Free water predicts dementia with Lewy bodies in isolated REM sleep behavior disorder
Language English Country United States Media print
Document type Journal Article, Multicenter Study
Grant support
CIHR - Canada
Roche
Parkinson's Foundation
Michael J. Fox Foundation
R. Howard Webster Foundation
International Parkinson and Movement Disorders Society
PPG-2023-0000000122
Parkinson Canada
0000000082
Alzheimer Society Canada
ANR-10-IAIHU-06
Programme d'investissements d'avenir
IAIHU-06
Paris Institute of Neurosciences-IHU
ANR-11-INBS-0006
Agence Nationale de la Recherche
Électricité de France
Fondation d'Entreprise EDF
Biogen Inc.
Fonds Saint-Michel
Société Française de Médecine Esthétique
Institut de France
Fonds de recherche du Québec-Santé
W. Garfield Weston Foundation
NIH/National Institute on Aging
J-2101
Parkinson's UK - United Kingdom
Oxford Biomedical Research Centre (BRC)
NU21-04-00535
Czech Health Research Council
LX22NPO5107
Czech Health Research Council
4D Pharma
AbbVie Inc.
AcureX Therapeutics
Allergan
Aligning Science Across Parkinson's (ASAP)
Avid Radiopharmaceuticals
Bial Biotech
BioLegend
Bristol Myers Squibb
Calico Life Sciences LLC
Celgene Corporation
DaCapo Brainscience
Denali Therapeutics
Edmond J. Safra Foundation
Eli Lilly and Company
GE Healthcare
GlaxoSmithKline
Golub Capital
Handl Therapeutics
Insitro
LLC
Piramal Imaging
Prevail Therapeutics
F. Hoffman-La Roche Ltd.
Genentech Inc.
Teva Neuroscience, Inc.
Vanqua Bio
Voyager Therapeutics, Inc.
Yumanity Therapeutics, Inc.
PubMed
40970479
PubMed Central
PMC12447249
DOI
10.1002/alz.70570
Knihovny.cz E-resources
- Keywords
- Parkinson's disease, REM sleep behavior disorder, biomarker, dementia with Lewy bodies, diffusion magnetic resonance imaging, free water, prognosis,
- MeSH
- Biomarkers MeSH
- Lewy Body Disease * diagnostic imaging diagnosis MeSH
- Diffusion Magnetic Resonance Imaging MeSH
- Middle Aged MeSH
- Humans MeSH
- Parkinson Disease diagnostic imaging MeSH
- REM Sleep Behavior Disorder * complications diagnostic imaging MeSH
- Disease Progression MeSH
- Aged MeSH
- Water * MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Names of Substances
- Biomarkers MeSH
- Water * MeSH
INTRODUCTION: Most individuals with isolated rapid eye movement sleep behavior disorder (iRBD) develop dementia with Lewy bodies (DLB) or Parkinson's disease (PD). Brain biomarkers predicting specific phenoconversion trajectories are lacking. METHODS: In this multicenter diffusion magnetic resonance imaging study (261 iRBD, 177 controls), free water (FW) was measured in the nucleus basalis of Meynert (NBM) and posterior substantia nigra (SN). Among 230 iRBD patients with follow-up, 64 converted (16 DLB, 38 PD). Time-to-event analyses were performed to assess differential phenoconversion. RESULTS: Phenoconverters had higher FW in the NBM and posterior SN. Only FW in the NBM predicted conversion to DLB over PD. NBM volume predicted DLB conversion, but only FW remained significant when both were modeled. FW in the NBM correlated with lower MoCA scores in iRBD. DISCUSSION: FW in the NBM is a sensitive biomarker of cognitive decline and DLB progression in iRBD, outperforming volume and supporting its use in early stratification. HIGHLIGHTS: FW in the NBM specifically identifies conversion to DLB. Increased FW in the NBM is associated with lower global cognition in iRBD. FW in the SN in iRBD does not relate more to DLB than PD. FW in the NBM is a biomarker of differential phenoconversion in iRBD.
Department of Medicine University of Montreal Montreal Canada
Department of Neurology Montreal General Hospital Montreal Canada
Department of Neuroscience University of Montreal Montreal Canada
Department of Psychology Université du Québec à Montréal Montreal Canada
Department of Psychology University of Montreal Montreal Canada
Research Centre Institut universitaire de gériatrie de Montréal Montreal Canada
Sherbrooke Connectivity Imaging Lab University of Sherbrooke Sherbrooke Canada
See more in PubMed
Hogl B, Stefani A, Videnovic A. Idiopathic REM sleep behaviour disorder and neurodegeneration—an update. Nat Rev Neurol. 2018;14(1):40‐55. PubMed
Galbiati A, Verga L, Giora E, Zucconi M, Ferini‐Strambi L. The risk of neurodegeneration in REM sleep behavior disorder: a systematic review and meta‐analysis of longitudinal studies. Sleep Med Rev. 2019;43:37‐46. PubMed
Rahayel S, Tremblay C, Vo A, et al. Brain atrophy in prodromal synucleinopathy is shaped by structural connectivity and gene expression. Brain. 2022;145(9):3162‐3178. PubMed
Rahayel S, Tremblay C, Vo A, et al. Mitochondrial function‐associated genes underlie cortical atrophy in prodromal synucleinopathies. Brain. 2023;146(8):3301‐3318. PubMed PMC
Rahayel S, Postuma RB, Montplaisir J, et al. A prodromal brain‐clinical pattern of cognition in synucleinopathies. Ann Neurol. 2021;89(2):341‐357. PubMed
Rahayel S, Postuma RB, Montplaisir J, et al. Cortical and subcortical gray matter bases of cognitive deficits in REM sleep behavior disorder. Neurology. 2018;90(20):e1759‐e1770. PubMed PMC
Shin JH, Kim H, Kim YK, et al. Longitudinal evolution of cortical thickness signature reflecting Lewy body dementia in isolated REM sleep behavior disorder: a prospective cohort study. Transl Neurodegener. 2023;12(1):27. PubMed PMC
Campabadal A, Segura B, Junque C, Iranzo A. Structural and functional magnetic resonance imaging in isolated REM sleep behavior disorder: a systematic review of studies using neuroimaging software. Sleep Med Rev. 2021;59:101495. PubMed
Eisenstein T, Groenewald K, van Hillegondsberg L, et al. Cholinergic degeneration in prodromal and early Parkinson's: a link to present and future disease states. Brain. 2025. PubMed
Rahayel S, Postuma R, Baril AA, et al. (99m)Tc‐HMPAO SPECT perfusion signatures associated with clinical progression in patients with isolated rem sleep behavior disorder. Neurology. 2024;102(4):e208015. PubMed PMC
Carli G, Meles SK, Reesink FE, et al. Comparison of univariate and multivariate analyses for brain [18F]FDG PET data in alpha‐synucleinopathies. Neuroimage Clin. 2023;39:103475. PubMed PMC
Carli G, Meles SK, Janzen A, et al. Occipital hypometabolism is a risk factor for conversion to Parkinson's disease in isolated REM sleep behaviour disorder. Eur J Nucl Med Mol Imaging. 2023;50(11):3290‐3301. PubMed PMC
Kim R, Lee JY, Kim YK, et al. Longitudinal changes in isolated rapid eye movement sleep behavior disorder‐related metabolic pattern expression. Mov Disord. 2021;36(8):1889‐1898. PubMed PMC
Orso B, Mattioli P, Yoon EJ, et al. Validation of the REM behaviour disorder phenoconversion‐related pattern in an independent cohort. Neurol Sci. 2023;44(9):3161‐3168. PubMed PMC
Arnaldi D, Mattioli P, Raffa S, et al. Presynaptic dopaminergic imaging characterizes patients with REM sleep behavior disorder due to synucleinopathy. Ann Neurol. 2024;95(6):1178‐1192. PubMed PMC
Iranzo A, Stefani A, Ninerola‐Baizan A, et al. Left‐hemispheric predominance of nigrostriatal deficit in isolated REM sleep behavior disorder. Neurology. 2020;94(15):e1605‐e1613. PubMed
Chahine LM, Brumm MC, Caspell‐Garcia C, et al. Dopamine transporter imaging predicts clinically‐defined alpha‐synucleinopathy in REM sleep behavior disorder. Ann Clin Transl Neurol. 2021;8(1):201‐212. PubMed PMC
Miglis MG, Adler CH, Antelmi E, et al. Biomarkers of conversion to alpha‐synucleinopathy in isolated rapid‐eye‐movement sleep behaviour disorder. Lancet Neurol. 2021;20(8):671‐684. PubMed PMC
Pasternak O, Sochen N, Gur Y, Intrator N, Assaf Y. Free water elimination and mapping from diffusion MRI. Magn Reson Med. 2009;62(3):717‐730. PubMed
Burciu RG, Ofori E, Archer DB, et al. Progression marker of Parkinson's disease: a 4‐year multi‐site imaging study. Brain. 2017;140(8):2183‐2192. PubMed PMC
Ofori E, Pasternak O, Planetta PJ, et al. Increased free water in the substantia nigra of Parkinson's disease: a single‐site and multi‐site study. Neurobiol Aging. 2015;36(2):1097‐1104. PubMed PMC
Ofori E, Pasternak O, Planetta PJ, et al. Longitudinal changes in free‐water within the substantia nigra of Parkinson's disease. Brain. 2015;138:2322‐2331. PubMed PMC
Chen M, Wang Y, Zhang C, et al. Free water and iron content in the substantia nigra at different stages of Parkinson's disease. Eur J Radiol. 2023;167:111030. PubMed
Arribarat G, Pasternak O, De Barros A, Galitzky M, Rascol O, Peran P. Substantia nigra locations of iron‐content, free‐water and mean diffusivity abnormalities in moderate stage Parkinson's disease. Parkinsonism Relat Disord. 2019;65:146‐152. PubMed
Zhou G, Ren J, Rong D, et al. Monitoring substantia nigra degeneration using free water imaging across prodromal and clinical Parkinson's disease. Mov Disord. 2023;38(5):774‐782. PubMed
Guttuso T, Jr , Bergsland N, Hagemeier J, Lichter DG, Pasternak O, Zivadinov R. Substantia nigra free water increases longitudinally in Parkinson's Disease. AJNR Am J Neuroradiol. 2018;39(3):479‐484. PubMed PMC
Bae YJ, Kim JM, Sohn CH, et al. Imaging the substantia nigra in Parkinson disease and other parkinsonian syndromes. Radiology. 2021;300(2):260‐278. PubMed
Zhou L, Li G, Zhang Y, et al. Increased free water in the substantia nigra in idiopathic REM sleep behaviour disorder. Brain. 2021;144(5):1488‐1497. PubMed
Ofori E, Krismer F, Burciu RG, et al. Free water improves detection of changes in the substantia nigra in parkinsonism: a multisite study. Mov Disord. 2017;32(10):1457‐1464. PubMed PMC
Ray NJ, Lawson RA, Martin SL, et al. Free‐water imaging of the cholinergic basal forebrain and pedunculopontine nucleus in Parkinson's disease. Brain. 2023;146(3):1053‐1064. PubMed PMC
Zhang D, Zhou L, Lu C, Feng T, Liu J, Wu T. Free‐Water imaging of the nucleus basalis of meynert in patients with idiopathic REM sleep behavior disorder and Parkinson's Disease. Neurology. 2024;102(7):e209220. PubMed
Wang C, Wang S, Zhou C, et al. LRRK2 mutation contributes to decreased free water in the nucleus basalis of Meynert in manifest and premanifest Parkinson's disease. J Neurol. 2024;272(1):33. PubMed
Crowley SJ, Amin M, Tanner JJ, Ding M, Mareci TA, Price CC. Free water fraction predicts cognitive decline for individuals with idiopathic Parkinson's disease. Parkinsonism Relat Disord. 2022;104:72‐77. PubMed
Crowley SJ, Kanel P, Roytman S, Bohnen NI, Hampstead BM. Basal forebrain integrity, cholinergic innervation and cognition in idiopathic Parkinson's disease. Brain. 2024;147(5):1799‐1808. PubMed PMC
Schumacher J, Ray NJ, Hamilton CA, et al. Free water imaging of the cholinergic system in dementia with Lewy bodies and Alzheimer's disease. Alzheimers Dement. 2023;19(10):4549‐4563. PubMed
Tobin ER, Arpin DJ, Schauder MB, et al. Functional and free‐water imaging in rapid eye movement behaviour disorder and Parkinson's disease. Brain Commun. 2024;6(5):fcae344. PubMed PMC
Gan‐Or Z, Rao T, Leveille E, et al. The quebec parkinson network: a researcher‐patient matching platform and multimodal biorepository. J Parkinsons Dis. 2020;10(1):301‐313. PubMed PMC
Marek K, Chowdhury S, Siderowf A, et al. The Parkinson's progression markers initiative (PPMI)—establishing a PD biomarker cohort. Ann Clin Transl Neurol. 2018;5(12):1460‐1477. PubMed PMC
Medicine AAoS . The PubMed PMC
McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88‐100. PubMed PMC
Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord. 2015;30(12):1591‐1601. PubMed
Wenning GK, Stankovic I, Vignatelli L, et al. The movement disorder society criteria for the diagnosis of multiple system atrophy. Mov Disord. 2022;37(6):1131‐1148. PubMed PMC
Nasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695‐699. PubMed
Goetz CG, Tilley BC, Shaftman SR, et al. Movement disorder society‐sponsored revision of the unified Parkinson's disease rating scale (MDS‐UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129‐2170. PubMed
Ayral V, Pastor‐Bernier A, Daneault V, et al. Glymphatic defect in isolated REM sleep behavior disorder is associated with phenoconversion to Parkinson's disease. Neurology. Forthcoming 2025.
Joza S, Delva A, Tremblay C, et al. Distinct brain atrophy progression subtypes underlie phenoconversion in isolated REM sleep behaviour disorder. EBioMedicine. 2025;117:105753. PubMed PMC
Theaud G, Houde JC, Bore A, Rheault F, Morency F, Descoteaux M. TractoFlow: a robust, efficient and reproducible diffusion MRI pipeline leveraging Nextflow & Singularity. Neuroimage. 2020;218:116889. PubMed
Kurtzer GM, Sochat V, Bauer MW. Singularity: scientific containers for mobility of compute. PLoS One. 2017;12(5):e0177459. PubMed PMC
Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017;35(4):316‐319. PubMed
Daducci A, Canales‐Rodriguez EJ, Zhang H, Dyrby TB, Alexander DC, Thiran JP. Accelerated microstructure imaging via convex optimization (AMICO) from diffusion MRI data. Neuroimage. 2015;105:32‐44. PubMed
Gaser C, Dahnke R, Thompson PM, Kurth F, Luders E, The Alzheimer's Disease Neuroimaging I . CAT: a computational anatomy toolbox for the analysis of structural MRI data. Gigascience. 2024;13:giae049. PubMed PMC
Fortin JP, Cullen N, Sheline YI, et al. Harmonization of cortical thickness measurements across scanners and sites. Neuroimage. 2018;167:104‐120. PubMed PMC
Orlhac F, Eertink JJ, Cottereau AS, et al. A Guide to ComBat harmonization of imaging biomarkers in multicenter studies. J Nucl Med. 2022;63(2):172‐179. PubMed PMC
Fortin JP, Parker D, Tunc B, et al. Harmonization of multi‐site diffusion tensor imaging data. Neuroimage. 2017;161:149‐170. PubMed PMC
Andica C, Kamagata K, Hatano T, et al. Free‐Water imaging in white and gray matter in Parkinson's. Disease Cells. 2019;8(8). PubMed PMC
Schulz J, Pagano G, Fernandez Bonfante JA, Wilson H, Politis M. Nucleus basalis of Meynert degeneration precedes and predicts cognitive impairment in Parkinson's disease. Brain. 2018;141(5):1501‐1516. PubMed PMC
Postuma RB, Iranzo A, Hu M, et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain. 2019;142(3):744‐759. PubMed PMC
Yang A, Li G. Nucleus basalis of Meynert predicts cognitive changes in isolated REM sleep behavior disorder. Sleep Med. 2023;109:11‐17. PubMed
Tan C, Nawaz H, Lageman SK, et al. Cholinergic nucleus 4 degeneration and cognitive impairment in isolated rapid eye movement sleep behavior disorder. Mov Disord. 2023;38(3):474‐479. PubMed PMC
Remillard‐Pelchat D, Rahayel S, Gaubert M, et al. Comprehensive analysis of brain volume in rem sleep behavior disorder with mild cognitive impairment. J Parkinsons Dis. 2022;12(1):229‐241. PubMed
Gaurav R, Pyatigorskaya N, Biondetti E, et al. Deep learning‐based neuromelanin mri changes of isolated rem sleep behavior disorder. Mov Disord. 2022;37(5):1064‐1069. PubMed PMC
Arnaldi D, Chincarini A, Hu MT, et al. Dopaminergic imaging and clinical predictors for phenoconversion of REM sleep behaviour disorder. Brain. 2021;144(1):278‐287. PubMed PMC
Woo KA, Kim H, Kim R, et al. Cholinergic degeneration and early cognitive signs in prodromal Lewy body dementia. Alzheimers Dement. 2025;21(2):e14584. PubMed PMC
Staer K, Iranzo A, Stokholm MG, et al. Cortical cholinergic dysfunction correlates with microglial activation in the substantia innominata in REM sleep behavior disorder. Parkinsonism Relat Disord. 2020;81:89‐93. PubMed
Staer K, Iranzo A, Terkelsen MH, et al. Progression of brain cholinergic dysfunction in patients with isolated rapid eye movement sleep behavior disorder. Eur J Neurol. 2024;31(1):e16101. PubMed PMC
Genier Marchand D, Montplaisir J, Postuma RB, Rahayel S, Gagnon JF. Detecting the cognitive prodrome of dementia with lewy bodies: a prospective study of REM sleep behavior disorder. Sleep. 2017;40(1):101093/sleep/zsw014. PubMed
Dickson DW, Heckman MG, Murray ME, et al. APOE epsilon4 is associated with severity of Lewy body pathology independent of Alzheimer pathology. Neurology. 2018;91(12):e1182‐e95. PubMed PMC