A new multi-purpose FRET fluorescent probe for the simultaneous detection of proteases

. 2025 Sep 17 ; 15 (41) : 34821-34832. [epub] 20250922

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40989513

A new methodology for the detection of three model proteases using a multi-purpose peptide probe equipped with three selectively cleavable sites and four fluorophores was developed and studied. The probe was designed as a single-excitation, triple-emission system, allowing for the monitoring of characteristic real-time changes in the fluorescence emission responses of individual fluorophores during enzymatic cleavage. It was labelled with diethylaminocoumarin (DEAC), fluorescein (FL) and Rhodamine B (RhB), forming the DEAC → FL → RhB FRET-cascade, with estimated Förster distances of 3.08 ± 0.02 nm or 3.02 ± 0.02 nm for the DEAC → FL FRET-pair (depending on the DEAC labeling site) and 6.04 ± 0.05 nm for the FL → RhB FRET-pair. Although spectroscopic analyses indicate that photophysical processes other than FRET are involved in the probe, the huge changes in its fluorescence intensities (e.g., the fluorescence intensity of the probe for the excitation/emission wavelengths 421 nm/476 nm is 50-fold lower compared to that of the DEAC-only labeled construct, or it is 200-fold lower for 480 nm/521 nm compared to that of the FL-only labeled construct) enable the easy detection of protease activities. In a single-enzyme mode, trypsin, chymotrypsin, and thrombin can be determined according to the ratiometric graphical model at the lowest detectable concentrations of 0.0625 ng mL-1, 0.125 μg mL-1, and 0.0125 U mL-1, respectively. The prepared probe, in combination with selective inhibitors (Kunitz, trypsin inhibitor; chymostatin, chymotrypsin inhibitor; and dabigatran, thrombin inhibitor), was also successfully used for the simultaneous detection of individual proteases in their two-enzyme mixtures. Finally, the probe was studied as a tool for three-protease screening using two selected inhibitors. Unfortunately, a universal model capable of unambiguous confirmation of the three studied enzymes in various combinations of their quantities has not been found.

Zobrazit více v PubMed

López-Otín C. Bond J. S. J. Biol. Chem. 2008;283:30433–30437. PubMed PMC

Verdoes M. Verhelst S. H. L. Biochim. Biophys. Acta, Proteins Proteomics. 2016;1864:130–142. PubMed

Rodriguez-Rios M. Megia-Fernandez A. Norman D. J. Bradley M. Chem. Soc. Rev. 2022;51:2081–2120. PubMed

Ong I. L. H. Yang K. L. Analyst. 2017;142:1867–1881. PubMed

Dasmahapatra B. Biotechnol. Adv. 1997;15:728.

Zhang J. Chai X. He X. P. Kim H. J. Yoon J. Tian H. Chem. Soc. Rev. 2019;48:683–722. PubMed

Wu X. Simone J. Hewgill D. Siegel R. Lipsky P. E. He L. Cytometry, Part A. 2006;69:477–486. PubMed

Li S. Y. Liu L. H. Cheng H. Li B. Qiu W. X. Zhang X. Z. Chem. Commun. 2015;51:14520–14523. PubMed

Cheng H. Li S. Y. Zheng H. R. Li C. X. Xie B. R. Chen K. W. Li B. Zhang X. Z. Anal. Chem. 2017;89:4349–4354. PubMed

Megia-Fernandez A. Mills B. Michels C. Chankeshwara S. V. Krstajić N. Haslett C. Dhaliwal K. Bradley M. Org. Biomol. Chem. 2018;16:8056–8063. PubMed PMC

Cheng Y. Borum R. M. Clark A. E. Jin Z. Moore C. Fajtová P. O’Donoghue A. J. Carlin A. F. Jokerst J. V. Angew. Chem., Int. Ed. 2022;61:e202113617. PubMed PMC

Okorochenkova Y. Porubský M. Benická S. Hlaváč J. Chem. Commun. 2018;54:7589–7592. PubMed

Porubský M. Řezníčková E. Křupková S. Kryštof V. Hlaváč J. Bioorg. Chem. 2022;129:106151. PubMed

Milićević D. Hlaváč J. ACS Omega. 2024;9:17481–17490. PubMed PMC

Milićević D. Hlaváč J. RSC Adv. 2022;12:28780–28787. PubMed PMC

Algar W. R. Malanoski A. P. Susumu K. Stewart M. H. Hildebrandt N. Medintz I. L. Anal. Chem. 2012;84:10136–10146. PubMed

Algar W. R. Ancona M. G. Malanoski A. P. Susumu K. Medintz I. L. ACS Nano. 2012;6:11044–11058. PubMed

Petryayeva E. Algar W. R. Anal. Chem. 2014;86:3195–3202. PubMed

Massey M. Kim H. Conroy E. M. Algar W. R. J. Phys. Chem. C. 2017;121:13345–13356.

Das P. Ganguly S. Marvi P. K. Sherazee M. Tang X. Srinivasan S. Rajabzadeh A. R. Adv. Mater. 2024;36:1–20. PubMed PMC

Tsai H. Y. Kim H. Massey M. Krause K. D. Algar W. R. Methods Appl. Fluoresc. 2019;7:042001. PubMed

Huang Y. Shi M. Hu K. Zhao S. Lu X. Chen Z. F. Chen J. Liang H. J. Mater. Chem. B. 2013;1:3470–3476. PubMed

Xu J. Fang L. Shi M. Huang Y. Yao L. Zhao S. Zhang L. Liang H. Chem. Commun. 2019;55:1651–1654. PubMed

Michalet X. Pinaud F. F. Bentolila L. A. Tsay J. M. Doose S. Li J. J. Sundaresan G. Wu A. M. Gambhir S. S. Weiss S. Science. 2005;307:538–544. PubMed PMC

He G. Guo D. He C. Zhang X. Zhao X. Duan C. Angew. Chem., Int. Ed. 2009;48:6132–6135. PubMed

Gong Y. J. Zhang X. B. Mao G. J. Su L. Meng H. M. Tan W. Feng S. Zhang G. Chem. Sci. 2016;7:2275–2285. PubMed PMC

Krchňák V. Paděra V. Bioorg. Med. Chem. Lett. 1998;8:3261–3264. PubMed

Jones G. Jackson W. R. Choi C. Y. Bergmark W. R. J. Phys. Chem. 1985;89:294–300.

Brannon J. H. Magde D. J. Phys. Chem. 1978;82:705–709.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...