Personalized Medicine in Cystic Fibrosis: Characterization of Eight Rare CFTR Variants in Intestinal Organoids and Cellular Models
Status Publisher Jazyk angličtina Země Nový Zéland Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
FFC#2/2023
Fondazione per la Ricerca sulla Fibrosi Cistica
UID/04046/2025
Fundação para a Ciência e a Tecnologia
H2020-SC1-2017-755021
European Union
EC HORIZON-MSCA-2023-DN-JD- 101120108
European Union
FARINH24G0
Cystic Fibrosis Foundation
PubMed
40944809
DOI
10.1007/s40291-025-00806-5
PII: 10.1007/s40291-025-00806-5
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Despite the approval of CFTR modulator (CFTRm) drugs for specific variants, many people with cystic fibrosis with non-eligible genotypes may still benefit from these medications. Indeed, recent studies show that some rare CFTR variants can be rescued by approved CFTRm drugs. OBJECTIVE: we assessed the efficacy of CFTRm drugs on eight rare CFTR variants: p.Pro5Leu, p.Pro205Ser, p.Leu206Trp, p.Arg347Pro, p.Ile507del, p.Ser945Leu, p.Met1137Arg, and p.Asp1152His. METHODS: Patient-derived intestinal organoids with these variants in heterozygosity with other cystic fibrosis-causing ones were analyzed by the forskolin-induced swelling assay. Clinical data from individuals undergoing CFTRm therapy were collected both before and after treatment to evaluate clinical benefit. Furthermore, we characterized the molecular defect of those eight variants individually in cystic fibrosis bronchial epithelial cells. RESULTS: CFTR function in intestinal organoids with genotypes p.Asp1152His/p.Phe508del, p.Asp1152His/p.Asn1303Lys, p.Pro5Leu/p.Phe508del, p.Leu206Trp/p.Phe508del, p.Ser945Leu/p.Phe508del, p.Pro205Ser/p.Tyr1092Ter, and p.Met1137Arg/c.2657+5G>A was rescued by currently available CFTRm drugs, this was not observed for organoids with genotypes p.Arg347Pro/p.Phe508del (elexacaftor/tezacaftor/ivacaftor was not tested) and p.Ile507del/p.Gln890Ter. People with cystic fibrosis who, based on our data, started CFTRm therapy showed a clinical improvement, including an increase in lung function, and a reduction in sweat chloride levels. A positive correlation was observed between forskolin-induced swelling values and change in forced expiratory volume in 1 second. This study provides evidence that the forskolin-induced swelling assay using patient-derived intestinal organoids can effectively predict the clinical outcome of CFTRm treatment. In CFBE cells, all eight variants were found to have a processing defect and variants p.Pro5Leu, p.Pro205Ser, p.Leu206Trp, p.Arg347Pro, p.Ser945Leu, and p.Met1137Arg were functionally rescued by the current available CFTRm drug. The CFTRm drug did not elicit the appearance of mature p.Ile507del-CFTR and increased, albeit not significantly, the processing efficiency of p.Asp1152His-CFTR. CONCLUSIONS: This work highlights the importance of using patient-derived intestinal organoids as a theranostic tool to predict the clinical benefit and thus increase the number of people with cystic fibrosis with access to the currently approved CFTRm therapies. While theratyping in cell lines is a valuable approach, additional testing in cystic fibrosis-derived organoids provides more reliable predictions for the individuals carrying rare CFTR variants.
Zobrazit více v PubMed
Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245:1066–73. PubMed DOI
Sheppard DN, Welsh MJ. Structure and function of the CFTR chloride channel. Physiol Rev. 1999;79:S23-45. PubMed DOI
Rowe SM, Miller S, Sorscher EJ. Cystic fibrosis. N Engl J Med. 2005;352:1992–2001. PubMed DOI
Saint-Criq V, Gray MA. Role of CFTR in epithelial physiology. Cell Mol Life Sci. 2017;74:93–115. PubMed DOI
Boucher RC. New concepts of the pathogenesis of cystic fibrosis lung disease. Eur Respir J. 2004;23:146–58. PubMed DOI
Chan HC, Ruan YC, He Q, Chen MH, Chen H, Xu WM, et al. The cystic fibrosis transmembrane conductance regulator in reproductive health and disease. J Physiol. 2009;587:2187–95. PubMed DOI
Singh VK, Schwarzenberg SJ. Pancreatic insufficiency in cystic fibrosis. J Cyst Fibros. 2017;16(Suppl. 2):S70–8. PubMed DOI
Boucher RC. Evidence for airway surface dehydration as the initiating event in CF airway disease. J Intern Med. 2007;261:5–16. PubMed DOI
Cystic Fibrosis Mutation Database. http://www.genet.sickkids.on.ca/ . Accessed 16 Jan 2023.
Patient Registry. CFF 2022. https://www.cff.org/medical-professionals/patient-registry . Accessed 1 July 2024.
Patient Registry 2022. ECFS. https://www.ecfs.eu/projects/ecfs-patient-registry/annual-reports . Accessed 1 July 2024.
De Boeck K, Amaral MD. Progress in therapies for cystic fibrosis. Lancet Respir Med. 2016;4:662–74. PubMed DOI
Schram CA. Atypical cystic fibrosis: identification in the primary care setting. Can Fam Physician. 2012;58(1341–5):e699-704. PMC
Noone PG, Knowles MR. “CFTR-opathies”: disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations. Respir Res. 2001;2:328–32. PubMed DOI PMC
CFTR2. CFTR2 database. http://www.cftr2.org . Accessed 24 June 2024.
Castellani C, Cuppens H, Macek M, Cassiman JJ, Kerem E, Durie P, et al. Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice. J Cyst Fibros. 2008;7:179–96. PubMed DOI PMC
Van Goor F, Hadida S, Grootenhuis PDJ, Burton B, Cao D, Neuberger T, et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci USA. 2009;106:18825–30. PubMed DOI PMC
Accurso FJ, Rowe SM, Clancy JP, Boyle MP, Dunitz JM, Durie PR, et al. Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med. 2010;363:1991–2003. PubMed DOI PMC
Van Goor F, Yu H, Burton B, Hoffman BJ. Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function. J Cyst Fibros. 2014;13:29–36. PubMed DOI
Keating D, Marigowda G, Burr L, Daines C, Mall MA, McKone EF, et al. VX-445-tezacaftor-ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N Engl J Med. 2018;379:1612–20. PubMed DOI PMC
Middleton PG, Mall MA, Dřevínek P, Lands LC, McKone EF, Polineni D, et al. Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del allele. N Engl J Med. 2019;381:1809–19. PubMed DOI PMC
Relatórios de avaliação de financiamento público. https://www.infarmed.pt/web/infarmed/relatorios-de-avaliacao-de-financiamento-publico . Accessed 25 June 2024.
Guo J, Garratt A, Hill A. Worldwide rates of diagnosis and effective treatment for cystic fibrosis. J Cyst Fibros. 2022;21:456–62. PubMed DOI
Bihler H, Sivachenko A, Millen L, Bhatt P, Patel AT, Chin J, et al. In vitro modulator responsiveness of 655 CFTR variants found in people with cystic fibrosis. J Cyst Fibros. 2024;23(4):664–75. PubMed DOI
Amaral MD, Pankonien I. Theranostics vs theratyping or theranostics plus theratyping? J Cystic Fibrosis. 2024. https://www.sciencedirect.com/science/article/pii/S156919932401782X . Accessed 14 Nov 2024.
Dekkers JF, Berkers G, Kruisselbrink E, Vonk A, De Jonge HR, Janssens HM, et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci Transl Med. 2016;8: 344ra84. PubMed DOI
Ramalho AS, Fürstová E, Vonk AM, Ferrante M, Verfaillie C, Dupont L, et al. Correction of CFTR function in intestinal organoids to guide treatment of cystic fibrosis. Eur Respir J. 2021;57:1902426. PubMed DOI
Lo Cicero S, Castelli G, Blaconà G, Bruno SM, Sette G, Pigliucci R, et al. L1077p CFTR pathogenic variant function rescue by elexacaftor-tezacaftor-ivacaftor in cystic fibrosis patient-derived air-liquid interface (ALI) cultures and organoids: in vitro guided personalized therapy of non-F508del patients. Respir Res. 2023;24:217. PubMed DOI PMC
Bierlaagh MC, Ramalho AS, Silva IAL, Vonk AM, van den Bor RM, van Mourik P, et al. Repeatability and reproducibility of the forskolin-induced swelling (FIS) assay on intestinal organoids from people with cystic fibrosis. J Cyst Fibros. 2024;23:693–702. PubMed DOI
de Poel E, Lefferts JW, Beekman JM. Intestinal organoids for cystic fibrosis research. J Cyst Fibros. 2020;19(Suppl. 1):S60–4. PubMed DOI
Silva IAL, Doušová T, Ramalho S, Centeio R, Clarke LA, Railean V, et al. Organoids as a personalized medicine tool for ultra-rare mutations in cystic fibrosis: the case of S955P and 1717–2A>G. Biochim Biophys Acta Mol Basis Dis. 2020;1866: 165905. PubMed DOI PMC
Railean V, Rodrigues CS, Ramalho SS, Silva IAL, Bartosch J, Farinha CM, et al. Personalized medicine: function of CFTR variant p.Arg334Trp is rescued by currently available CFTR modulators. Front Mol Biosci. 2023;10: 1155705. PubMed DOI PMC
Silva IAL, Railean V, Duarte A, Amaral MD. Personalized medicine based on nasal epithelial cells: comparative studies with rectal biopsies and intestinal organoids. J Pers Med. 2021;11: 421. PubMed DOI PMC
Sabusap CM, Wang W, McNicholas CM, Chung WJ, Fu L, Wen H, et al. Analysis of cystic fibrosis-associated P67L CFTR illustrates barriers to personalized therapeutics for orphan diseases. JCI Insight. 2016;1(14): e86581. PubMed DOI PMC
Ramalho SS, Silva IAL, Amaral MD, Farinha CM. Rare trafficking CFTR mutations involve distinct cellular retention machineries and require different rescuing strategies. Int J Mol Sci. 2021;23:24. PubMed DOI PMC
Veit G, Velkov T, Xu H, Vadeboncoeur N, Bilodeau L, Matouk E, et al. A precision medicine approach to optimize modulator therapy for rare CFTR folding mutants. J Pers Med. 2021;11: 643. PubMed DOI PMC
Dreano E, Burgel PR, Hatton A, Bouazza N, Chevalier B, Macey J, et al. Theratyping cystic fibrosis patients to guide elexacaftor/tezacaftor/ivacaftor out-of-label prescription. Eur Respir J. 2023;62:2300110. PubMed DOI
Laselva O, Moraes TJ, He G, Bartlett C, Szàrics I, Ouyang H, et al. The CFTR mutation c.3453G > C (D1152H) confers an anion selectivity defect in primary airway tissue that can be rescued by ivacaftor. J Pers Med. 2020;10:40. PubMed DOI PMC
Conti J, Angyal D, Kleinfelder K, Latorre RV, Calicchia M, Farinazzo A, et al. Evaluation of the response to elexacaftor-tezacaftor-ivacaftor of the rare CFTR variants L383S, I507del, L1065P and R1066H in intestinal organoid-derived epithelial monolayers. J Cyst Fibros. 2025;24:552–61. PubMed DOI
Fainardi V, Cresta F, Sorio C, Melotti P, Pesce E, Deolmi M, et al. Elexacaftor/tezacaftor/ivacaftor in people with cystic fibrosis and rare mutations. Pediatr Pulmonol. 2024;59:3383–90. PubMed DOI
Vonk AM, van Mourik P, Ramalho AS, Silva IAL, Statia M, Kruisselbrink E, et al. Protocol for application, standardization and validation of the forskolin-induced swelling assay in Cystic fibrosis human colon organoids. STAR Protoc. 2020;1: 100019. PubMed DOI PMC
Hagemeijer MC, Vonk AM, Awatade NT, Silva IAL, Tischer C, Hilsenstein V, et al. An open-source high-content analysis workflow for CFTR function measurements using the forskolin-induced swelling assay. Bioinformatics. 2021;36:5686–94. PubMed DOI
Awatade NT, Ramalho S, Silva IAL, Felício V, Botelho HM, de Poel E, et al. R560S: a class II CFTR mutation that is not rescued by current modulators. J Cyst Fibros. 2019;18(2):182–9. PubMed DOI
Canato S, Santos JD, Carvalho AS, Aloria K, Amaral MD, Matthiesen R, et al. Proteomic interaction profiling reveals KIFC1 as a factor involved in early targeting of F508del-CFTR to degradation. Cell Mol Life Sci. 2018;75:4495–509. PubMed DOI PMC
Bebok Z, Collawn JF, Wakefield J, Parker W, Li Y, Varga K, et al. Failure of cAMP agonists to activate rescued ΔF508 CFTR in CFBE41o- airway epithelial monolayers. J Physiol. 2005;569:601–15. PubMed DOI PMC
Awatade NT, Uliyakina I, Farinha CM, Clarke LA, Mendes K, Solé A, et al. Measurements of functional responses in human primary lung cells as a basis for personalized therapy for cystic fibrosis. EBioMedicine. 2015;2:147–53. PubMed DOI
Veit G, Avramescu RG, Perdomo D, Phuan P-W, Bagdany M, Apaja PM, et al. Some gating potentiators, including VX-770, diminish ΔF508-CFTR functional expression. Sci Transl Med. 2014;6: 246ra97. PubMed DOI PMC
Berkers G, van Mourik P, Vonk AM, Kruisselbrink E, Dekkers JF, de Winter-de Groot KM, et al. Rectal organoids enable personalized treatment of cystic fibrosis. Cell Rep. 2019;26:1701-8.e3. PubMed DOI
Laselva O, Bartlett C, Gunawardena TNA, Ouyang H, Eckford PDW, Moraes TJ, et al. Rescue of multiple class II CFTR mutations by elexacaftor+tezacaftor+ivacaftor mediated in part by the dual activities of elexacaftor as both corrector and potentiator. Eur Respir J. 2021;57:2002774. PubMed DOI PMC
Sabusap CM, Joshi D, Simhaev L, Oliver KE, Senderowitz H, van Willigen M, et al. The CFTR P67L variant reveals a key role for N-terminal lasso helices in channel folding, maturation, and pharmacologic rescue. J Biol Chem. 2021;296: 100598. PubMed DOI PMC
Ramalho AS, Lewandowska MA, Farinha CM, Mendes F, Gonçalves J, Barreto C, et al. Deletion of CFTR translation start site reveals functional isoforms of the protein in CF patients. Cell Physiol Biochem. 2009;24:335–46. PubMed DOI PMC
Gené GG, Llobet A, Larriba S, de Semir D, Martínez I, Escalada A, et al. N-terminal CFTR missense variants severely affect the behavior of the CFTR chloride channel. Hum Mutat. 2008;29:738–49. PubMed DOI
Jurkuvenaite A, Varga K, Nowotarski K, Kirk KL, Sorscher EJ, Li Y, et al. Mutations in the amino terminus of the cystic fibrosis transmembrane conductance regulator enhance endocytosis. J Biol Chem. 2006;281:3329–34. PubMed DOI
Prince LS, Peter K, Hatton SR, Zaliauskiene L, Cotlin LF, Clancy JP, et al. Efficient endocytosis of the cystic fibrosis transmembrane conductance regulator requires a tyrosine-based signal. J Biol Chem. 1999;274:3602–9. PubMed DOI
Spicuzza L, Sciuto C, Di Dio L, Mattina T, Leonardi S, del Giudice MM, et al. Mild cystic fibrosis in patients with the rare P5L CFTR mutation. J Cyst Fibros. 2012;11:30–3. PubMed DOI
Welsner M, Straßburg S, Taube C, Sutharsan S. Use of ivacaftor in late diagnosed cystic fibrosis monozygotic twins heterozygous for F508del and R117H–7T: a case report. BMC Pulm Med. 2019;19:76. PubMed DOI PMC
Castillo-Fernandez JE, Spector TD, Bell JT. Epigenetics of discordant monozygotic twins: implications for disease. Genome Med. 2014;6:60. PubMed DOI PMC
Sebro R, Levy H, Schneck K, Dimmock D, Raby BA, Cannon CL, et al. Cystic fibrosis mutations for p. F508del compound heterozygotes predict sweat chloride levels and pancreatic sufficiency. Clin Genet. 2012;82:546–51. PubMed DOI
Mésinèle J, Ruffin M, Guillot L, Corvol H. Modifier factors of cystic fibrosis phenotypes: a focus on modifier genes. Int J Mol Sci. 2022;23:14205. PubMed DOI PMC
Sheppard DN, Travis SM, Ishihara H, Welsh MJ. Contribution of proline residues in the membrane-spanning domains of cystic fibrosis transmembrane conductance regulator to chloride channel function. J Biol Chem. 1996;271:14995–5001. PubMed DOI
Wigley WC, Corboy MJ, Cutler TD, Thibodeau PH, Oldan J, Lee MG, et al. A protein sequence that can encode native structure by disfavoring alternate conformations. Nat Struct Biol. 2002;9:381–8. PubMed
Clain J, Lehmann-Che J, Duguépéroux I, Arous N, Girodon E, Legendre M, et al. Misprocessing of the CFTR protein leads to mild cystic fibrosis phenotype. Hum Mutat. 2005;25:360–71. PubMed DOI
van Willigen M, Vonk AM, Yeoh HY, Kruisselbrink E, Kleizen B, van der Ent CK, et al. Folding-function relationship of the most common cystic fibrosis-causing CFTR conductance mutants. Life Sci Alliance. 2019;2: e201800172. PubMed DOI PMC
Sheppard DN, Rich DP, Ostedgaard LS, Gregory RJ, Smith AE, Welsh MJ. Mutations in CFTR associated with mild-disease-form Cl- channels with altered pore properties. Nature. 1993;362:160–4. PubMed DOI
Shaughnessy CA, Zeitlin PL, Bratcher PE. Elexacaftor is a CFTR potentiator and acts synergistically with ivacaftor during acute and chronic treatment. Sci Rep. 2021;11:19810. PubMed DOI PMC
Carroll TP, Morales MM, Fulmer SB, Allen SS, Flotte TR, Cutting GR, et al. Alternate translation initiation codons can create functional forms of cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1995;270:11941–6. PubMed DOI
Zacarias S, Batista MSP, Ramalho SS, Victor BL, Farinha CM. Rescue of rare CFTR trafficking mutants highlights a structural location-dependent pattern for correction. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24043211 . PubMed DOI PMC
DeCarvalho ACV, Gansheroff LJ, Teem JL. Mutations in the nucleotide binding domain 1 signature motif region rescue processing and functional defects of cystic fibrosis transmembrane conductance regulator delta f508. J Biol Chem. 2002;277:35896–905. PubMed DOI
Shishido H, Yoon JS, Yang Z, Skach WR. Cftr trafficking mutations disrupt cotranslational protein folding by targeting biosynthetic intermediates. Nat Commun. 2020;11:4258. PubMed DOI PMC
Lopes-Pacheco M, Sabirzhanova I, Rapino D, Morales MM, Guggino WB, Cebotaru L. Correctors rescue CFTR mutations in nucleotide-binding domain 1 (NBD1) by modulating proteostasis. ChemBioChem. 2016;17:493–505. PubMed DOI PMC
Seibert FS, Linsdell P, Loo TW, Hanrahan JW, Riordan JR, Clarke DM. Cytoplasmic loop three of cystic fibrosis transmembrane conductance regulator contributes to regulation of chloride channel activity. J Biol Chem. 1996;271:27493–9. PubMed DOI
Allan KM, Astore MA, Fawcett LK, Wong SL, Chen P-C, Griffith R, et al. S945L-CFTR molecular dynamics, functional characterization and tezacaftor/ivacaftor efficacy in vivo and in vitro in matched pediatric patient-derived cell models. Front Pediatr. 2022;10:1062766. PubMed DOI PMC
Highsmith WE, Burch LH, Zhou Z, Olsen JC, Strong TV, Smith T, et al. Identification of a splice site mutation (2789 +5 G > A) associated with small amounts of normal CFTR mRNA and mild cystic fibrosis. Hum Mutat. 1997;9:332–8. PubMed DOI
Vankeerberghen A, Wei L, Teng H, Jaspers M, Cassiman JJ, Nilius B, et al. Characterization of mutations located in exon 18 of the CFTR gene. FEBS Lett. 1998;437:1–4. PubMed DOI
Burgel P-R, Fajac I, Hubert D, Grenet D, Stremler N, Roussey M, et al. Non-classic cystic fibrosis associated with D1152H CFTR mutation. Clin Genet. 2010;77:355–64. PubMed DOI
Mussaffi H, Prais D, Mei-Zahav M, Blau H. Cystic fibrosis mutations with widely variable phenotype: the D1152H example. Pediatr Pulmonol. 2006;41:250–4. PubMed DOI
Pedemonte N, Tomati V, Sondo E, Galietta LJV. Influence of cell background on pharmacological rescue of mutant CFTR. Am J Physiol Cell Physiol. 2010;298:C866–74. PubMed DOI
LaRusch J, Jung J, General IJ, Lewis MD, Park HW, Brand RE, et al. Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis. PLoS Genet. 2014;10: e1004376. PubMed DOI PMC
Corradi V, Vergani P, Tieleman DP. Cystic fibrosis transmembrane conductance regulator (CFTR). J Biol Chem. 2015;290:22891–906. PubMed DOI PMC
Desgeorges M, Rodier M, Piot M, Demaille J, Claustres M. Four adult patients with the missense mutation L206W and a mild cystic fibrosis phenotype. Hum Genet. 1995;96:717–20. PubMed DOI
Chillón M, Casals T, Nunes V, Giménez J, Pérez Ruiz E, Estivill X. Identification of a new missense mutation (P205S) in the first transmembrane domain of the CFTR gene associated with a mild cystic fibrosis phenotype. Hum Mol Genet. 1993;2:1741–2. PubMed DOI
Moskowitz SM, Chmiel JF, Sternen DL, Cheng E, Gibson RL, Marshall SG, et al. Clinical practice and genetic counseling for cystic fibrosis and CFTR-related disorders. Genet Med. 2008;10:851–68. PubMed DOI PMC
Durmowicz AG, Witzmann KA, Rosebraugh CJ, Chowdhury BA. Change in sweat chloride as a clinical end point in cystic fibrosis clinical trials: the ivacaftor experience. Chest. 2013;143:14–8. PubMed DOI
Winiarska HM, Springer D, Wojtaś F, Wysocka E, Cofta S. CFTR modulators therapy efficacy in reducing cystic fibrosis (CF) exacerbation and improving selected spirometry parameters: a real-life study in a single-centre Polish population. J Clin Med. 2024;13: 4491. PubMed DOI PMC