 10.1111/1541-4337.12545. PubMed DOI
Arena M.P., Capozzi V., Russo P., Drider D., Spano G., Fiocco D. Immunobiosis and probiosis: Antimicrobial activity of lactic acid bacteria with a focus on their antiviral and antifungal properties. Appl. Microbiol. Biotechnol. 2018;102:9949–9958. doi: 10.1007/s00253-018-9403-9. PubMed DOI
Gardiner D.M., Osborne S., Kazan K., Manners J.M. Low pH regulates the production of deoxynivalenol by Fusarium graminearum. Microbiology. 2009;155:3149–3156. doi: 10.1099/mic.0.029546-0. PubMed DOI
Cai L., Li L., Li D., Wu Y., Bai J., Zhong K., Gao H. Citric acid impairs type B trichothecene biosynthesis of Fusarium graminearum but enhances its growth and pigment biosynthesis: Transcriptomic and proteomic analyses. Appl. Environ. Microbiol. 2025;91:e01531-24. doi: 10.1128/aem.01531-24. PubMed DOI PMC
Vidal A., Sanchis V., Ramos A.J., Marín S. Thermal stability and kinetics of degradation of deoxynivalenol, deoxynivalenol conjugates and ochratoxin A during baking of wheat bakery products. Food Chem. 2015;178:276–286. doi: 10.1016/j.foodchem.2015.01.098. PubMed DOI
Li B., Duan J., Ren J., Francis F., Li G. Isolation and characterization of two new deoxynivalenol-degrading strains, Bacillus sp. HN117 and Bacillus sp. N22. Toxins. 2022;14:781. doi: 10.3390/toxins14110781. PubMed DOI PMC
Oluwakayode A., Greer B., Meneely J., Berthiller F., Krska R., Medina A. Impact of environmental conditions on the concentrations of trichothecenes, their glucosides, and emerging Fusarium toxins in naturally contaminated, irradiated, and Fusarium langsethiae inoculated oats. Toxins. 2024;16:166. doi: 10.3390/toxins16040166. PubMed DOI PMC