Critical Assessment of Curvature-Driven Surface Hopping Algorithms

. 2025 Oct 14 ; 21 (19) : 9784-9798. [epub] 20250916

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40955737

Trajectory surface-hopping (TSH) methods have become the most used approach in nonadiabatic molecular dynamics. The increasingly popular curvature-driven schemes represent a subset of TSH based on the implicit local diabatization of potential energy surfaces. Their appeal partly stems from compatibility with machine-learning frameworks that often provide only local PES information. Here, we critically assess the limitations of these curvature-based algorithms by examining three challenging scenarios: (i) dynamics involving more than two strongly coupled electronic states; (ii) trivial crossings; and (iii) spurious transitions arising from small discontinuities in multireference potential energy surfaces. Furthermore, we extend the Landau-Zener surface hopping (LZSH) method beyond two-state systems and introduce practical modifications to enhance its robustness. The performance is benchmarked on both low- and higher-dimensional model Hamiltonians, as well as realistic molecular systems treated with ab initio methods. While curvature-driven TSH using the explicit electronic coefficient propagation qualitatively captures the dynamics in most cases, we find no regime where it outperforms LZSH, especially when trivial crossings, multistate crossings, or discontinuities are encountered. Hence, we advocate for using a conceptually simple but solid LZSH method when nonadiabatic couplings are not available.

Zobrazit více v PubMed

Persico M., Granucci G.. An overview of nonadiabatic dynamics simulations methods, with focus on the direct approach versus the fitting of potential energy surfaces. Theor. Chem. Acc. 2014;133:1526. doi: 10.1007/s00214-014-1526-1. DOI

Curchod B. F. E., Martínez T. J.. Ab Initio Nonadiabatic Quantum Molecular Dynamics. Chem. Rev. 2018;118:3305–3336. doi: 10.1021/acs.chemrev.7b00423. PubMed DOI

Meyer H.-D., Manthe U., Cederbaum L.. The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett. 1990;165:73–78. doi: 10.1016/0009-2614(90)87014-I. DOI

Wang H.. Multilayer Multiconfiguration Time-Dependent Hartree Theory. J. Phys. Chem. A. 2015;119:7951–7965. doi: 10.1021/acs.jpca.5b03256. PubMed DOI

Ben-Nun, M. ; Martínez, T. . J. Adv. Chem. Phys.; John Wiley & Sons, Ltd: 2002; pp 439–512.

Barbatti M.. Nonadiabatic dynamics with trajectory surface hopping method. Wiley Interdiscip. Rev.:Comput. Mol. Sci. 2011;1:620–633. doi: 10.1002/wcms.64. DOI

Martínez T. J., Levine R. D.. First-principles molecular dynamics on multiple electronic states: A case study of NaI. J. Chem. Phys. 1996;105:6334–6341. doi: 10.1063/1.472486. DOI

Doltsinis N. L., Marx D.. Nonadiabatic Car-Parrinello Molecular Dynamics. Phys. Rev. Lett. 2002;88:166402. doi: 10.1103/PhysRevLett.88.166402. PubMed DOI

Landau L.. Zur theorie der Energieubertragung. II. Phys. Z. Sowjetunion. 1932;2:46.

Stueckelberg E. C. G.. Theorie der unelastischen Stösse zwischen Atomen. Helv. Phys. Acta. 1932;5:369.

Zener C., Fowler R. H.. Non-adiabatic crossing of energy levels. Proc. R. Soc. London, Ser. A. 1932;137:696–702. doi: 10.1098/rspa.1932.0165. DOI

Belyaev A. K., Lasser C., Trigila G.. Landau–Zener type surface hopping algorithms. J. Chem. Phys. 2014;140:224108. doi: 10.1063/1.4882073. PubMed DOI

Majorana E.. Atomi orientati in campo magnetico variabile. Il Nuovo Cimento (1924–1942) 1932;9:43–50. doi: 10.1007/BF02960953. DOI

Toldo J. M., do Casal M. T., Ventura E., do Monte S. A., Barbatti M.. Surface hopping modeling of charge and energy transfer in active environments. Phys. Chem. Chem. Phys. 2023;25:8293–8316. doi: 10.1039/D3CP00247K. PubMed DOI PMC

Tully J. C., Preston R. K.. Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The Reaction of H+ with D2 . J. Chem. Phys. 1971;55:562–572. doi: 10.1063/1.1675788. DOI

Tully J. C.. Molecular dynamics with electronic transitions. J. Chem. Phys. 1990;93:1061–1071. doi: 10.1063/1.459170. DOI

Granucci G., Persico M., Toniolo A.. Direct semiclassical simulation of photochemical processes with semiempirical wave functions. J. Chem. Phys. 2001;114:10608–10615. doi: 10.1063/1.1376633. DOI

Granucci G., Persico M.. Critical appraisal of the fewest switches algorithm for surface hopping. J. Chem. Phys. 2007;126:134114. doi: 10.1063/1.2715585. PubMed DOI

Bai X., Qiu J., Wang L.. An efficient solution to the decoherence enhanced trivial crossing problem in surface hopping. J. Chem. Phys. 2018;148:104106. doi: 10.1063/1.5020693. PubMed DOI

Lawrence J. E., Mannouch J. R., Richardson J. O.. Recovering Marcus Theory Rates and Beyond without the Need for Decoherence Corrections: The Mapping Approach to Surface Hopping. J. Phys. Chem. Lett. 2024;15:707–716. doi: 10.1021/acs.jpclett.3c03197. PubMed DOI PMC

Ha J.-K., Lee I. S., Min S. K.. Surface Hopping Dynamics beyond Nonadiabatic Couplings for Quantum Coherence. J. Phys. Chem. Lett. 2018;9:1097–1104. doi: 10.1021/acs.jpclett.8b00060. PubMed DOI

Subotnik J. E., Ouyang W., Landry B. R.. Can we derive Tully’s surface-hopping algorithm from the semiclassical quantum Liouville equation? Almost, but only with decoherence. J. Chem. Phys. 2013;139:214107. doi: 10.1063/1.4829856. PubMed DOI

Jaeger H. M., Fischer S., Prezhdo O. V.. Decoherence-induced surface hopping. J. Chem. Phys. 2012;137:22A545. doi: 10.1063/1.4757100. PubMed DOI

Wang L., Prezhdo O. V.. A Simple Solution to the Trivial Crossing Problem in Surface Hopping. J. Phys. Chem. Lett. 2014;5:713–719. doi: 10.1021/jz500025c. PubMed DOI

Zhang Q., Shao X., Li W., Mi W., Pavanello M., Akimov A. V.. Nonadiabatic molecular dynamics with subsystem density functional theory: application to crystalline pentacene. J. Phys.:Condens. Matter. 2024;36:385901. doi: 10.1088/1361-648X/ad577d. PubMed DOI

Carof A., Giannini S., Blumberger J.. How to calculate charge mobility in molecular materials from surface hopping non-adiabatic molecular dynamics–beyond the hopping/band paradigm. Phys. Chem. Chem. Phys. 2019;1:26368–26386. doi: 10.1039/C9CP04770K. PubMed DOI

Wang Z., Dong J., Wang L.. Large-scale surface hopping simulation of charge transport in hexagonal molecular crystals: role of electronic coupling signs. J. Phys.:Condens. Matter. 2023;35:345401. doi: 10.1088/1361-648X/acd60e. PubMed DOI

Pittner J., Lischka H., Barbatti M.. Optimization of mixed quantum-classical dynamics: Time-derivative coupling terms and selected couplings. Chem. Phys. 2009;356:147–152. doi: 10.1016/j.chemphys.2008.10.013. DOI

Shu Y., Zhang L., Sun S., Truhlar D. G.. Time-Derivative Couplings for Self-Consistent Electronically Nonadiabatic Dynamics. J. Chem. Theory Comput. 2020;16:4098–4106. doi: 10.1021/acs.jctc.0c00409. PubMed DOI

Shu Y., Zhang L., Chen X., Sun S., Huang Y., Truhlar D. G.. Nonadiabatic Dynamics Algorithms with Only Potential Energies and Gradients: Curvature-Driven Coherent Switching with Decay of Mixing and Curvature-Driven Trajectory Surface Hopping. J. Chem. Theory Comput. 2022;18:1320–1328. doi: 10.1021/acs.jctc.1c01080. PubMed DOI

Belyaev A. K., Domcke W., Lasser C., Trigila G.. Nonadiabatic nuclear dynamics of the ammonia cation studied by surface hopping classical trajectory calculations. J. Chem. Phys. 2015;142:104307. doi: 10.1063/1.4913962. PubMed DOI

Suchan J., Janoš J., Slavíček P.. Pragmatic Approach to Photodynamics: Mixed Landau–Zener Surface Hopping with Intersystem Crossing. J. Chem. Theory Comput. 2020;16:5809–5820. doi: 10.1021/acs.jctc.0c00512. PubMed DOI

Xie W., Sapunar M., Došlić N., Sala M., Domcke W.. Assessing the performance of trajectory surface hopping methods: Ultrafast internal conversion in pyrazine. J. Chem. Phys. 2019;150:154119. doi: 10.1063/1.5084961. PubMed DOI

Tokić N., Piteša T., Prlj A., Sapunar M., Došlić N.. Advantages and Limitations of Landau-Zener Surface Hopping Dynamics. Croat. Chem. Acta. 2024;97:P1–P11. doi: 10.5562/cca4133. DOI

Zhang L., Pios S. V., Martyka M., Ge F., Hou Y.-F., Chen Y., Chen L., Jankowska J., Barbatti M., Dral P. O.. MLatom Software Ecosystem for Surface Hopping Dynamics in Python with Quantum Mechanical and Machine Learning Methods. J. Chem. Theory Comput. 2024;20:5043–5057. doi: 10.1021/acs.jctc.4c00468. PubMed DOI

Ma X.-R., Zhang J., Xiong Y.-C., Zhou W.. Revising the performance of the Landau–Zener surface hopping on some typical one-dimensional nonadiabatic models. Mol. Phys. 2022;120:e2051761. doi: 10.1080/00268976.2022.2051761. DOI

Janoš J., Figueira Nunes J. P., Hollas D., Slavíček P., Curchod B. F. E.. Predicting the photodynamics of cyclobutanone triggered by a laser pulse at 200 nm and its MeV-UED signalsA trajectory surface hopping and XMS-CASPT2 perspective. J. Chem. Phys. 2024;160:144305. doi: 10.1063/5.0203105. PubMed DOI

Jíra T., Janoš J., Slavíček P.. Sensitivity Analysis in Photodynamics: How Does the Electronic Structure Control cis-Stilbene Photodynamics? J. Chem. Theory Comput. 2024;20:10972–10985. doi: 10.1021/acs.jctc.4c01008. PubMed DOI PMC

Wang C., Waters M., Zhang P., Suchan J., Svoboda V., Luu T. T., Perry C., Yin Z., Slavíček P., Wörner H.. Different timescales during ultrafast stilbene isomerization in the gas and liquid phases revealed using time-resolved photoelectron spectroscopy. Nat. Chem. 2022;14:1126. doi: 10.1038/s41557-022-01012-0. PubMed DOI PMC

Zhao X., Merritt I. C. D., Lei R., Shu Y., Jacquemin D., Zhang L., Xu X., Vacher M., Truhlar D. G.. Nonadiabatic Coupling in Trajectory Surface Hopping: Accurate Time Derivative Couplings by the Curvature-Driven Approximation. J. Chem. Theory Comput. 2023;19:6577–6588. doi: 10.1021/acs.jctc.3c00813. PubMed DOI

Mai S., Atkins A. J., Plasser F., González L.. The Influence of the Electronic Structure Method on Intersystem Crossing Dynamics. The Case of Thioformaldehyde. J. Chem. Theory Comput. 2019;15:3470–3480. doi: 10.1021/acs.jctc.9b00282. PubMed DOI

Barneschi L., Kaliakin D., Huix-Rotllant M., Ferré N., Filatov Gulak M., Olivucci M.. Assessment of the Electron Correlation Treatment on the Quantum-Classical Dynamics of Retinal Protonated Schiff Base Models: XMS-CASPT2, RMS-CASPT2, and REKS Methods. J. Chem. Theory Comput. 2023;19:8189–8200. doi: 10.1021/acs.jctc.3c00879. PubMed DOI

Bellshaw D., Minns R. S., Kirrander A.. Correspondence between electronic structure calculations and simulations: nonadiabatic dynamics in CS2. Phys. Chem. Chem. Phys. 2019;21:14226–14237. doi: 10.1039/C8CP05693E. PubMed DOI

Tuna D., Lefrancois D., Wolański L., Gozem S., Schapiro I., Andruniów T., Dreuw A., Olivucci M.. Assessment of Approximate Coupled-Cluster and Algebraic-Diagrammatic-Construction Methods for Ground- and Excited-State Reaction Paths and the Conical-Intersection Seam of a Retinal-Chromophore Model. J. Chem. Theory Comput. 2015;11:5758–5781. doi: 10.1021/acs.jctc.5b00022. PubMed DOI

Belyaev A. K., Lebedev O. V.. Nonadiabatic nuclear dynamics of atomic collisions based on branching classical trajectories. Phys. Rev. A. 2011;84:014701. doi: 10.1103/PhysRevA.84.014701. DOI

Xie W., Domcke W.. Accuracy of trajectory surface-hopping methods: Test for a two-dimensional model of the photodissociation of phenol. J. Chem. Phys. 2017;147:184114. doi: 10.1063/1.5006788. PubMed DOI

Huang X., Xie W., Došlić N., Gelin M. F., Domcke W.. Ab Initio Quasiclassical Simulation of Femtosecond Time-Resolved Two-Dimensional Electronic Spectra of Pyrazine. J. Phys. Chem. Lett. 2021;12:11736–11744. doi: 10.1021/acs.jpclett.1c03589. PubMed DOI

Baeck K. K., An H.. Practical approximation of the non-adiabatic coupling terms for same-symmetry interstate crossings by using adiabatic potential energies only. J. Chem. Phys. 2017;146:064107. doi: 10.1063/1.4975323. PubMed DOI

Zhao X., Shu Y., Zhang L., Xu X., Truhlar D. G.. Direct Nonadiabatic Dynamics of Ammonia with Curvature-Driven Coherent Switching with Decay of Mixing and with Fewest Switches with Time Uncertainty: An Illustration of Population Leaking in Trajectory Surface Hopping Due to Frustrated Hops. J. Chem. Theory Comput. 2023;19:1672–1685. doi: 10.1021/acs.jctc.2c01260. PubMed DOI

Merritt I. C. D., Jacquemin D., Vacher M.. Nonadiabatic Coupling in Trajectory Surface Hopping: How Approximations Impact Excited-State Reaction Dynamics. J. Chem. Theory Comput. 2023;19:1827–1842. doi: 10.1021/acs.jctc.2c00968. PubMed DOI

Do Casal M. T., Toldo J. M., Pinheiro M. Jr., Barbatti M.. Fewest switches surface hopping with Baeck-An couplings. Open Res. Eur. 2022;1:49. doi: 10.12688/openreseurope.13624.2. PubMed DOI PMC

Lee E. M. Y., Willard A. P.. Solving the Trivial Crossing Problem While Preserving the Nodal Symmetry of the Wave Function. J. Chem. Theory Comput. 2019;15:4332–4343. doi: 10.1021/acs.jctc.9b00302. PubMed DOI PMC

Temen S., Akimov A. V.. A Simple Solution to Trivial Crossings: A Stochastic State Tracking Approach. J. Phys. Chem. Lett. 2021;12:850–860. doi: 10.1021/acs.jpclett.0c03428. PubMed DOI

Hayashi S., Tajkhorshid E., Schulten K.. Photochemical Reaction Dynamics of the Primary Event of Vision Studied by Means of a Hybrid Molecular Simulation. Biophys. J. 2009;96:403–416. doi: 10.1016/j.bpj.2008.09.049. PubMed DOI PMC

Glasbrenner E. P., Schleich W. P.. The Landau–Zener formula made simple. J. Phys. B:At., Mol. Opt. Phys. 2023;56:104001. doi: 10.1088/1361-6455/acc774. DOI

Wittig C.. The Landau–Zener Formula. J. Phys. Chem. B. 2005;109:8428–8430. doi: 10.1021/jp040627u. PubMed DOI

Karashima S., Miao X., Kanayama A., Yamamoto Y.-I., Nishitani J., Kavka N., Mitric R., Suzuki T.. Ultrafast Ring Closure Reaction of Gaseous cis-Stilbene from S1(ππ*) J. Am. Chem. Soc. 2023;145:3283–3288. doi: 10.1021/jacs.2c12266. PubMed DOI

Smith B., Akimov A. V.. Hot Electron Cooling in Silicon Nanoclusters via Landau–Zener Nonadiabatic Molecular Dynamics: Size Dependence and Role of Surface Termination. J. Phys. Chem. Lett. 2020;11:1456–1465. doi: 10.1021/acs.jpclett.9b03687. PubMed DOI

Zobel J. P., Heindl M., Plasser F., Mai S., González L.. Surface Hopping Dynamics on Vibronic Coupling Models. Acc. Chem. Res. 2021;54:3760–3771. doi: 10.1021/acs.accounts.1c00485. PubMed DOI PMC

Fumanal M., Plasser F., Mai S., Daniel C., Gindensperger E.. Interstate vibronic coupling constants between electronic excited states for complex molecules. J. Chem. Phys. 2018;148:124119. doi: 10.1063/1.5022760. PubMed DOI

Köppel H., Domcke W., Cederbaum L. S.. Theory of vibronic coupling in linear molecules. J. Chem. Phys. 1981;74:2945–2968. doi: 10.1063/1.441417. DOI

Köuppel, H. ; Domcke, W. ; Cederbaum, L. S. . Adv. Chem. Phys.; John Wiley & Sons, Ltd: 1984; pp 59–246.

Kosloff R.. Time-dependent quantum-mechanical methods for molecular dynamics. J. Phys. Chem. 1988;92:2087–2100. doi: 10.1021/j100319a003. DOI

Bandrauk A. D., Shen H.. Higher order exponential split operator method for solving time-dependent Schrödinger equations. Can. J. Chem. 1992;70:555–559. doi: 10.1139/v92-078. DOI

Jain A., Alguire E., Subotnik J. E.. An Efficient, Augmented Surface Hopping Algorithm That Includes Decoherence for Use in Large-Scale Simulations. J. Chem. Theory Comput. 2016;12:5256–5268. doi: 10.1021/acs.jctc.6b00673. PubMed DOI

Meek G. A., Levine B. G.. Evaluation of the Time-Derivative Coupling for Accurate Electronic State Transition Probabilities from Numerical Simulations. J. Phys. Chem. Lett. 2014;5:2351–2356. doi: 10.1021/jz5009449. PubMed DOI

Shiozaki T.. BAGEL: Brilliantly Advanced General Electronic-structure Library. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018;8:e1331. doi: 10.1002/wcms.1331. DOI

Thiel, W. Program MNDO, Version 7.0 of 4 August 2005, 2005.

Hollas, D. ; Suchan, J. ; Ončák, M. ; Slavíček, P. . PHOTOX/ABIN: Pre-release of version 1.1, 2018.

Vogt, J.-R. ; Schulz, M. ; Mattos, R. S. ; Barbatti, M. ; Persico, M. ; Granucci, G. ; Hutter, J. ; Hehn, A.-S. . 2025, 10.26434/chemrxiv-2025-ddxzg, Preprint, not peer-reviewed. DOI

Vindel-Zandbergen P., Matsika S., Maitra N. T.. Exact-Factorization-Based Surface Hopping for Multistate Dynamics. J. Phys. Chem. Lett. 2022;13:1785–1790. doi: 10.1021/acs.jpclett.1c04132. PubMed DOI

Assmann M., Köppel H., Matsika S.. Photoelectron Spectrum and Dynamics of the Uracil Cation. J. Phys. Chem. A. 2015;119:866–875. doi: 10.1021/jp512221x. PubMed DOI

Assmann M., Weinacht T., Matsika S.. Surface hopping investigation of the relaxation dynamics in radical cations. J. Chem. Phys. 2016;144:034301. doi: 10.1063/1.4939842. PubMed DOI

Kovalenko S., Dobryakov A., Ioffe I., Ernsting N.. Evidence for the phantom state in photoinduced cis–trans isomerization of stilbene. Chem. Phys. Lett. 2010;493:255–258. doi: 10.1016/j.cplett.2010.05.022. DOI

Liu Y., Xia S.-H., Zhang Y.. Photochemical and photophysical properties of cis-stilbene molecule by electronic structure calculations and nonadiabatic surface-hopping dynamics simulations. Chem. Phys. 2020;539:110957. doi: 10.1016/j.chemphys.2020.110957. PubMed DOI

Cusati T., Granucci G., Persico M.. Photodynamics and Time-Resolved Fluorescence of Azobenzene in Solution: A Mixed Quantum-Classical Simulation. J. Am. Chem. Soc. 2011;133:5109–5123. doi: 10.1021/ja1113529. PubMed DOI

Liang R.. First-Principles Nonadiabatic Dynamics Simulation of Azobenzene Photodynamics in Solutions. J. Chem. Theory Comput. 2021;17:3019–3030. doi: 10.1021/acs.jctc.1c00105. PubMed DOI

Tan E. M., Amirjalayer S., Smolarek S., Vdovin A., Zerbetto F., Buma W. J.. Fast photodynamics of azobenzene probed by scanning excited-state potential energy surfaces using slow spectroscopy. Nat. Commun. 2015;6:5860. doi: 10.1038/ncomms6860. PubMed DOI PMC

Prediction Challenge: Cyclobutanone Photochemistry. https://pubs.aip.org/collection/16531/Prediction-Challenge-Cyclobutanone-Photochemistry (accessed Jun 16, 2025).

Zhu C., Nakamura H.. Theory of nonadiabatic transition for general two-state curve crossing problems. I. Nonadiabatic tunneling case. J. Chem. Phys. 1994;101:10630–10647. doi: 10.1063/1.467877. DOI

Yu L., Xu C., Lei Y., Zhu C., Wen Z.. Trajectory-based nonadiabatic molecular dynamics without calculating nonadiabatic coupling in the avoided crossing case: trans-cis photoisomerization in azobenzene. Phys. Chem. Chem. Phys. 2014;16:25883–25895. doi: 10.1039/C4CP03498H. PubMed DOI

Yue L., Yu L., Xu C., Lei Y., Liu Y., Zhu C.. Benchmark Performance of Global Switching versus Local Switching for Trajectory Surface Hopping Molecular Dynamics Simulation: Cis-Trans Azobenzene Photoisomerization. ChemPhysChem. 2017;18:1274–1287. doi: 10.1002/cphc.201700049. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...