Transpulmonary Proteome Gradients Identify Pathways Involved in Pulmonary Vascular Disease Due To Heart Failure

. 2025 Dec ; 18 (12) : e013208. [epub] 20250923

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, pozorovací studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid40985143

Grantová podpora
R01 HL128526 NHLBI NIH HHS - United States
U01 HL160226 NHLBI NIH HHS - United States

BACKGROUND: Some, but not all, patients with heart failure (HF) develop pulmonary vascular disease (PVD), which contributes to poor prognosis. Mechanisms leading to PVD in HF are poorly understood. We aimed to analyze transpulmonary gradients of proteins consumed or elaborated across the lungs to identify mediators of PVD by unbiased proteomics. METHODS: Overall, 21 controls and 160 patients with HF with reduced ejection fraction underwent pulmonary artery catheterization with blood sampling from postcapillary (wedged balloon) and precapillary (unwedged) position to obtain transpulmonary gradients. The samples from controls and HF from the highest (Q4, n=40) and lowest quartile (Q1, n=40) of pulmonary vascular resistance (PVR) were analyzed using the proteomic proximity extension assay (Olink) of 275 proteins. Venous blood concentrations or transpulmonary gradients were analyzed to identify biomarkers or potential mediators of PVD. RESULTS: Comparison of Q1 and Q4 of PVR identified PSP-D (pulmonary surfactant-associated protein D) as a marker of PVD. Examination of gradients across the lungs in high PVR HF revealed significant uptake of 18 proteins, mostly associated with inflammation (chemokines, oncostatin-M, MMP9 [matrix metalloproteinase 9]) or with TGF (transforming growth factor)/activin pathway (GDF2 [growth differentiation factor 2]/BMP9 [bone morphogenic protein 9]), and release of 5 proteins, notably IL (interleukin) 6 and IL33. In contrast, these protein gradients were negligible in controls and low PVR patients with HF. Active pulmonary release of IL6 contributed to systemic elevation of IL6 and correlated with right ventricular function. CONCLUSIONS: The lungs of patients with HF with high PVR display abnormal uptake and release of proinflammatory cytokines from IL6/gp130 family (IL6, IL33, oncostatin-M), along with increased transpulmonary uptake of GDF2/BMP9. The study shows that proteins orchestrating inflammation or pulmonary vessel remodeling in group 1 pulmonary hypertension, are also operating in patients with PVD due to HF. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT06331208.

Zobrazit více v PubMed

Maron BA, Brittain EL, Hess E, Waldo SW, Baron AE, Huang S, Goldstein RH, Assad T, Wertheim BM, Alba GA, et al. Pulmonary vascular resistance and clinical outcomes in patients with pulmonary hypertension: a retrospective cohort study. Lancet Respir Med. 2020;8:873–884. doi: 10.1016/S2213-2600(20)30317-9 PubMed DOI PMC

Melenovsky V, Andersen MJ, Andress K, Reddy YN, Borlaug BA. Lung congestion in chronic heart failure: haemodynamic, clinical, and prognostic implications. Eur J Heart Fail. 2015;17:1161–1171. doi: 10.1002/ejhf.417 PubMed DOI

Huston JH, Shah SJ. Understanding the Pathobiology of Pulmonary Hypertension Due to Left Heart Disease. Circ Res. 2022;130:1382–1403. doi: 10.1161/CIRCRESAHA.122.319967 PubMed DOI PMC

Fayyaz AU, Edwards WD, Maleszewski JJ, Konik EA, DuBrock HM, Borlaug BA, Frantz RP, Jenkins SM, Redfield MM. Global Pulmonary Vascular Remodeling in Pulmonary Hypertension Associated With Heart Failure and Preserved or Reduced Ejection Fraction. Circulation. 2018;137:1796–1810. doi: 10.1161/CIRCULATIONAHA.117.031608 PubMed DOI PMC

Guignabert C, Aman J, Bonnet S, Dorfmuller P, Olschewski AJ, Pullamsetti S, Rabinovitch M, Schermuly RT, Humbert M, Stenmark KR. Pathology and pathobiology of pulmonary hypertension: current insights and future directions. Eur Respir J. 2024;64. doi: 10.1183/13993003.01095-2024 PubMed DOI PMC

Fayyaz AU, Sabbah MS, Dasari S, Griffiths LG, DuBrock HM, Wang Y, Charlesworth MC, Borlaug BA, Jenkins SM, Edwards WD, et al. Histologic and proteomic remodeling of the pulmonary veins and arteries in a porcine model of chronic pulmonary venous hypertension. Cardiovasc Res. 2023;119:268–282. doi: 10.1093/cvr/cvac005 PubMed DOI PMC

Maron BA, Bortman G, De Marco T, Huston JH, Lang IM, Rosenkranz SH, Vachiery JL, Tedford RJ. Pulmonary hypertension associated with left heart disease. Eur Respir J. 2024;64. doi: 10.1183/13993003.01344-2024 PubMed DOI PMC

Murashige D, Jang C, Neinast M, Edwards JJ, Cowan A, Hyman MC, Rabinowitz JD, Frankel DS, Arany Z. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science. 2020;370:364–368. doi: 10.1126/science.abc8861 PubMed DOI PMC

Monzo L, Sedlacek K, Hromanikova K, Tomanova L, Borlaug BA, Jabor A, Kautzner J, Melenovsky V. Myocardial ketone body utilization in patients with heart failure: The impact of oral ketone ester. Metabolism. 2021;115:154452. doi: 10.1016/j.metabol.2020.154452 PubMed DOI

Melenovsky V, Al-Hiti H, Kazdova L, Jabor A, Syrovatka P, Malek I, Kettner J, Kautzner J. Transpulmonary B-type natriuretic peptide uptake and cyclic guanosine monophosphate release in heart failure and pulmonary hypertension: the effects of sildenafil. J Am Coll Cardiol. 2009;54:595–600. doi: 10.1016/j.jacc.2009.05.021 PubMed DOI

Tang WHW, Wilcox JD, Jacob MS, Rosenzweig EB, Borlaug BA, Frantz RP, Hassoun PM, Hemnes AR, Hill NS, Horn EM, et al. Comprehensive Diagnostic Evaluation of Cardiovascular Physiology in Patients With Pulmonary Vascular Disease: Insights From the PVDOMICS Program. Circ Heart Fail. 2020;13:e006363. doi: 10.1161/CIRCHEARTFAILURE.119.006363 PubMed DOI PMC

Wik L, Nordberg N, Broberg J, Bjorkesten J, Assarsson E, Henriksson S, Grundberg I, Pettersson E, Westerberg C, Liljeroth E, et al. Proximity Extension Assay in Combination with Next-Generation Sequencing for High-throughput Proteome-wide Analysis. Mol Cell Proteomics. 2021;20:100168. doi: 10.1016/j.mcpro.2021.100168 PubMed DOI PMC

Said SI. Metabolic functions of the pulmonary circulation. Circ Res. 1982;50:325–333. doi: 10.1161/01.res.50.3.325 PubMed DOI

Eldjarn GH, Ferkingstad E, Lund SH, Helgason H, Magnusson OT, Gunnarsdottir K, Olafsdottir TA, Halldorsson BV, Olason PI, Zink F, et al. Large-scale plasma proteomics comparisons through genetics and disease associations. Nature. 2023;622:348–358. doi: 10.1038/s41586-023-06563-x PubMed DOI PMC

Rosenkranz S, Preston IR. Right heart catheterisation: best practice and pitfalls in pulmonary hypertension. Eur Respir Rev. 2015;24:642–652. doi: 10.1183/16000617.0062-2015 PubMed DOI PMC

Assarsson E, Lundberg M, Holmquist G, Bjorkesten J, Thorsen SB, Ekman D, Eriksson A, Rennel Dickens E, Ohlsson S, Edfeldt G, et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS One. 2014;9:e95192. doi: 10.1371/journal.pone.0095192 PubMed DOI PMC

Borlaug BA, Larive B, Frantz RP, Hassoun P, Hemnes A, Horn E, Leopold J, Rischard F, Berman-Rosenzweig E, Beck G, et al. Pulmonary hypertension across the spectrum of left heart and lung disease. Eur J Heart Fail. 2024;26:1642–1651. doi: 10.1002/ejhf.3302 PubMed DOI PMC

Hemnes AR, Leopold JA, Radeva MK, Beck GJ, Abidov A, Aldred MA, Barnard J, Rosenzweig EB, Borlaug BA, Chung WK, et al. Clinical Characteristics and Transplant-Free Survival Across the Spectrum of Pulmonary Vascular Disease. J Am Coll Cardiol. 2022;80:697–718. doi: 10.1016/j.jacc.2022.05.038 PubMed DOI PMC

Miller WL, Grill DE, Borlaug BA. Clinical features, hemodynamics, and outcomes of pulmonary hypertension due to chronic heart failure with reduced ejection fraction: pulmonary hypertension and heart failure. JACC Heart Fail. 2013;1:290–299. doi: 10.1016/j.jchf.2013.05.001 PubMed DOI

Omote K, Sorimachi H, Obokata M, Reddy YNV, Verbrugge FH, Omar M, DuBrock HM, Redfield MM, Borlaug BA. Pulmonary vascular disease in pulmonary hypertension due to left heart disease: pathophysiologic implications. Eur Heart J. 2022;43:3417–3431. doi: 10.1093/eurheartj/ehac184 PubMed DOI PMC

West JB, Dollery CT, Heard BE. Increased Pulmonary Vascular Resistance in the Dependent Zone of the Isolated Dog Lung Caused by Perivascular Edema. Circ Res. 1965;17:191–206. doi: 10.1161/01.res.17.3.191 PubMed DOI

De Pasquale CG, Arnolda LF, Doyle IR, Grant RL, Aylward PE, Bersten AD. Prolonged alveolocapillary barrier damage after acute cardiogenic pulmonary edema. Crit Care Med. 2003;31:1060–1067. doi: 10.1097/01.CCM.0000059649.31659.22 PubMed DOI

Guazzi M, Novello G, Bursi F, Caretti A, Furlotti N, Arena R, Argiento P, Nunez J, Bayes-Genis A, Metra M. Biomarkers of lung congestion and injury in acute heart failure. ESC Heart Fail. 2024. doi: 10.1002/ehf2.14982 PubMed DOI PMC

Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res. 2014;115:165–175. doi: 10.1161/CIRCRESAHA.113.301141 PubMed DOI PMC

Simpson CE, Chen JY, Damico RL, Hassoun PM, Martin LJ, Yang J, Nies M, Griffiths M, Vaidya RD, Brandal S, et al. Cellular sources of interleukin-6 and associations with clinical phenotypes and outcomes in pulmonary arterial hypertension. Eur Respir J. 2020;55. doi: 10.1183/13993003.01761-2019 PubMed DOI PMC

Ranchoux B, Nadeau V, Bourgeois A, Provencher S, Tremblay E, Omura J, Cote N, Abu-Alhayja’a R, Dumais V, Nachbar RT, et al. Metabolic Syndrome Exacerbates Pulmonary Hypertension due to Left Heart Disease. Circ Res. 2019;125:449–466. doi: 10.1161/CIRCRESAHA.118.314555 PubMed DOI

Liu SF, Nambiar Veetil N, Li Q, Kucherenko MM, Knosalla C, Kuebler WM. Pulmonary hypertension: Linking inflammation and pulmonary arterial stiffening. Front Immunol. 2022;13:959209. doi: 10.3389/fimmu.2022.959209 PubMed DOI PMC

Jasmin JF, Calderone A, Leung TK, Villeneuve L, Dupuis J. Lung structural remodeling and pulmonary hypertension after myocardial infarction: complete reversal with irbesartan. Cardiovasc Res. 2003;58:621–631. doi: 10.1016/s0008-6363(03)00290-6 PubMed DOI

Toshner M, Church C, Harbaum L, Rhodes C, Villar Moreschi SS, Liley J, Jones R, Arora A, Batai K, Desai AA, et al. Mendelian randomisation and experimental medicine approaches to interleukin-6 as a drug target in pulmonary arterial hypertension. Eur Respir J. 2022;59. doi: 10.1183/13993003.02463-2020 PubMed DOI PMC

Indralingam CS, Gutierrez-Gonzalez AK, Johns SC, Tsui T, Cannon DT, Fuster MM, Bigby TD, Jennings PA, Breen EC. IL-33/ST2 receptor-dependent signaling in the development of pulmonary hypertension in Sugen/hypoxia mice. Physiol Rep. 2022;10:e15185. doi: 10.14814/phy2.15185 PubMed DOI PMC

AbouEzzeddine OF, McKie PM, Dunlay SM, Stevens SR, Felker GM, Borlaug BA, Chen HH, Tracy RP, Braunwald E, Redfield MM. Suppression of Tumorigenicity 2 in Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc. 2017;6. doi: 10.1161/JAHA.116.004382 PubMed DOI PMC

Mamazhakypov A, Viswanathan G, Lawrie A, Schermuly RT, Rajagopal S. The role of chemokines and chemokine receptors in pulmonary arterial hypertension. Br J Pharmacol. 2021;178:72–89. doi: 10.1111/bph.14826 PubMed DOI

Altara R, Manca M, Hessel MH, Gu Y, van Vark LC, Akkerhuis KM, Staessen JA, Struijker-Boudier HA, Booz GW, Blankesteijn WM. CXCL10 Is a Circulating Inflammatory Marker in Patients with Advanced Heart Failure: a Pilot Study. J Cardiovasc Transl Res. 2016;9:302–314. doi: 10.1007/s12265-016-9703-3 PubMed DOI

Mozaffarian A, Brewer AW, Trueblood ES, Luzina IG, Todd NW, Atamas SP, Arnett HA. Mechanisms of oncostatin M-induced pulmonary inflammation and fibrosis. J Immunol. 2008;181:7243–7253. doi: 10.4049/jimmunol.181.10.7243 PubMed DOI

Brown TJ, Rowe JM, Liu JW, Shoyab M. Regulation of IL-6 expression by oncostatin M. J Immunol. 1991;147:2175–2180. PubMed

Bernard C, Merval R, Lebret M, Delerive P, Dusanter-Fourt I, Lehoux S, Creminon C, Staels B, Maclouf J, Tedgui A. Oncostatin M induces interleukin-6 and cyclooxygenase-2 expression in human vascular smooth muscle cells : synergy with interleukin-1beta. Circ Res. 1999;85:1124–1131. doi: 10.1161/01.res.85.12.1124 PubMed DOI

Richards CD, Izakelian L, Dubey A, Zhang G, Wong S, Kwofie K, Qureshi A, Botelho F. Regulation of IL-33 by Oncostatin M in Mouse Lung Epithelial Cells. Mediators Inflamm. 2016;2016:9858374. doi: 10.1155/2016/9858374 PubMed DOI PMC

Botelho F, Dubey A, Ayaub EA, Park R, Yip A, Humbles A, Kolbeck R, Richards CD. IL-33 Mediates Lung Inflammation by the IL-6-Type Cytokine Oncostatin M. Mediators Inflamm. 2020;2020:4087315. doi: 10.1155/2020/4087315 PubMed DOI PMC

Thenappan T, Chan SY, Weir EK. Role of extracellular matrix in the pathogenesis of pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2018;315:H1322–H1331. doi: 10.1152/ajpheart.00136.2018 PubMed DOI PMC

Stenmark KR, Frid M, Perros F. Endothelial-to-Mesenchymal Transition: An Evolving Paradigm and a Promising Therapeutic Target in PAH. Circulation. 2016;133:1734–1737. doi: 10.1161/CIRCULATIONAHA.116.022479 PubMed DOI PMC

Zhang Y, Lin P, Hong C, Jiang Q, Xing Y, Tang X, Jiang H, Luo S, Chen X. Serum cytokine profiles in patients with chronic obstructive pulmonary disease associated pulmonary hypertension identified using protein array. Cytokine. 2018;111:342–349. doi: 10.1016/j.cyto.2018.09.005 PubMed DOI

Long L, Ormiston ML, Yang X, Southwood M, Graf S, Machado RD, Mueller M, Kinzel B, Yung LM, Wilkinson JM, et al. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat Med. 2015;21:777–785. doi: 10.1038/nm.3877 PubMed DOI PMC

Nikolic I, Yung LM, Yang P, Malhotra R, Paskin-Flerlage SD, Dinter T, Bocobo GA, Tumelty KE, Faugno AJ, Troncone L, et al. Bone Morphogenetic Protein 9 Is a Mechanistic Biomarker of Portopulmonary Hypertension. Am J Respir Crit Care Med. 2019;199:891–902. doi: 10.1164/rccm.201807-1236OC PubMed DOI PMC

Robert F, Certain MC, Baron A, Thuillet R, Duhaut L, Ottaviani M, Chelgham MK, Normand C, Berrebeh N, Ricard N, et al. Disrupted BMP-9 Signaling Impairs Pulmonary Vascular Integrity in Hepatopulmonary Syndrome. Am J Respir Crit Care Med. 2024;210:648–661. doi: 10.1164/rccm.202307-1289OC PubMed DOI

Joshi SR, Atabay EK, Liu J, Ding Y, Briscoe SD, Alexander MJ, Andre P, Kumar R, Li G. Sotatercept analog improves cardiopulmonary remodeling and pulmonary hypertension in experimental left heart failure. Front Cardiovasc Med. 2023;10:1064290. doi: 10.3389/fcvm.2023.1064290 PubMed DOI PMC

Zern EK, Cheng S, Wolfson AM, Hamilton MA, Zile MR, Solomon SD, Kittleson MM. Angiotensin Receptor-Neprilysin Inhibitor Therapy Reverses Pulmonary Hypertension in End-Stage Heart Failure Patients Awaiting Transplantation. Circ Heart Fail. 2020;13:e006696. doi: 10.1161/CIRCHEARTFAILURE.119.006696 PubMed DOI PMC

Zobrazit více v PubMed

ClinicalTrials.gov
NCT06331208

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...