Separation and Detection of Charged Unilamellar Vesicles in Vacuum by a Frequency-Controlled Quadrupole Mass Sensor
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40260580
PubMed Central
PMC12060092
DOI
10.1021/acs.analchem.4c05730
Knihovny.cz E-zdroje
- MeSH
- extracelulární vezikuly * chemie MeSH
- hmotnostní spektrometrie * metody MeSH
- lidé MeSH
- unilamelární lipozómy * chemie analýza izolace a purifikace MeSH
- vakuum MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- unilamelární lipozómy * MeSH
Extracellular vesicles (EVs) are membranous particles released by cells and are considered to be promising sources of biomarkers for various diseases. Mass spectrometry (MS) analysis of EVs requires a sample of purified and detergent-lysed EVs. Purification of EVs is laborious, based on size, density, or surface nature, and requires large amounts of the source material (e.g., blood, spinal fluid). We have employed synthetically produced large unilamellar lipid vesicles (LUVs) as analogs of EVs to demonstrate an alternative approach to vesicle separation for subsequent mass spectrometry analysis of their composition. Mass-to-charge ratio m/z separation by frequency-controlled quadrupole was employed to filter narrow-size distributions of LUVs from a water sample. Lipid vesicles were positively charged with nanoelectrospray and transferred into a vacuum using two wide m/z-range frequency-controlled quadrupoles. The m/z, charges, and masses of individual vesicles were obtained by the nondestructive single-pass charge detector. The resolving mode of the second quadrupole with m/z RSD < 10% allowed to separate size selected distributions of vesicles with modal diameters of 88, 112, 130, 162, and 190 nm at corresponding quadrupole m/z settings of 2.5 × 105, 5 × 105, 8 × 105, 1.5 × 106, and 2.5 × 106, respectively with a rate of 20-100 counts per minute. The distributions of bioparticles with masses between 108 and 1010 Da were separated from human blood serum in the pilot experiment. The presented approach for lipid vesicle separation encourages the development of new techniques for the direct mass-spectrometric analysis of biomarkers in MS-separated EVs in a vacuum.
Faculty of Mathematics and Physics Charles University Prague 12116 Czechia
Institute of Chemical Technology Leipzig University Leipzig 04103 Germany
J Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 18223 Czechia
Leibniz Institute of Surface Engineering Leipzig 04318 Germany
Zobrazit více v PubMed
Welsh J. A.; Goberdhan D. C.; O’Driscoll L.; Buzas E.; Blenkiron C.; Bussolati B.; Cai H.; Di Vizio D.; Driedonks T. A. P.; Erdbrügger U.; Falco-Perez J. M.; Fu Q. L.; Hill A. F.; Lenassi M.; Lim S. K.; Mahoney M. G.; Mohanty S.; Möller A.; Nieuwland R.; Witwer K. W. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J. Extracell Vesicles 2024, 13 (2), e12404.10.1002/jev2.12404. PubMed DOI PMC
Meldolesi J. Exosomes and Ectosomes in Intercellular Communication. Curr. Biol. 2018, 28 (8), R435–R444. 10.1016/j.cub.2018.01.059. PubMed DOI
Ciferri M. C.; Quarto R.; Tasso R. Extracellular Vesicles as Biomarkers and Therapeutic Tools: From Pre-Clinical to Clinical Applications. Biology-Basel 2021, 10 (5), 359.10.3390/biology10050359. PubMed DOI PMC
Mathew B.; Mansuri M. S.; Williams K. R.; Nairn A. C. Exosomes as Emerging Biomarker Tools in Neurodegenerative and Neuropsychiatric Disorders-A Proteomics Perspective. Brain Sci. 2021, 11 (2), 258.10.3390/brainsci11020258. PubMed DOI PMC
Pocsfalvi G.; Stanly C.; Vilasi A.; Fiume I.; Capasso G.; Turiák L.; Buzas E. I.; Vékey K. Mass spectrometry of extracellular vesicles. Mass Spectrom Rev. 2016, 35 (1), 3–21. 10.1002/mas.21457. PubMed DOI
Askeland A.; Borup A.; Ostergaard O.; Olsen J. V.; Lund S. M.; Christiansen G.; Kristensen S. R.; Heegaard N. H. H.; Pedersen S. Mass-Spectrometry Based Proteome Comparison of Extracellular Vesicle Isolation Methods: Comparison of ME-kit, Size-Exclusion Chromatography, and High-Speed Centrifugation. Biomedicines 2020, 8 (8), 246.10.3390/biomedicines8080246. PubMed DOI PMC
van der Pol E.; Coumans F. A. W.; Grootemaat A. E.; Gardiner C.; Sargent I. L.; Harrison P.; Sturk A.; van Leeuwen T. G.; Nieuwland R. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb Haemost 2014, 12 (7), 1182–1192. 10.1111/jth.12602. PubMed DOI
van Niel G.; D’Angelo G.; Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Bio 2018, 19 (4), 213–228. 10.1038/nrm.2017.125. PubMed DOI
Piontek M. C.; Lira R. B.; Roos W. H. Active probing of the mechanical properties of biological and synthetic vesicles. Bba-Gen Subjects 2021, 1865 (4), 129486.10.1016/j.bbagen.2019.129486. PubMed DOI
Nikoloff J. M.; Saucedo-Espinosa M. A.; Kling A.; Dittrich P. S. Identifying extracellular vesicle populations from single cells. P Natl. Acad. Sci. USA 2021, 118 (38), e2106630118.10.1073/pnas.2106630118. PubMed DOI PMC
van der Koog L.; Gandek T. B.; Nagelkerke A. Liposomes and Extracellular Vesicles as Drug Delivery Systems: A Comparison of Composition, Pharmacokinetics, and Functionalization. Adv. Healthc Mater. 2022, 11 (5), 2100639.10.1002/adhm.202100639. PubMed DOI PMC
Cebecauer M.; Amaro M.; Jurkiewicz P.; Sarmento M. J.; Sachl R.; Cwiklik L.; Hof M. Membrane Lipid Nanodomains. Chem. Rev. 2018, 118 (23), 11259–11297. 10.1021/acs.chemrev.8b00322. PubMed DOI
Weiss V. U.; Wieland K.; Schwaighofer A.; Lendl B.; Allmaier G. Native Nano-electrospray Differential Mobility Analyzer (nES GEMMA) Enables Size Selection of Liposomal Nanocarriers Combined with Subsequent Direct Spectroscopic Analysis. Anal. Chem. 2019, 91 (6), 3860–3868. 10.1021/acs.analchem.8b04252. PubMed DOI PMC
Brown B. A.; Zeng X. Y.; Todd A. R.; Barnes L. F.; Winstone J. M. A.; Trinidad J. C.; Novotny M. V.; Jarrold M. F.; Clemmer D. E. Charge Detection Mass Spectrometry Measurements of Exosomes and other Extracellular Particles Enriched from Bovine Milk. Anal. Chem. 2020, 92 (4), 3285–3292. 10.1021/acs.analchem.9b05173. PubMed DOI PMC
Brown B. A.; Guda P. R.; Zeng X. Y.; Anthony A.; Couse A.; Barnes L. F.; Sharon E. M.; Trinidad J. C.; Sen C. K.; Jarrold M. F.; Ghatak S.; Clemmer D. E. Analysis of Keratinocytic Exosomes from Diabetic and Nondiabetic Mice by Charge Detection Mass Spectrometry. Anal. Chem. 2022, 94 (25), 8909–8918. 10.1021/acs.analchem.2c00453. PubMed DOI PMC
Todd A. R.; Jarrold M. F. Dramatic Improvement in Sensitivity with Pulsed Mode Charge Detection Mass Spectrometry. Anal. Chem. 2019, 91 (21), 14002–14008. 10.1021/acs.analchem.9b03586. PubMed DOI PMC
Xiong C. Q.; Liu H. H.; Li Y. Z.; Meng L. W.; Wang J. Y.; Nie Z. X. High Speed Mass Measurement of a Single Metal-Organic Framework Nanocrystal in a Paul Trap. Anal. Chem. 2022, 94 (6), 2686–2692. 10.1021/acs.analchem.1c03845. PubMed DOI
Lee J.; Marino M. A.; Koizumi H.; Reilly P. T. A. Simulation of duty cycle-based trapping and ejection of massive ions using linear digital quadrupoles: The enabling technology for high resolution time-of-flight mass spectrometry in the ultra high mass range. Int. J. Mass Spectrom. 2011, 304 (1), 36–40. 10.1016/j.ijms.2011.03.011. PubMed DOI PMC
Bhanot J. S.; Fabijanczuk K. C.; Abdillahi A. M.; Chao H. C.; Pizzala N. J.; Londry F. A.; Dziekonski E. T.; Hager J. W.; McLuckey S. A. Adaptation and operation of a quadrupole/time-of-flight tandem mass spectrometer for high mass ion/ion reaction studies. Int. J. Mass Spectrom. 2022, 478, 116874.10.1016/j.ijms.2022.116874. PubMed DOI PMC
Patil A. A.; Liu Z.-X.; Chiu Y.-P.; Lai T. K. L.; Chou S.-W.; Cheng C.-Y.; Su W.-M.; Liao H.-T.; Agcaoili J. B. A.; Peng W.-P. Development of a linear ion trap mass spectrometer capable of analyzing megadalton MALDI ions. Talanta 2023, 259, 124555.10.1016/j.talanta.2023.124555. PubMed DOI
Schlunegger U. P.; Stoeckli M.; Caprioli R. M. Frequency scan for the analysis of high mass ions generated by matrix-assisted laser desorption/ionization in a Paul trap. Rapid Commun. Mass Sp 1999, 13 (18), 1792–1796. 10.1002/(SICI)1097-0231(19990930)13:18<1792::AID-RCM715>3.0.CO;2-S. PubMed DOI
Peng W. P.; Lin H. C.; Chu M. L.; Chang H. C.; Lin N. H.; Yu A. L.; Chen C. H. Charge monitoring cell mass spectrometry. Anal. Chem. 2008, 80 (7), 2524–2530. 10.1021/ac7024392. PubMed DOI
Zhu Z. Q.; Xiong C. Q.; Xu G. P.; Liu H.; Zhou X. Y.; Chen R.; Peng W. P.; Nie Z. X. Characterization of bioparticles using a miniature cylindrical ion trap mass spectrometer operated at rough vacuum. Analyst 2011, 136 (7), 1305–1309. 10.1039/c0an00911c. PubMed DOI
Nie Z.; Cui F.; Tzeng Y. K.; Chang H. C.; Chu M.; Lin H. C.; Chen C. H.; Lin H. H.; Yu A. L. High-speed mass analysis of whole erythrocytes by charge-detection quadrupole ion trap mass Spectrometry. Anal. Chem. 2007, 79 (19), 7401–7407. 10.1021/ac071207e. PubMed DOI
Douglas D. J. Linear Quadrupoles in Mass Spectrometry. Mass Spectrom Rev. 2009, 28 (6), 937–960. 10.1002/mas.20249. PubMed DOI
Marmet P.; Proulx M. A Frequency-Swept Quadrupole Mass Filter. Int. J. Mass Spectrom. 1982, 42 (1–2), 3–10. 10.1016/0020-7381(82)80047-8. DOI
Shinholt D. L.; Anthony S. N.; Alexander A. W.; Draper B. E.; Jarrold M. F. A frequency and amplitude scanned quadrupole mass filter for the analysis of high m/z ions. Rev. Sci. Instrum. 2014, 85 (11), 113109.10.1063/1.4900627. PubMed DOI
Opacic B.; Hoffman N. M.; Clowers B. H.; Reilly P. T. A. Impact of injection potential on measured ion response for digitally driven mass filters. Int. J. Mass Spectrom. 2018, 434, 1–6. 10.1016/j.ijms.2018.08.009. DOI
Simke F.; Fischer P.; Marx G.; Schweikhard L. Simulations of a digital ion filter and a digital ion trap for heavy biomolecules. Int. J. Mass Spectrom. 2022, 473, 116779.10.1016/j.ijms.2021.116779. DOI
Hu R.; Gundlach-Graham A. Simulation study of digital waveform-driven quadrupole mass filter operated in higher stability regions for high-resolution inductively coupled plasma mass spectrometry. Rapid Commun. Mass Sp 2024, 38 (12), e9753.10.1002/rcm.9753. PubMed DOI
Remes P. M.; Syka J. E. P.; Kovtoun V. V.; Schwartz J. C. Insight into the Resonance Ejection Process during Mass Analysis through Simulations for Improved Linear Quadrupole Ion Trap Mass Spectrometer Performance (Reprinted). Int. J. Mass Spectrom. 2015, 377, 368–384. 10.1016/j.ijms.2014.08.014. DOI
Londry F. A.; Hager J. W. Mass selective axial ion ejection from a linear quadrupole ion trap. J. Am. Soc. Mass Spectrom. 2003, 14 (10), 1130–1147. 10.1016/S1044-0305(03)00446-X. PubMed DOI
Spesyvyi A.; Zabka J.; Polásek M.; Charvat A.; Schmidt J.; Postberg F.; Abel B. Charged Ice Particle Beams with Selected Narrow Mass and Kinetic Energy Distributions. J. Am. Soc. Mass Spectrom. 2023, 34 (5), 878–892. 10.1021/jasms.2c00357. PubMed DOI
Spesyvyi A.; Zabka J.; Polasek M.; Maleckova M.; Khawaja N.; Schmidt J.; Kempf S.; Postberg F.; Charvat A.; Abel B. Selected ice nanoparticle accelerator hypervelocity impact mass spectrometer (SELINA-HIMS): features and impacts of charged particles. Philos. T R Soc. A 2024, 382 (2273), 20230208.10.1098/rsta.2023.0208. PubMed DOI
Keifer D. Z.; Pierson E. E.; Jarrold M. F. Charge detection mass spectrometry: weighing heavier things. Analyst 2017, 142 (10), 1654–1671. 10.1039/C7AN00277G. PubMed DOI
Peng W. P.; Lee Y. T.; Ting J. W.; Chang H. C. Averaging peak-to-peak voltage detector for absolute mass determination of single particles with quadrupole ion traps. Rev. Sci. Instrum. 2005, 76 (2), 023108.10.1063/1.1841791. DOI
Harris C. R.; Millman K. J.; van der Walt S. J.; Gommers R.; Virtanen P.; Cournapeau D.; Wieser E.; Taylor J.; Berg S.; Smith N. J.; Kern R.; Picus M.; Hoyer S.; van Kerkwijk M. H.; Brett M.; Haldane A.; del Río J. F.; Wiebe M.; Peterson P.; Gérard-Marchant P.; Sheppard K.; Reddy T.; Weckesser W.; Abbasi H.; Gohlke C.; Oliphant T. E. Array programming with NumPy. Nature 2020, 585 (7825), 357–362. 10.1038/s41586-020-2649-2. PubMed DOI PMC
Virtanen P.; Gommers R.; Oliphant T. E.; Haberland M.; Reddy T.; Cournapeau D.; Burovski E.; Peterson P.; Weckesser W.; Bright J.; van der Walt S. J.; Brett M.; Wilson J.; Millman K. J.; Mayorov N.; Nelson A. R. J.; Jones E.; Kern R.; Larson E.; Carey C. J.; Polat I.; Feng Y.; Moore E. W.; VanderPlas J.; Laxalde D.; Perktold J.; Cimrman R.; Henriksen I.; Quintero E. A.; Harris C. R.; Archibald A. M.; Ribeiro A. N. H.; Pedregosa F.; van Mulbregt P.; et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17 (3), 261–272. 10.1038/s41592-019-0686-2. PubMed DOI PMC
Hunter J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9 (3), 90–95. 10.1109/MCSE.2007.55. DOI
Lutomski C. A.; Gordon S. M.; Remaley A. T.; Jarrold M. F. Resolution of Lipoprotein Subclasses by Charge Detection Mass Spectrometry. Anal. Chem. 2018, 90 (11), 6353–6356. 10.1021/acs.analchem.8b01127. PubMed DOI
Liang S. Y.; Estayan M. I. C.; Hsieh L. W.; Pan M. C.; Li K. X.; Chang H. C.; Peng W. P. Real-Time Monitoring of the Evaporation and Fission of Electrospray-Ionized Polystyrene Beads and Bacterial Pellets at Elevated Temperatures. Anal. Chem. 2024, 96 (18), 7179–7186. 10.1021/acs.analchem.4c00763. PubMed DOI
Hogan J. A.; Jarrold M. F. Optimized Electrostatic Linear Ion Trap for Charge Detection Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2018, 29 (10), 2086–2095. 10.1007/s13361-018-2007-x. PubMed DOI
Shu A.; Collette A.; Drake K.; Grün E.; Horányi M.; Kempf S.; Mocker A.; Munsat T.; Northway P.; Srama R.; Sternovsky Z.; Thomas E. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies. Rev. Sci. Instrum. 2012, 83 (7), 075108.10.1063/1.4732820. PubMed DOI
Hellwig N.; Martin J.; Morgner N. LILBID-MS: using lasers to shed light on biomolecular architectures. Biochem Soc. T 2022, 50 (3), 1057–1067. 10.1042/BST20190881. PubMed DOI PMC
Gerlich D. Inhomogeneous Rf-Fields - a Versatile Tool for the Study of Processes with Slow Ions. Adv. Chem. Phys. 1992, 82, 1–176. 10.1002/9780470141397.ch1. DOI