Developmental changes in the Aedes aegypti mosquito endocrine gland complex
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
25-154535
Czech Science Foundation
PubMed
40982029
DOI
10.1007/s00441-025-04012-x
PII: 10.1007/s00441-025-04012-x
Knihovny.cz E-zdroje
- Klíčová slova
- Corpora allata, Development, Endocrine, Metamorphosis, Mosquito,
- Publikační typ
- časopisecké články MeSH
In the larvae of the mosquito Aedes aegypti, the three most important endocrine glands, the corpora allata (CA), the corpora cardiaca (CC), and the prothoracic gland (PG), together form the glandular complexes (GC). Using confocal laser scanning microscopy in combination with immunohistochemistry, in situ hybridization, ultrastructural expansion microscopy, and apoptosis studies, we were able to identify the different cell types of the GC and follow their fate during metamorphosis. Our studies revealed that the CC is not a well-defined organ but consists of individual cells randomly distributed within the GC and CA-CC complexes. Furthermore, imaging and in situ hybridization show that the CA is a compact organ composed of a single cell type. We observed that CA and CC survive during the larval-to-adult transition, while PG undergoes apoptosis and disappears within the first 24 h of adult life. This study lays the foundation for a more detailed understanding of the structure and changes in the major endocrine organs of mosquitoes, which are vectors of several important infectious diseases.
Department of Biological Sciences and BSI Florida International University Miami FL 33199 USA
Faculty of Science University of South Bohemia 370 05 České Budějovice Czech Republic
Zobrazit více v PubMed
Afifi S, Wahedi A, Paluzzi JP (2023) Functional insight and cell-specific expression of the adipokinetic hormone/corazonin-related peptide in the human disease vector mosquito, Aedes aegypti. Gen Comp Endocrinol 330:114145 PubMed DOI
Burgess L, Rempel JG (1966) The stomodaeal nervous system, the neurosecretory system, and the gland complex in Aedes aegypti (L.)(Diptera: Culicidae). Can J Zool 44:731–765 PubMed DOI
Dubrovsky EB (2005) Hormonal cross talk in insect development. Trends Endoc Metab 16:6–11 DOI
Estévez-Lao TY, Boyce DS, Honegger HW, Hillyer JF (2013) Cardioacceleratory function of the neurohormone CCAP in the mosquito Anopheles gambiae. J Exp Biol 216:601–613 PubMed DOI
Feyereisen R (1985) Regulation of juvenile hormone titer: synthesis. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 7. Pergamon, Oxford, pp 391–429
Gaddelapati SC, Albishi NM, Dhandapani RK, Palli SR (2022) Juvenile hormone-induced histone deacetylase 3 suppresses apoptosis to maintain larval midgut in the yellow fever mosquito. Proc Natl Acad Sci U S A 119:e2118871119 PubMed DOI PMC
Gäde G, Šimek P, Marco HG (2020) The adipokinetic peptides in Diptera: structure, function, and evolutionary trends. Front Endocrinol 11:153 DOI
Green DR, Llambi F (2015) Cell death signalling. Cold Spring Harb Perspect Biol 7:a006080 PubMed DOI PMC
Hagedorn HH, O’connor JD, Fuchs MS, Sage B, Schlaeger DA, Bohm MK (1975) The ovary as a source of alpha-ecdysone in an adult mosquito. Proc Natl Acad Sci U S A 72:3255–3259 PubMed DOI PMC
Jenkins SP, Brown MR, Lea AO (1992) Inactive prothoracic glands in larvae and pupae of Aedes aegypti: ecdysteroid release by tissues in the thorax and abdomen. Insect Biochem Mol Biol 22:553–559 DOI
Kayukawa T, Jouraku A, Ito Y, Shinoda T (2017) Molecular underlying juvenile hormone-mediated repression precocious larval–adult metamorphosis. Proc Natl Acad Sci U S A 114:1057–1062 PubMed DOI PMC
Lee G, Park JH (2004) Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics 167:311–323 PubMed DOI PMC
Liffner B, Silva TL, Vega-Rodriguez J, Absalon S (2024) Mosquito tissue ultrastructure-expansion microscopy (MoTissU-ExM) enables ultrastructural and anatomical analysis of malaria parasites and their mosquito. BMC Methods 1:13 DOI
Mané-Padrós D, Cruz J, Vilaplana L, Nieva C, Ureña E, Bellés X, Martín D (2010) The hormonal pathway controlling cell death during metamorphosis in a hemimetabolous insect. Dev Biol 346:150–160 PubMed DOI
Nässel DR, Zandawala M (2019) Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 179:101607 PubMed DOI
Nouzova M, Edwards MJ, Mayoral JG, Noriega FG (2011) A coordinated expression of biosynthetic enzymes controls the flux of juvenile hormone precursors in the corpora allata of mosquitoes. Insect Biochem Mol Biol 9:660–669 DOI
Nouzova M, Edwards MJ, Michalkova V, Ramirez CE, Ruiz M, Areiza M, DeGennaro M, Fernandez-Lima F, Feyereisen R, Jindra M, Noriega FG (2021) Epoxidation of juvenile hormone was a key innovation improving insect reproductive fitness. Proc Natl Acad Sci U S A 118:e2109381118 PubMed DOI PMC
Orchard I, Lange AB (2024) The neuroendocrine and endocrine systems in insect – historical perspective and overview. Mol Cell Endocrinol 580:112108 PubMed DOI
Pan X, Connacher RP, O’Connor MB (2010) Control of the insect metamorphic transition by ecdysteroid production and secretion. Curr Opin Insect Sci 43:11–20 DOI
Rivera-Pérez C, Clifton ME, Noriega FG, Jindra M (2020) Juvenile hormone regulation and action. In: Saleuddin S, Lange AB, Orchard I (eds) Advances in Invertebrate (Neuro) Endocrinology, vol 2. Apple Academic Press, New York, pp 1–76
Rolff J, Johnston PR, Reynolds S (2019) Complete metamorphosis of insects. Philosophical Transactions of the Royal Society B: Biological Sciences 374:20190063 DOI
Scanlan JL, Robin C, Mirth CK (2023) Rethinking the ecdysteroid source during Drosophila pupal–adult development. Insect Biochem Mol Biol 152:103891 PubMed DOI
Scharrer B, Hadorn E (1938) The structure of the ring-gland (corpus allatum) in normal and lethal larvae of Drosophila melanogaster. Proc Natl Acad Sci U S A 24:236–242 PubMed DOI PMC
Shinoda T, Itoyama K (2003) Juvenile hormone acid methyltransferase: a key regulatory enzyme for insect metamorphosis. Proc Natl Acad Sci U S A 100:11986–11991 PubMed DOI PMC
Terry D, Schweibenz C, Moberg K (2024) Local ecdysone synthesis in a wounded epithelium sustains developmental delay and promotes regeneration in Drosophila. Development 151(12):dev202828 PubMed DOI PMC
Tettamanti G, Casartelli M (2019) Cell death during complete metamorphosis. Philos Trans R Soc Lond B Biol Sci 374:20190065 PubMed DOI PMC
Tobe SS, Stay B (1985) Structure and regulation of the corpus allatum. Adv Ins Physiol 18:305–432 DOI
Truman JW (2019) The evolution of insect metamorphosis. Curr Biol 29:R1252–R1268 PubMed DOI
Yamanaka N (2021) Ecdysteroid signalling in insects—from biosynthesis to gene expression regulation. Adv Insect Physiol 60:1–36 DOI
Zhang S, Wu S, Yao R, Wei X, Ohlstein B, Guo Z (2024) Eclosion muscles secrete ecdysteroids to initiate asymmetric intestinal stem cell division in Drosophila. Dev Cell 59(1):125–140 PubMed DOI