Perianth symmetry in sexually differentiated flowers of Akebia quinata (Lardizabalaceae)

. 2025 ; 13 () : e20060. [epub] 20250917

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40980069

Sexual differentiation of monoecious plants usually involves differentiation in the size of female and male flowers produced on the same individuals. In the nectarless Akebia quinata (Houtt.) Decne (Lardizabalaceae), the trimeric, actinomorphic female flowers are larger than the males, which is explained as an adaptive trait to prevent self-pollination, as conspicuous female flowers are usually visited by pollinators earlier than smaller male flowers of the same individuals. This results in the plants being cross-pollinated rather than geitonogamously pollinated. However, it is also known that the development of the perianth in this species is genetically associated with the ontogeny of the petaloid sepals. These are thus developmentally linked to the ontogeny of the stamens. Therefore, it is possible that female flowers lacking fertile stamens also have less developmental control over the perianth ontogeny. Consequently, our study investigated whether female and male flowers of A. quinata differ in their overall shape features, in the amounts of variation among flowers, as well as in the extent of different types of asymmetry in perianth shapes. Geometric morphometric analyses of triradial perianth symmetry based on the generalised Procrustes analysis of a complete symmetry group of perianth shapes showed that female flowers were indeed significantly more variable in all different subspaces of their symmetric and asymmetric shape variation. This included the differences among individual flowers, their rotational and bilateral symmetry as well as the asymmetry among sepals within flowers. These results indicate that developmental control over perianth shape is systematically weaker in female flowers compared to male flowers of A. quinata. It is therefore likely that this phenomenon is related to the presence or absence of fertile male reproductive organs, whose development is linked to the ontogeny of the perianth and the maintenance of its trimeric symmetry.

Zobrazit více v PubMed

Adams DC, Otárola-Castillo E. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution. 2013;4:393–399. doi: 10.1111/2041-210X.12035. DOI

Barrett SCH, Hough J. Sexual dimorphism in flowering plants. Journal of Experimental Botany. 2013;64:67–82. doi: 10.1093/jxb/ers308. PubMed DOI

Bell G. On the function of flowers. Proceedings of the Royal Society B: Biological Sciences. 1985;224:223–265. doi: 10.1098/rspb.1985.0031. DOI

Berger BA, Ricigliano VA, Savriama Y, Lim A, Thompson V, Howarth DG. Geometric morphometrics reveals shifts in flower shape symmetry and size following gene knockdown of Cycloidea and Anthocyanidin synthase. BMC Plant Biology. 2017;17:205. doi: 10.1186/s12870-017-1152-x. PubMed DOI PMC

Bookstein FL. A course in morphometrics for biologists. Cambridge University Press; Cambridge: 2018.

Budečević S, Manitašević Jovanović S, Vuleta A, Tucić B, Klingenberg CP. Directional asymmetry and direction-giving factors: lessons from flowers with complex symmetry. Evolution & Development. 2022;24:92–108. doi: 10.1111/ede.12402. PubMed DOI PMC

Carrive L, Domenech B, Sauquet H, Jabbour F, Damerval C, Nadot S. Insights into the ancestral flowers of Ranunculales. Botanical Journal of the Linnean Society. 2020;194:23–46. doi: 10.1093/botlinnean/boaa031. DOI

Chanderbali AS, Berger BA, Howarth DG, Soltis PS, Soltis DE. Evolving ideas on the origin and evolution of flowers: new perspectives in the genomic era. Genetics. 2016;202:1255–1265. doi: 10.1534/genetics.115.182964. PubMed DOI PMC

Christenhusz MJM. An overview of Lardizabalaceae. Curtis’s Botanical Magazine. 2012;29:235–276. doi: 10.1111/j.1467-8748.2012.01790.x. DOI

Christenhusz MJM, Rix M. Akebia quinata. Curtis’s Botanical Magazine. 2012;29:284–289. doi: 10.1111/j.1467-8748.2012.01792.x. DOI

Cronk Q. The distribution of sexual function in the flowering plant: from monoecy to dioecy. Philosophical Transactions of the Royal Society B: Biological Sciences. 2022;377:20210486. doi: 10.1098/rstb.2021.0486. PubMed DOI PMC

Delph LF. Flower size dimorphism in plants with unisexual flowers. In: Lloyd DG, Barrett SCH, editors. Floral biology. Chapman & Hall; New York: 1996. pp. 217–240. DOI

Delph LF, Galloway LF, Stanton ML. Sexual dimorphism in flower size. The American Naturalist. 1996;148:299–320. doi: 10.1086/285926. DOI

Delph LF, Touzet P, Bailey MF. Merging theory and mechanism in studies of gynodioecy. Trends in Ecology and Evolution. 2007;22:17–24. doi: 10.1016/j.tree.2006.09.013. PubMed DOI

Eckhart VM. Sexual dimorphism in flowers and inflorescences. In: Geber MA, Dawson TE, Delph LF, editors. Gender and sexual dimorphism in flowering plants. Springer; Heidelberg: 1999. pp. 123–148. DOI

Frey FM, Bukoski M. Floral symmetry is associated with flower size and pollen production but not insect visitation rates in Geranium robertianum (Geraniaceae) Plant Species Biology. 2014;29:272–280. doi: 10.1111/1442-1984.12021. DOI

Glasnović P, FišerPečnikar Ž. Akebia quinata (Houtt.) Dcne., new species for Slovenian flora, and contribution to the knowledge of the neophytic flora of Primorska region. Hladnikia. 2010;25:31–43.

Gómez JM, Perfectti F. Evolution of complex traits: the case of Erysimum corolla shape. International Journal of Plant Sciences. 2010;171:987–998. doi: 10.1086/656475. DOI

Hammer Ø, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica. 2001;4:1–9.

Karasawa MMG. Reproductive diversity of plants. Springer International Publishing; Cham: 2015.

Kawagoe T, Suzuki N. Floral sexual dimorphism and flower choice by pollinators in a nectarless monoecious vine Akebia quinata (Lardizabalaceae) Ecological Research. 2002;17:295–303. doi: 10.1046/j.1440-1703.2002.00489.x. DOI

Kawagoe T, Suzuki N. Flower-size dimorphism avoids geitonogamous pollination in a nectarless monoecious plant Akebia quinata. International Journal of Plant Sciences. 2003;164:893–897. doi: 10.1086/378659. DOI

Kawagoe T, Suzuki N. Self-pollen on a stigma interferes with outcrossed seed production in a self-incompatible monoecious plant, Akebia quinata (Lardizabalaceae) Functional Ecology. 2005;19:49–54. doi: 10.1111/j.0269-8463.2005.00950.x. DOI

Klingenberg CP. Analyzing fluctuating asymmetry with geometric morphometrics: concepts, methods, and applications. Symmetry. 2015;7:843–934. doi: 10.3390/sym7020843. DOI

Møller AP, Eriksson M. Pollinator preference for symmetrical flowers and sexual selection in plants. Oikos. 1995;73:15–22. doi: 10.2307/3545720. DOI

Møller AP, Sorci G. Insect preference for symmetrical artificial flowers. Oecologia. 1998;114:37–42. doi: 10.1007/s004420050417. PubMed DOI

Neustupa J. Gynodioecy in the common spindle tree (Euonymus europaeus L.) involves differences in the asymmetry of corolla shapes between sexually differentiated flowers. PeerJ. 2020;8:e8571. doi: 10.7717/peerj.8571. PubMed DOI PMC

Neustupa J, Woodard K. Male sterility significantly elevates shape variation and fluctuating asymmetry of zygomorphic corolla in gynodioecious Glechoma hederacea (Lamiaceae) AoB Plants. 2021;13:plab013. doi: 10.1093/aobpla/plab013. PubMed DOI PMC

Payne WW, Seago JL. The open conduplicate carpel of Akebia quinata (Berberidales: Lardizabalaceae) American Journal of Botany. 1968;55:575–581. doi: 10.1002/j.1537-2197.1968.tb07414.x. DOI

Portmann A. Neue Wege der Biologie. R. Piper & Co Verlag; München: 1960.

R Development Core Team R: a language and environment for statistical computing. https://cran.r-project.org/bin/windows/base/old/4.4.1/ [29 March 2025];2024

Renner SS. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. American Journal of Botany. 2014;101:1588–1596. doi: 10.3732/ajb.1400196. PubMed DOI

Rohlf FJ. The tps series of software. Hystrix Italian Journal of Mammalogy. 2015;26:912. doi: 10.4404/hystrix-26.1-11264. DOI

Savriama Y. A step-by-step guide for geometric morphometrics of floral symmetry. Frontiers in Plant Science. 2018;9:1433. doi: 10.3389/fpls.2018.01433. PubMed DOI PMC

Savriama Y, Gerber S. Geometric morphometrics of nested symmetries unravels hierarchical inter- and intra-individual variation in biological shapes. Scientific Reports. 2018;8:18055. doi: 10.1038/s41598-018-36147-z. PubMed DOI PMC

Savriama Y, Klingenberg CP. Beyond bilateral symmetry: geometric morphometric methods for any type of symmetry. BMC Evolutionary Biology. 2011;11:280. doi: 10.1186/1471-2148-11-280. PubMed DOI PMC

Savriama Y, Neustupa J, Klingenberg CP. Geometric morphometrics of symmetry and allometry in Micrasterias rotata (Zygnematophyceae, Viridiplantae) Nova Hedwigia Beihefte. 2010;136:43–54. doi: 10.1127/1438. DOI

Schaefer K, Lauc T, Mitteroecker P, Gunz P, Bookstein FL. Dental arch asymmetry in an isolated Adriatic community. American Journal of Physical Anthropology. 2006;129:132–142. doi: 10.1002/ajpa.20224. PubMed DOI

Shan H, Su K, Lu W, Kong H, Chen Z, Meng Z. Conservation and divergence of candidate class B genes in Akebia trifoliata (Lardizabalaceae) Development, Genes and Evolution. 2006;216:785–795. doi: 10.1007/s00427-006-0107-2. PubMed DOI

Sobral R, Costa MMR. Role of floral organ identity genes in the development of unisexual flowers of Quercus suber L. Scientific Reports. 2017;7:10368. doi: 10.1038/s41598-017-10732-0. PubMed DOI PMC

Tucić B, Budečević S, Manitašević Jovanović S, Vuleta A, Klingenberg CP. Phenotypic plasticity in response to environmental heterogeneity contributes to fluctuating asymmetry in plants: first empirical evidence. Journal of Evolutionary Biology. 2018;31:197–210. doi: 10.1111/jeb.13207. PubMed DOI

Wang C, Zou T, Liu W, Wang X. The influence of self-pollen deposition on female reproductive success in a self-incompatible plant, Akebia quinata. Frontiers in Plant Science. 2022;13:935217. doi: 10.3389/fpls.2022.935217. PubMed DOI PMC

Zhang X, Pan L, Guo W, Li Y, Wang W. A convergent mechanism of sex determination in dioecious plants: distinct sex-determining genes display converged regulation on floral B-class genes. Frontiers in Plant Science. 2022;13:953445. doi: 10.3389/fpls.2022.953445. PubMed DOI PMC

Zhang X, Ren Y. Comparative floral development in Lardizabalaceae (Ranunculales) Botanical Journal of the Linnean Society. 2011;166:171–184. doi: 10.1111/j.1095-8339.2011.01144.x. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...